ebook img

Fundamentals of mathematical logic PDF

895 Pages·2005·9.558 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fundamentals of mathematical logic

Fundamentals of Mathematical Logic Fundamentals of Mathematical Logic Peter G. Hinman University of Michigan A K Peters Wellesley, Massachusetts Editorial, Sales, and Customer Service Office A K Peters, Ltd. 888 Worcester Street, Suite 230 Wellesley, MA 02482 www.akpeters.com Copyright (cid:1)c 2005 by A K Peters, Ltd. All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form, electronic or mechani- cal, including photocopying, recording, or by any information storage and retrieval system, without written permission from the copyright owner. Library of Congress Cataloging-in-Publication Data Hinman,PeterG. Fundamentalsofmathematicallogic/PeterG.Hinman. p. cm. Includesbibliographicalreferencesandindexes. ISBN1-56881-262-0 1. Logic, Symbolicandmathematical. 2. Modeltheory. 3. Settheory. 4. Recursion theory. I.Title. QA9.H5272005 511.3--dc22 2005050968 Printed in India 09 08 07 06 05 10 9 8 7 6 5 4 3 2 1 for Annika Michele and Celia Katherine Contents Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Introduction . . . . . . . . . . . . . . . . . . . . . . . . 1 1. Propositional Logic and Other Fundamentals . . . . 13 1.1. The propositional language . . . . . . . . . . . . . . . . 13 1.2. Induction and recursion . . . . . . . . . . . . . . . . . 20 Induction . . . . . . . . . . . . . . . . . . . . . . . 20 Recursion . . . . . . . . . . . . . . . . . . . . . . . 25 1.3. Propositionalsemantics . . . . . . . . . . . . . . . . . 32 1.4. Propositionaltheories . . . . . . . . . . . . . . . . . . 41 General properties . . . . . . . . . . . . . . . . . . . 42 Compactness . . . . . . . . . . . . . . . . . . . . . . 47 1.5. Decidability and effective enumerability . . . . . . . . . . 54 1.6. Other constructions . . . . . . . . . . . . . . . . . . . 63 Notions of consistency . . . . . . . . . . . . . . . . . . 63 Ultraproducts . . . . . . . . . . . . . . . . . . . . . 67 1.7. Topology and Boolean algebra . . . . . . . . . . . . . . 72 Topology . . . . . . . . . . . . . . . . . . . . . . . 73 Boolean algebra . . . . . . . . . . . . . . . . . . . . 74 viii Contents 2. First-Order Logic . . . . . . . . . . . . . . . . . . . 83 2.1. Syntax and semantics of first-order languages . . . . . . . . 83 2.2. Basic semantics . . . . . . . . . . . . . . . . . . . . . 96 Substitution . . . . . . . . . . . . . . . . . . . . . . 105 2.3. Structures . . . . . . . . . . . . . . . . . . . . . . . 114 Isomorphism and equivalence . . . . . . . . . . . . . . . 115 Substructures . . . . . . . . . . . . . . . . . . . . . 119 Products and chains . . . . . . . . . . . . . . . . . . . 130 2.4. Theories . . . . . . . . . . . . . . . . . . . . . . . . 139 The language of equality . . . . . . . . . . . . . . . . . 149 Dense linear orderings . . . . . . . . . . . . . . . . . . 154 2.5. Arithmetic . . . . . . . . . . . . . . . . . . . . . . . 160 2.6. Changing languages . . . . . . . . . . . . . . . . . . . 173 Interpretations . . . . . . . . . . . . . . . . . . . . . 186 3. Completeness and Compactness . . . . . . . . . . . 193 3.1. Countable compactness . . . . . . . . . . . . . . . . . 194 3.2. Countable completeness . . . . . . . . . . . . . . . . . 204 3.3. Other constructions . . . . . . . . . . . . . . . . . . . 216 Notions of consistency . . . . . . . . . . . . . . . . . . 216 Ultraproducts . . . . . . . . . . . . . . . . . . . . . 224 Boolean algebra . . . . . . . . . . . . . . . . . . . . 228 3.4. Uncountable languages and structures . . . . . . . . . . . 236 3.5. Applications of compactness . . . . . . . . . . . . . . . 249 3.6. Higher-order logic . . . . . . . . . . . . . . . . . . . . 276 Monadic second-order logic . . . . . . . . . . . . . . . . 276 3.7. Infinitary logic . . . . . . . . . . . . . . . . . . . . . 293 4. Incompleteness and Undecidability . . . . . . . . . 309 4.1. A first look . . . . . . . . . . . . . . . . . . . . . . 310 4.2. Recursive functions and relations . . . . . . . . . . . . . 326 4.3. Recursively enumerable sets and relations . . . . . . . . . 341 4.4. G¨odel numbering . . . . . . . . . . . . . . . . . . . . 352 4.5. Definability in arithmetic I . . . . . . . . . . . . . . . . 364 4.6. Representability: First Incompleteness Theorem . . . . . . 369 5. Topics in Definability . . . . . . . . . . . . . . . . . 393 5.1. Definability in arithmetic II . . . . . . . . . . . . . . . 393 5.2. Indexing . . . . . . . . . . . . . . . . . . . . . . . . 409 5.3. Second Incompleteness Theorem . . . . . . . . . . . . . 421 Contents ix 5.4. Church’s Thesis . . . . . . . . . . . . . . . . . . . . 431 Recursion equations . . . . . . . . . . . . . . . . . . . 432 Abstract machines . . . . . . . . . . . . . . . . . . . 436 5.5. Applications to other languages and theories . . . . . . . . 443 6. Set Theory . . . . . . . . . . . . . . . . . . . . . . . 455 6.1. Zermelo-Fraenkelset theory . . . . . . . . . . . . . . . 456 6.2. Mathematics in set theory I . . . . . . . . . . . . . . . 472 6.3. Ordinal numbers: induction and recursion . . . . . . . . . 497 6.4. Cardinal numbers . . . . . . . . . . . . . . . . . . . . 510 6.5. Models and independence . . . . . . . . . . . . . . . . 527 6.6. Mathematics in set theory II . . . . . . . . . . . . . . . 550 6.7. The constructible universe . . . . . . . . . . . . . . . . 567 6.8. Generic extensions . . . . . . . . . . . . . . . . . . . 577 6.9. Forcing . . . . . . . . . . . . . . . . . . . . . . . . 596 6.10. Large cardinals . . . . . . . . . . . . . . . . . . . . 605 6.11. Determinacy . . . . . . . . . . . . . . . . . . . . . 622 7. Model Theory . . . . . . . . . . . . . . . . . . . . . 655 7.1. Partialembeddings . . . . . . . . . . . . . . . . . . . 655 7.2. Boolean algebras, ultrafilters and types . . . . . . . . . . 671 7.3. Countable models of countable theories . . . . . . . . . . 683 7.4. Uncountable models of countable theories . . . . . . . . . 700 7.5. Morley’s Theorem . . . . . . . . . . . . . . . . . . . 708 7.6. Abstract logics . . . . . . . . . . . . . . . . . . . . . 721 8. Recursion Theory . . . . . . . . . . . . . . . . . . . 733 8.1. Many-one degrees and r.e. sets . . . . . . . . . . . . . . 733 8.2. Turing reducibility . . . . . . . . . . . . . . . . . . . 756 8.3. The jump operator . . . . . . . . . . . . . . . . . . . 770 8.4. Upper bounds . . . . . . . . . . . . . . . . . . . . . 783 8.5. Jumps of r.e. sets . . . . . . . . . . . . . . . . . . . . 793 8.6. Lower bounds . . . . . . . . . . . . . . . . . . . . . 808 References . . . . . . . . . . . . . . . . . . . . . . . . 821 Item References . . . . . . . . . . . . . . . . . . . . . 829 Symbol Index . . . . . . . . . . . . . . . . . . . . . . . 835 Subject Index . . . . . . . . . . . . . . . . . . . . . . . 857

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.