ebook img

Fundamentals of Laser-Assisted Micro- and Nanotechnologies PDF

327 Pages·2014·12.377 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fundamentals of Laser-Assisted Micro- and Nanotechnologies

Springer Series in Materials Science 195 Vadim P. Veiko Vitaly I. Konov Editors Fundamentals of Laser-Assisted Micro- and Nanotechnologies Springer Series in Materials Science Volume 195 Series editors Robert Hull, Charlottesville, VA, USA Chennupati Jagadish, Canberra, ACT, Australia Richard M. Osgood, New York, USA Jürgen Parisi, Oldenburg, Germany Shin-ichi Uchida, Tokyo, Japan Zhiming M. Wang, Chengdu, People’s Republic of China For furthervolumes: http://www.springer.com/series/856 The Springer Series in Materials Science covers the complete spectrum of materialsphysics,includingfundamentalprinciples,physicalproperties,materials theory and design. Recognizing the increasing importance of materials science in future device technologies, the book titles in this series reflect the state-of-the-art in understanding and controlling the structure and properties of all important classes of materials. Vadim P. Veiko Vitaly I. Konov • Editors Fundamentals of Laser-Assisted Micro- and Nanotechnologies 123 Editors VadimP. Veiko Vitaly I.Konov Department of Laser-basedTechnologies Natural Sciences Center NRUITMO General PhysicsInstitute RAS St.Petersburg Moscow Russia Russia ISSN 0933-033X ISSN 2196-2812 (electronic) ISBN 978-3-319-05986-0 ISBN 978-3-319-05987-7 (eBook) DOI 10.1007/978-3-319-05987-7 Springer ChamHeidelberg New YorkDordrecht London LibraryofCongressControlNumber:2014939414 (cid:2)SpringerInternationalPublishingSwitzerland2014 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionor informationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purposeofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthe work. Duplication of this publication or parts thereof is permitted only under the provisions of theCopyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the CopyrightClearanceCenter.ViolationsareliabletoprosecutionundertherespectiveCopyrightLaw. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexempt fromtherelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Over the past decades, laser microfabrication has successfully spread in micro- electronics, micromechanics, and some other areas. Nowadays, laser-induced microprocessing and, in some cases, nanoprocessing of materials constitute new and very promising application areas, such as MEMS, photonic, and fluidic devices, etc., for information, biomedical, and other technologies. In these areas, lasertechnologiesareinthestageoftransitionfromimpressivedemonstrationsto practicallyfeasibleresultsforseveralreasons.First,shortlaserpulsesofnano-and especially pico- and femtosecond duration, combined with modern focusing ele- ments and beam scanning devices allow strong localization of laser pulse effects onthesurfaceandinthebulkofmaterials.Second,theproductivityoflasermicro- andnanotechnologiesisrapidlygrowingasaresultofthedevelopmentofreliable industrial lasers that emit intense radiation pulses with ultra-high repetition rate (uptotheMHzrange).Themeanbeampoweroftheselasersisnowapproaching the level of 1 kW and becomes comparable with that of lasers used for macro- processing of materials (welding, cutting, surface hardening, etc.). Accordingly, various phenomena that can be induced by short intense pulses: surface and bulk modification of materials, radiation-induced chemical reactions, various types of ablation, plasma formation should be better understood for development of efficient and novel technological procedures. Naturally, one book cannot cover all topics of interest in the field of laser micro- and nano-laser technologies. We have selected some of them—currently hot topics in our opinion—based on presentations made by a number of the world’s leading experts who participated in the International Symposium, ‘‘Fun- damentals of Laser-Assisted Micro- and Nanotechnologies’’ (FLAMN) recently. This is a serial and popular event that takes place every 3 years inSt. Petersburg, Russia. The book consists of 13 chapters divided into five parts: I. Laser–Matter interaction phenomena; II. Nanoparticles related technologies and problems; III. Surface and thin films phenomena and applications; IV. Bulk micro structuring of transparent materials; V. Laser-Induced modification of polymers. v vi Preface We expect that the reader will be able to learn important features of (i) defect formationinlaser-heatedsurfacelayers,(ii)laserablationoforganicandinorganic materials,(iii)metaloxidationbylaserpulses, and(iv)reversibleandirreversible changesofthestructureandopticalpropertiesinthebulkofamaterial,inducedby tightlyfocusedultrashortlaserpulses.Specialemphasisismadeontheapplication of nanoparticles as a positive factor in materials processing. Several advanced applications of laser microtechnologies are included such as laser printing and laser fabrication of three-dimensional polymer devices. We hope that the book will be of use for researchers and engineers, as well as for young scientists and students already working or planning to work in the area of laser applications. Finally, we wish to express our appreciation to all contrib- utors for their friendly cooperation in preparing the book. Special thanks to Dr. Koji Sugioka to whom the idea to publish this book belongs. St. Petersburg Vadim P. Veiko Moscow Vitaly I. Konov Contents Part I Laser–Matter Interaction Phenomena 1 Ultrafast Laser Induced Confined Microexplosion: A New Route to Form Super-Dense Material Phases. . . . . . . . . . 3 Ludovic Rapp, Bianca Haberl, Jodie E. Bradby, Eugene G. Gamaly, Jim S. Williams and Andrei V. Rode 1.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Energy Density in Confined Ultra-Short Laser Interaction with Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.1 Absorbed Energy Density . . . . . . . . . . . . . . . . . . . . 5 1.2.2 Ionisation Processes . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2.3 Increase in the Absorbed Energy Density Due to Modification of Optical Properties . . . . . . . . . . . . 10 1.2.4 Energy Transfer From Electrons to Ions: Relaxation Processes After the Pulse . . . . . . . . . . . . 11 1.3 Shock Wave Propagation and Void Formation. . . . . . . . . . . . 13 1.3.1 Shock Wave Generation and Propagation . . . . . . . . . 13 1.3.2 Shock Wave Dissipation . . . . . . . . . . . . . . . . . . . . . 14 1.3.3 Rarefaction Wave: Formation of Void. . . . . . . . . . . . 15 1.4 Density and Temperature in the Shock-Wave and Heat-Wave Affected Solid. . . . . . . . . . . . . . . . . . . . . . . 16 1.4.1 Two Characteristic Areas in Confined Microexplosion . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.4.2 Upper Limit for the Pressure Achievable in Confined Interaction . . . . . . . . . . . . . . . . . . . . . . 17 1.4.3 Ionisation Wave Propagation Towards the Laser Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 1.4.4 Modelling of Macroscopic Explosions by Micro-Explosion . . . . . . . . . . . . . . . . . . . . . . . . 20 1.5 Formation of Void at Si/SiO Interface. . . . . . . . . . . . . . . . . 21 2 1.6 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 vii viii Contents 2 Molecular Dynamics Simulations of Laser-Materials Interactions: General and Material-Specific Mechanisms of Material Removal and Generation of Crystal Defects . . . . . . . 27 Eaman T. Karim, Chengping Wu and Leonid V. Zhigilei 2.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.2 Physical Regimes of Laser-Material Interactions . . . . . . . . . . 30 2.3 Generation of Crystal Defects Below the Spallation Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.4 Evolution of Voids in Photomechanical Spallation. . . . . . . . . 39 2.5 The Visual Picture of Phase Explosion . . . . . . . . . . . . . . . . . 41 2.6 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3 Laser Nanocrystallization of Metals . . . . . . . . . . . . . . . . . . . . . . 51 Irina N. Zavestovskaya 3.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.1 Laser Matter Interaction . . . . . . . . . . . . . . . . . . . . . 52 3.1.2 Direct Surface Material Nanostructuring . . . . . . . . . . 53 3.2 Peculiarities of Laser Nano- and Microstructuring of Metal Surfaces: Experimental Results. . . . . . . . . . . . . . . . 54 3.2.1 Properties of Nanocrystalline Materials. . . . . . . . . . . 54 3.2.2 Laser Glassing. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.2.3 The Role of Laser Pulse Duration . . . . . . . . . . . . . . 56 3.2.4 Metal Surface Nanostructuring with Femtosecond Laser Pulses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2.5 Micro- and Nano-Structuring with Nanosecond Laser Pulses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 3.3 Theoretical Modeling of Laser-Induced Nanocrystallization Processes. . . . . . . . . . . . . . . . . . . . . . . . 62 3.3.1 Melting Processes. . . . . . . . . . . . . . . . . . . . . . . . . . 62 3.3.2 Laser Processing of Porous Metal Films . . . . . . . . . . 63 3.3.3 Nanocrystalization Kinetics . . . . . . . . . . . . . . . . . . . 65 3.3.4 Volume of the Phase Crystalline and Average Number of Nuclei Particles . . . . . . . . . . . . . . . . . . . 69 3.3.5 Criterion for Laser Amorphisation . . . . . . . . . . . . . . 71 3.4 Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4 Optical Breakdown in Ambient Gas and Its Role in Material Processing by Short-Pulsed Lasers . . . . . . . . . . . . . . 77 Sergey M. Klimentov and Vitaly I. Konov 4.1 Introduction: Origin of Plasma Near Exposed Surface. . . . . . . 77 Contents ix 4.2 Effect of Charged Ablated Nanoparticles Long-Residing in the Ambient Gas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 4.2.1 Observation of Low-Threshold Air Breakdown . . . . . 78 4.2.2 Locations of Plasma and the Resulting Crater Morphology. . . . . . . . . . . . . . . . . . . . . . . . . 80 4.2.3 Dimensions, Lifetime and Electrical Properties of Nanoparticles. . . . . . . . . . . . . . . . . . . . . . . . . . . 81 4.2.4 Removal of Charged Particles by Application of Electric Field. . . . . . . . . . . . . . . . . . . . . . . . . . . 83 4.2.5 Relaxation of Plasma in Atmospheric Air and Its Role in High Repetition Rate Micromachining . . . . . . . . . . . . . . . . . . . . . . . 85 4.3 Self-Scattering of Focused Ultrashort Pulses . . . . . . . . . . . . . 89 4.3.1 Threshold Conditions . . . . . . . . . . . . . . . . . . . . . . . 90 4.3.2 Contributing Mechanisms . . . . . . . . . . . . . . . . . . . . 91 4.3.3 Optimization of Exposure Conditions to Eliminate the Scattering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4.4 Discussion and Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . 97 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Part II Nanoparticles Related Technologies and Problems 5 Laser Generation and Printing of Nanoparticles . . . . . . . . . . . . . 103 A. Barchanski, A. B. Evlyukhin, A. Koroleva, C. Reinhardt, C. L. Sajti, U. Zywietz and Boris N. Chichkov 5.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.2 Laser Printing of Nanoparticles and Nanoparticle Arrays. . . . . 104 5.2.1 Laser Printing of Nanoparticles . . . . . . . . . . . . . . . . 104 5.2.2 Laser Fabrication of Large-Scale Nanoparticle Arrays . . . . . . . . . . . . . . . . . . . . . . . . 106 5.3 Resonant Electric and Magnetic Response of Silicon Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 5.4 Generation of Silicon Nanoparticles from Bulk Silicon. . . . . . 109 5.5 Microreplication of Laser-Transferred Gold Nanoparticles/Nanomolding. . . . . . . . . . . . . . . . . . . . . . . . . 111 5.6 Laser-Based Synthesis of Nanoparticles and Surface Modified Nanoconjugates . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.6.1 Ultrapure Nanoparticles by Pulsed Laser Ablation in Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 5.6.2 Surface-Functionalized Nano(Bio)Conjugates. . . . . . . 117 5.7 Novel Laser-Based Conjugation Concepts. . . . . . . . . . . . . . . 119 5.8 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.