ebook img

Fundamentals of Microelectronics PDF

833 Pages·2006·8.14 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fundamentals of Microelectronics

BR Wiley/Razavi/FundamentalsofMicroelectronics [Razavi.clsv.2006] June30,2007at13:42 1(1) 1 IntroductiontoMicroelectronics Overthepastfivedecades,microelectronicshasrevolutionizedourlives.Whilebeyondtherealm ofpossibilityafewdecadesago,cellphones,digitalcameras,laptopcomputers,andmanyother electronicproductshavenowbecomeanintegralpartofourdailyaffairs. Learning microelectronicscan be fun. As we learn how each device operates, how devices comprisecircuitsthatperforminterestingandusefulfunctions,andhowcircuitsformsophisti- catedsystems,webegintoseethebeautyofmicroelectronicsandappreciatethereasonsforits explosivegrowth. Thischaptergivesanoverviewofmicroelectronicssoastoprovideacontextforthematerial presentedinthisbook.Weintroduceexamplesofmicroelectronicsystemsandidentifyimportant circuit“functions”thattheyemploy.Wealsoprovideareviewofbasiccircuittheorytorefresh thereader’smemory. 1.1 Electronics versus Microelectronics Thegeneralareaofelectronicsbeganaboutacenturyagoandprovedinstrumentalintheradio andradarcommunicationsusedduringthetwoworldwars.Earlysystemsincorporated“vacuum tubes,”amplifyingdevicesthatoperatedwith theflowofelectronsbetweenplatesinavacuum chamber.However,thefinitelifetimeandthelargesizeofvacuumtubesmotivatedresearchers toseekanelectronicdevicewithbetterproperties. Thefirsttransistorwasinventedinthe1940sandrapidlydisplacedvacuumtubes.Itexhibited averylong(inprinciple,infinite)lifetimeandoccupiedamuchsmallervolume(e.g.,lessthan1 inpackagedform)thanvacuumtubesdid. 3 cmBut it was not until 1960s that the field of microelectronics, i.e., the science of integrating manytransistorsononechip,began.Early“integratedcircuits”(ICs) containedonlya handful of devices, but advances in the technology soon made it possible to dramatically increase the complexityof“microchips.” Example 1.1 Today’smicroprocessorscontain about100 million transistors in a chip area of approximately 3 cm. (Thechipisafewhundredmicronsthick.)Supposeintegratedcircuitswerenot invcemnted3andweattemptedtobuildaprocessorusing100million“discrete”transistors.Ifeach (cid:2) device occupies a volume of 3 mm mm mm, determine the minimum volume for the processor.Whatotherissueswouldaris3einsuch3animplementation? (cid:2) (cid:2) Solution Theminimumvolumeisgivenby27mm ,i.e.,acube1.4moneachside!Ofcourse,the 3 8 10 (cid:2) 1 BR Wiley/Razavi/FundamentalsofMicroelectronics [Razavi.clsv.2006] June30,2007at13:42 2(1) 2 Chap.1 IntroductiontoMicroelectronics wiresconnectingthetransistorswouldincreasethevolumesubstantially. Inadditiontooccupyingalargevolume,thisdiscreteprocessorwouldbeextremelyslow;the signalswouldneedtotravelonwiresaslongas1.4m!Furthermore,if eachdiscretetransistor costs1centandweighs1g,eachprocessorunitwouldbepricedatonemilliondollarsandweigh 100tons! Exercise Howmuchpowerwouldsuchasystemconsumeifeachtransistordissipates10 W? (cid:22) Thisbookdealswithmostlymicroelectronicswhileprovidingsufficientfoundationforgen- eral(perhapsdiscrete)electronicsystemsaswell. 1.2 Examples ofElectronic Systems At this point, we introducetwo examplesof microelectronicsystems and identifysome of the importantbuildingblocksthatweshouldstudyinbasicelectronics. 1.2.1 CellularTelephone Cellulartelephonesweredevelopedinthe1980sandrapidlybecamepopularinthe1990s.To- day’scellphonescontainagreatdealofsophisticatedanaloganddigitalelectronicsthatliewell beyondthescopeofthisbook.Butourobjectivehereistoseehowtheconceptsdescribedinthis bookproverelevanttotheoperationofacellphone. Supposeyouarespeakingwithafriendonyourcellphone.Yourvoiceisconvertedtoanelec- tricsignalbyamicrophoneand,aftersomeprocessing,transmittedbythe antenna.The signal producedbyyourantennaispickedupbytheyourfriend’sreceiverand,aftersomeprocessing, appliedtothespeaker[Fig.1.1(a)].Whatgoesonintheseblackboxes?Whyaretheyneeded? Transmitter (TX) Receiver (RX) Microphone Speaker ? ? (a) (b) Figure1.1 (a)Simplifiedviewofacellphone,(b)furthersimplificationoftransmitandreceivepaths. LetusattempttoomittheblackboxesandconstructthesimplesystemshowninFig.1.1(b). Howwelldoesthissystemwork?Wemaketwoobservations.First,ourvoicecontainsfrequen- ciesfrom20Hzto20kHz(calledthe“voiceband”).Second,foranantennatooperateefficiently, i.e.,toconvertmostoftheelectricalsignaltoelectromagneticradiation,itsdimensionmustbea significantfraction(e.g., )ofthewavelength.Unfortunately,afrequencyrangeof20Hzto 20kHztranslatestoawa2v5e%length of mto m,requiringgiganticantennas 1 7 4 foreachcellphone.Conversely,toobta1in:5area1s0onablea1n:t5enna10length,e.g.,5cm,thewavelength (cid:2) (cid:2) mustbearound20cmandthefrequencyaround1.5GHz. Recallthatthewavelengthisequaltothe(light)velocitydividedbythefrequency. 1 BR Wiley/Razavi/FundamentalsofMicroelectronics [Razavi.clsv.2006] June30,2007at13:42 3(1) Sec.1.2 ExamplesofElectronicSystems 3 Howdowe“convert”thevoicebandtoagigahertzcenterfrequency?Onepossibleapproachis tomultiplythevoicesignal, ,byasinusoid, [Fig.1.2(a)].Sincemultiplication inthetimedomaincorresponxd(st)toconvolutioninAthcoesf(r2e(cid:25)qufcetn)cydomain,andsincethespectrum x(t) Acos( 2 p fCt) Output Waveform Voice Signal t t t (a) Spectrum of Cosine Output Spectrum X(f) Voice Spectrum Hz 0 Hz f −fC 0 +fC f −fC 0 +fC f k k 0 0 2 2 − + (b) Figure1.2 (a) Multiplication of avoicesignal by asinusoid, (b) equivalent operation inthe frequency domain. ofthesinusoidconsistsoftwoimpulsesat ,thevoicespectrumissimplyshifted(translated) to [Fig.1.2(b)].Thus,if GHz,thfecoutputoccupiesabandwidthof40kHzcentered (cid:6) at1GfcHz.Thisoperationisanfecx=am1pleof“amplitudemodulation.” (cid:6) 2 We therefore postulate that the black box in the transmitter of Fig. 1.1(a) contains a multiplier, asdepictedinFig.1.3(a).Buttwootherissuesarise.First,thecellphonemustdeliver 3 Power Amplifier Acos( 2 p fCt) Oscillator (a) (b) Figure1.3 (a)Simpletransmitter,(b)morecompletetransmitter. arelativelylargevoltageswing(e.g.,20 )totheantennasothattheradiatedpowercanreach acrossdistancesofseveralkilometers,thVeprpebyrequiringa “poweramplifier”betweenthemul- tiplierandtheantenna.Second,thesinusoid, ,mustbeproducedbyan“oscillator.” WethusarriveatthetransmitterarchitecturesAhocwons2in(cid:25)Ffcigt.1.3(b). Let us now turn our attention to the receive path of the cellphone, beginningwith the sim- ple realization illustrated in Fig. 1.1(b). Unfortunately,This topology fails to operate with the principleofmodulation:ifthesignalreceivedbytheantennaresidesaroundagigahertzcenter frequency,theaudiospeakercannotproducemeaningfulinformation.Inotherwords,ameansof Cellphonesinfactuseothertypesofmodulationtotranslatethevoicebandtohigherfrequencies. 2 Alsocalleda“mixer”inhigh-frequencyelectronics. 3 BR Wiley/Razavi/FundamentalsofMicroelectronics [Razavi.clsv.2006] June30,2007at13:42 4(1) 4 Chap.1 IntroductiontoMicroelectronics translatingthespectrumbacktozerocenterfrequencyisnecessary.Forexample,asdepictedin Fig.1.4(a),multiplicationbyasinusoid, ,translatesthespectrumtoleftandrightby Acos(2(cid:25)fct) Output Spectrum Received Spectrum Spectrum of Cosine −f 0 +f f −f 0 +f f −2f 0 +2f f C C C C C C (a) Low−Noise Amplifier Amplifier Low−Pass Low−Pass Filter Filter oscillator oscillator (b) (c) Figure 1.4 (a) Translation of modulated signal to zero center frequency, (b) simple receiver, (b) more completereceiver. ,restoringtheoriginalvoiceband.Thenewly-generatedcomponentsat canberemoved bfcyalow-passfilter.WethusarriveatthereceivertopologyshowninFig.1.42(fbc). (cid:6) Ourreceiverdesignis still incomplete.Thesignalreceivedby theantennacan beaslowas a few tens of microvolts whereas the speaker may require swings of several tens or hundreds of millivolts. That is, the receiver must providea great deal of amplification (“gain”)between theantennaandthespeaker.Furthermore,sincemultiplierstypicallysufferfromahigh“noise” andhencecorruptthereceivedsignal,a“low-noiseamplifier”mustprecedethemultiplier.The overallarchitectureisdepictedinFig.1.4(c). Today’s cellphones are much more sophisticated than the topologies developed above. For example,thevoicesignalinthetransmitterandthereceiverisappliedtoadigitalsignalprocessor (DSP)toimprovethequalityandefficiencyofthecommunication.Nonetheless,ourstudyreveals someofthefundamentalbuildingblocksof cellphones,e.g.,amplifiers,oscillators, andfilters, with the last two also utilizing amplification. We therefore devote a great deal of effort to the analysisanddesignofamplifiers. Havingseen thenecessity of amplifiers,oscillators, andmultipliersin bothtransmitandre- ceivepathsofacellphone,thereadermaywonderif“thisisoldstuff”andrathertrivialcompared tothestateoftheart.Interestingly,thesebuildingblocksstillremainamongthemostchallenging circuitsincommunicationsystems.Thisisbecausethedesignentailscriticaltrade-offsbetween speed(gigahertzcenterfrequencies),noise,powerdissipation(i.e.,batterylifetime),weight,cost (i.e., price of a cellphone), and many other parameters. In the competitiveworld of cellphone manufacturing,a given design is never “good enough”and the engineers are forced to further pushtheabovetrade-offsineachnewgenerationoftheproduct. 1.2.2 DigitalCamera Another consumer productthat, by virtue of “going electronic,” has dramatically changed our habits and routines is the digital camera. With traditional cameras, we received no immediate BR Wiley/Razavi/FundamentalsofMicroelectronics [Razavi.clsv.2006] June30,2007at13:42 5(1) Sec.1.2 ExamplesofElectronicSystems 5 feedback on the quality of the picture that was taken, we were very careful in selecting and shootingscenestoavoidwastingframes,weneededtocarrybulkyrollsoffilm,andwewould obtain the final result only in printed form. With digital cameras, on the other hand, we have resolvedtheseissuesandenjoymanyotherfeaturesthatonlyelectronicprocessingcanprovide, e.g.,transmissionof picturesthroughcellphonesorability to retouchoralter picturesby com- puters.Inthissection,westudytheoperationofthedigitalcamera. The“frontend”ofthecameramustconvertlighttoelectricity,ataskperformedbyanarray (matrix)of“pixels.” Eachpixelconsistsofanelectronicdevice(a“photodiode”thatproduces 4 a currentproportionalto the intensity of the light that it receives. As illustrated in Fig. 1.5(a), thiscurrentflowsthroughacapacitance, ,foracertainperiodoftime,therebydevelopinga CL Amplifier 2 5 0 0 C ol u m n s s w o IDiode R Light 0 0 5 2 CL Vout Signal Photodiode Processing (a) (b) (c) Figure1.5 (a)Operationofaphotodiode, (b)arrayofpixelsinadigitalcamera,(c)onecolumnofthe array. proportionalvoltageacrossit.Eachpixelthusprovidesavoltageproportionaltothe“local”light density. Nowconsideracamerawith,say,6.25-millionpixelsarrangedina array[Fig. 1.5(b)]. How is the output voltage of each pixel sensed and processed2?5I0f0eac2h5p0i0xel contains (cid:2) itsownelectroniccircuitry,theoverallarrayoccupiesaverylargearea,raisingthecostandthe power dissipation considerably. We must therefore “time-share” the signal processing circuits amongpixels.Tothisend,wefollowthecircuitofFig.1.5(a)withasimple,compactamplifier andaswitch(withinthepixel)[Fig.1.5(c)].Now,weconnectawiretotheoutputsofall2500 pixels in a “column,” turn on only one switch at a time, and apply the correspondingvoltage tothe“signalprocessing”blockoutsidethecolumn.Theoverallarrayconsistsof2500ofsuch columns,witheachcolumnemployingadedicatedsignalprocessingblock. Example 1.2 Adigitalcameraisfocusedonachessboard.Sketchthevoltageproducedbyonecolumnasa functionoftime. Theterm“pixel”isanabbreviationof“picturecell.” 4 BR Wiley/Razavi/FundamentalsofMicroelectronics [Razavi.clsv.2006] June30,2007at13:42 6(1) 6 Chap.1 IntroductiontoMicroelectronics Solution The pixels in each column receive light only from the white squares [Fig. 1.6(a)]. Thus, the V column V column t (a) (b) (c) Figure1.6 (a)Chessboardcapturedbyadigitalcamera,(b)voltagewaveformofonecolumn. columnvoltagealternatesbetweenamaximumfor suchpixelsandzero forthose receivingno light.TheresultingwaveformisshowninFig.1.6(b). Exercise Plotthevoltageifthefirstandsecondsquaresineachrowhavethesamecolor. Whatdoeseachsignalprocessingblockdo?Sincethevoltageproducedbyeach pixelis an analogsignalandcanassumeallvalueswithinarange,wemustfirst“digitize”itbymeansofan “analog-to-digitalconverter”(ADC).A6.25megapixelarraymustthusincorporate2500ADCs. Since ADCs are relatively complex circuits, we may time-share one ADC between every two columns(Fig.1.7),butrequiringthattheADCoperatetwiceasfast(why?).Intheextremecase, ADC Figure1.7 SharingoneADCbetweentwocolumnsofapixelarray. wemayemployasingle,veryfastADCforall2500columns.Inpractice,theoptimumchoice liesbetweenthesetwoextremes. Once in the digital domain, the “video”signal collected by the camera can be manipulated extensively.Forexample,to“zoomin,”thedigitalsignalprocessor(DSP)simplyconsidersonly BR Wiley/Razavi/FundamentalsofMicroelectronics [Razavi.clsv.2006] June30,2007at13:42 7(1) Sec.1.3 BasicConcepts 7 (cid:3) asectionofthearray,discardingtheinformationfromtheremainingpixels.Also,toreducethe requiredmemorysize,theprocessor“compresses”thevideosignal. Thedigitalcameraexemplifiestheextensiveuseofbothanaloganddigitalmicroelectronics. Theanalogfunctionsincludeamplification,switchingoperations,andanalog-to-digitalconver- sion,andthedigitalfunctionsconsistofsubsequentsignalprocessingandstorage. 1.2.3 AnalogversusDigital AmplifiersandADCsareexamplesof“analog”functions,circuitsthatmustprocesseachpoint onawaveform(e.g.,avoicesignal)withgreatcaretoavoideffectssuchasnoiseand“distortion.” Bycontrast,“digital”circuitsdealwithbinarylevels(ONEsandZEROs)and,evidently,contain no analogfunctions.Thereadermaythen say,“I havenointentionofworkingfora cellphone orcameramanufacturerand,therefore,neednotlearnaboutanalogcircuits.”Infact,withdigital communications, digital signal processors, and every other function becoming digital, is there anyfutureforanalogdesign? Well, some of the assumptions in the above statements are incorrect. First, not every func- tioncanberealizeddigitally.ThearchitecturesofFigs.1.3and1.4mustemploylow-noiseand poweramplifiers,oscillators,andmultipliersregardlessofwhethertheactualcommunicationis inanalogordigitalform.Forexample,a20- Vsignal(analogordigital)receivedbytheantenna cannotbedirectlyappliedto a digitalgate.(cid:22)Similarly,thevideosignalcollectivelycapturedby thepixelsinadigitalcameramustbeprocessedwithlownoiseanddistortionbeforeitappears inthedigitaldomain. Second,digitalcircuitsrequireanalogexpertiseasthespeedincreases.Figure1.8exemplifies thispointbyillustratingtwobinarydatawaveforms,oneat100Mb/sandanotherat1Gb/s.The finiterisetimeandfalltimeofthelatterraisesmanyissuesintheoperationofgates,flipflops,and otherdigitalcircuits,necessitatinggreatattentiontoeachpointonthewaveform. 10 ns x (t) 1 t 1 ns x (t) 2 t Figure1.8 Datawaveformsat100Mb/sand1Gb/s. 1.3 BasicConcepts (cid:3) Analysisofmicroelectroniccircuitsdrawsuponmanyconceptsthataretaughtinbasiccourses onsignalsandsystemsandcircuittheory.Thissectionprovidesabriefreviewoftheseconcepts so as to refreshthe reader’smemoryand establish the terminologyused throughoutthis book. The reader may first glance through this section to determine which topics need a review or simplyreturntothismaterialasitbecomesnecessarylater. 1.3.1 AnalogandDigitalSignals Anelectricsignalisawaveformthatcarriesinformation.Signalsthatoccurinnaturecanassume allvaluesinagivenrange.Called“analog,”suchsignalsincludevoice,video,seismic,andmusic Thissectionservesasareviewandcanbeskippedinclassroomteaching. (cid:3) BR Wiley/Razavi/FundamentalsofMicroelectronics [Razavi.clsv.2006] June30,2007at13:42 8(1) 8 Chap.1 IntroductiontoMicroelectronics waveforms.ShowninFig.1.9(a),ananalogvoltagewaveformswingsthrougha“continuum”of V(t( V(t( + Noise t t (a) (b) Figure1.9 (a)Analogsignal,(b)effectofnoiseonanalogsignal. valuesandprovidesinformationateachinstantoftime. While occurring all around us, analog signals are difficult to “process” due to sensitivities to such circuit imperfections as “noise” and “distortion.” As an example, Figure 1.9(b) illus- 5 tratestheeffectofnoise.Furthermore,analogsignalsaredifficultto“store”becausetheyrequire “analogmemories”(e.g.,capacitors). Bycontrast,adigitalsignalassumesonlyafinitenumberofvaluesatonlycertainpointsin time.DepictedinFig.1.10(a)isa“binary”waveform,whichremainsatonlyoneoftwolevelsfor V(t( ONE V(t(+ Noise ZERO t t T T (a) (b) Figure1.10 (a)Digitalsignal,(b)effectofnoiseondigitalsignal. eachperiod, .SolongasthetwovoltagescorrespondingtoONEsandZEROsdiffersufficiently, logicalcircuiTtssensingsuchasignalprocessitcorrectly—evenifnoiseordistortioncreatesome corruption[Fig.1.10(b)].We thereforeconsiderdigitalsignalsmore“robust”thantheiranalog counterparts.Thestorageofbinarysignals(inadigitalmemory)isalsomuchsimpler. Theforegoingobservationsfavorprocessingofsignalsinthedigitaldomain,suggestingthat inherently analog information must be converted to digital form as early as possible. Indeed, complexmicroelectronicsystemssuch asdigitalcameras,camcorders,andcompactdisk (CD) recordersperformsomeanalogprocessing,“analog-to-digitalconversion,”anddigitalprocessing (Fig.1.11),withthefirsttwofunctionsplayingacriticalroleinthequalityofthesignal. Digital Analog Analog Analog−to−Digital Processing Signal Processing Conversion and Storage Figure1.11 Signalprocessinginatypicalsystem. It is worth notingthat many digital binary signals must be viewed and processed as analog waveforms.Consider,forexample,theinformationstoredonaharddiskinacomputer.Uponre- trieval,the“digital”dataappearsasadistortedwaveformwithonlyafewmillivoltsofamplitude Distortionarisesiftheoutputisnotalinearfunctionofinput. 5 BR Wiley/Razavi/FundamentalsofMicroelectronics [Razavi.clsv.2006] June30,2007at13:42 9(1) Sec.1.3 BasicConcepts 9 (cid:3) (Fig.1.12).SuchasmallseparationbetweenONEsandZEROsprovesinadequateifthissignal ~3 mV Hard Disk t Figure1.12 Signalpickedupfromaharddiskinacomputer. is to drivea logicalgate, demandinga great dealof amplificationand other analog processing beforethedatareachesarobustdigitalform. 1.3.2 AnalogCircuits Today’smicroelectronicsystemsincorporatemanyanalogfunctions.Asexemplifiedbythecell- phoneand the digitalcamera studied above,analog circuits often limit the performanceof the overallsystem. Themostcommonly-usedanalogfunctionisamplification.Thesignalreceivedbyacellphone orpickedupbyamicrophoneprovestoosmalltobeprocessedfurther.Anamplifieristherefore necessarytoraisethesignalswingtoacceptablelevels. Theperformanceofanamplifierischaracterizedbyanumberofparameters,e.g.,gain,speed, andpowerdissipation.Westudytheseaspectsofamplificationingreatdetaillaterinthisbook, butitisinstructivetobrieflyreviewsomeoftheseconceptshere. Avoltageamplifierproducesanoutputswinggreaterthantheinputswing.Thevoltagegain, ,isdefinedas Av (1.1) vout Av = : vin Insomecases,weprefertoexpressthegainindecibels(dB): (1.2) vout Av dB =20log : j vin Forexample,avoltagegainof10translatesto20dB.Thegainoftypicalamplifiersfallsinthe rangeof to . 1 5 10 10 Example 1.3 Acellphonereceivesasignallevelof20 V,butitmustdeliveraswingof50mVtothespeaker thatreproducesthevoice.Calculatethere(cid:22)quiredvoltagegainindecibels. Solution Wehave (1.3) 50mV Av =20log 20(cid:22)V (1.4) 68dB: (cid:25) Exercise Whatistheoutputswingifthegainis50dB?

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.