Fundamentals of Creep in Metals and Alloys This Page Intentionally Left Blank Fundamentals of Creep in Metals and Alloys Michael E. Kassner Department of Aerospace and Mechanical Engineering University of Southern California Los Angeles, USA Marı´a-Teresa Pe´ rez-Prado Department of Physical Metallurgy Centro Nacional de Investigaciones Metalu´rgicas (CENIM) Madrid, Spain 2004 ELSEVIER Amsterdam – Boston – Heidelberg – London – New York – Oxford Paris – San Diego – San Francisco – Singapore – Sydney – Tokyo ELSEVIERB.V. ELSEVIERInc. ELSEVIERLtd ELSEVIERLtd SaraBurgerhartstraat25 525BStreet,Suite1900 TheBoulevard,LangfordLane 84TheobaldsRoad P.O.Box211 SanDiego Kidlington, London 1000AEAmsterdam CA92101-4495 OxfordOX51GB WC1X8RR TheNetherlands USA UK UK (cid:2)2004ElsevierLtdAllrightsreserved. ThisworkisprotectedundercopyrightbyElsevierLtd,andthefollowingtermsandcondiionsapplytoitsuse: Photocopying Singlephotocopiesofsinglechaptersmaybemadeforpersonaluseasallowedbynationalcopyrightlaws.Permissionof thePublisherandpaymentofafeeisrequiredforallotherphotocopying,includingmultipleorsystematiccopying, copyingforadvertisingorpromotionalpurposes,resale,andallformsofdocumentdelivery.Specialratesareavailable foreducationalinstitutionsthatwishtomakephotocopiesfornon-profiteducationalclassroomuse. Permissions may be sought directly from Elsevier’s Rights Department in Oxford, UK: phone (þ44) 1865 843830, fax (þ44) 1865 853333, e-mail: [email protected]. Requests may also be completed on-line via the Elsevier homepage(http://www.elsevier.com/locate/permissions). In the USA, users may clear permissions and make payments through the Copyright Clearance Center, Inc., 222 RosewoodDrive,Danvers,MA01923,USA;phone:(þ1)(978)7508400,fax:(þ1)(978)7504744,andintheUKthrough theCopyrightLicensingAgencyRapidClearanceService(CLARCS),90TottenhamCourtRoad,LondonW1P0LP, UK;phone:(þ44)2076315555;fax:(þ44)2076315500.Othercountriesmayhavealocalreprographicrightsagency forpayments. DerivativeWorks Tablesofcontentsmaybereproducedforinternalcirculation,butpermissionofthePublisherisrequiredforexternal resaleordistributionofsuchmaterial.PermissionofthePublisherisrequiredforallotherderivativeworks,including compilationsandtranslations. ElectronicStorageorUsage PermissionofthePublisherisrequiredtostoreoruseelectronicallyanymaterialcontainedinthiswork,includingany chapterorpartofachapter. Exceptasoutlinedabove,nopartofthisworkmaybereproduced,storedinaretrievalsystemortransmittedinanyform orbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,withoutpriorwrittenpermissionofthe Publisher. Addresspermissionsrequeststo:Elsevier’sRightsDepartment,atthefaxande-mailaddressesnotedabove. Notice No responsibility is assumed bythe Publisher forany injuryand/or damage to persons or property as amatter of productsliability,negligenceorotherwise,orfromanyuseoroperationofanymethods,products,instructionsorideas containedinthematerialherein.Becauseofrapidadvancesinthemedicalsciences,inparticular,independentverification ofdiagnosesanddrugdosagesshouldbemade. Firstedition2004 LibraryofCongressCataloginginPublicationData AcatalogrecordisavailablefromtheLibraryofCongress. BritishLibraryCataloguinginPublicationData AcataloguerecordisavailablefromtheBritishLibrary. ISBN:0-08-043637-4 ThepaperusedinthispublicationmeetstherequirementsofANSI/NISOZ39.48-1992(PermanenceofPaper). PrintedinTheNetherlands. Preface This book on the fundamentals of creep plasticity is both a review and a critical analysis of investigations in a variety of areas relevant to creep plasticity. These areas include five-power-law creep, which is sometimes referred to as dislocation climb-controlled creep, viscous glide or three-power-law creep in alloys, diffusional creep, Harper–Dorn creep, superplasticity, second-phase strengthening, and creep cavitation and fracture. Many quality reviews and books precede this attempt to write an extensive review of creep fundamentals and improvement was a challenge. One advantage with this attempt is the ability to describe the substantial work published subsequent to these earlier reviews. An attempt was made to cover the basicworkdiscussedintheseearlierreviewsbutespeciallytoemphasizemorerecent developments. Theauthorwishes toacknowledgesupport fromtheU.S.DepartmentofEnergy, Basic Energy Sciences under contract DE-FG03-99ER45768. Comments by Profs. F.R.N. Nabarro, W. Blum, T.G. Langdon, J. Weertman, S. Spigarelli, J.H. SchneibelandO.Ruanoareappreciated.Theassistancewiththepreparationofthe figuresbyT.A.HayesandC.Daraioisgreatlyappreciated.WordprocessingbyMs. Peggy Blair was vital. M.E. Kassner M.T. Pe´rez-Prado This Page Intentionally Left Blank Contents Preface v List of Symbols and Abbreviations xi 1. Introduction 1 1.1. Description of Creep 3 1.2. Objectives 7 2. Five-Power-Law Creep 11 2.1. Macroscopic Relationships 13 2.1.1 Activation Energy and Stress Exponents 13 2.1.2 Influence of the Elastic Modulus 20 2.1.3 Stacking Fault Energy and Summary 24 2.1.4 Natural Three-Power-Law 29 2.1.5 Substitutional Solid Solutions 30 2.2. Microstructural Observations 31 2.2.1 Subgrain Size, Frank Network Dislocation Density, Subgrain Misorientation Angle, and the Dislocation Separation within the Subgrain Walls in Steady-State Structures 31 2.2.2 Constant Structure Equations 39 2.2.3 Primary Creep Microstructures 47 2.2.4 Creep Transient Experiments 51 2.2.5 Internal Stress 55 2.3. Rate-Controlling Mechanisms 60 2.3.1 Introduction 60 2.3.2 Dislocation Microstructure and the Rate-Controlling Mechanism 67 2.3.3 In situ and Microstructure-Manipulation Experiments 70 2.3.4 Additional Comments on Network Strengthening 71 2.4. Other Effects on Five-Power-Law Creep 77 2.4.1 Large Strain Creep Deformation and Texture Effects 77 2.4.2 Effect of Grain Size 82 2.4.3 Impurity and Small Quantities of Strengthening Solutes 84 2.4.4 Sigmoidal Creep 87 3. Diffusional-Creep 89 4. Harper–Dorn Creep 97 4.1. The Size Effect 103 viii Fundamentals of Creep in Metals and Alloys 4.2. The Effect of Impurities 106 5. Three-Power-Law Viscous Glide Creep 109 6. Superplasticity 121 6.1. Introduction 123 6.2. Characteristics of Fine Structure Superplasticity 123 6.3. Microstructure of Fine Structure Superplastic Materials 127 6.3.1 Grain Size and Shape 127 6.3.2 Presence of a Second Phase 127 6.3.3 Nature and Properties of Grain Boundaries 127 6.4. Texture Studies in Superplasticity 128 6.5. High Strain-Rate Superplasticity 128 6.5.1 High Strain-Rate Superplasticity in Metal–Matrix Composites 129 6.5.2 High Strain-Rate Superplasticity in Mechanically Alloyed Materials 134 6.6. Superplasticity in Nano and Submicrocrystalline Materials 136 7. Recrystallization 141 7.1. Introduction 143 7.2. Discontinuous Dynamic Recrystallization (DRX) 145 7.3. Geometric Dynamic Recrystallization 146 7.4. Particle-Stimulated Nucleation (PSN) 147 7.5. Continuous Reactions 147 8. Creep Behavior of Particle-Strengthened Alloys 149 8.1. Introduction 151 8.2. Small Volume-Fraction Particles that are Coherent and Incoherent with the Matrix with Small Aspect Ratios 151 8.2.1 Introduction and Theory 151 8.2.2 Local and General Climb of Dislocations over Obstacles 155 8.2.3 Detachment Model 158 8.2.4 Constitutive Relationships 162 8.2.5 Microstructural Effects 166 8.2.6 Coherent Particles 168 9. Creep of Intermetallics 171 9.1. Introduction 173 9.2. Titanium Aluminides 175 9.2.1 Introduction 175 9.2.2 Rate Controlling Creep Mechanisms in FL TiAl Intermetallics During ‘‘Secondary’’ Creep 178 9.2.3 Primary Creep in FL Microstructures 186 9.2.4 Tertiary Creep in FL Microstructures 188 Contents ix 9.3. Iron Aluminides 188 9.3.1 Introduction 188 9.3.2 Anomalous Yield Point Phenomenon 190 9.3.3 Creep Mechanisms 194 9.3.4 Strengthening Mechanisms 197 9.4. Nickel Aluminides 198 9.4.1 Ni Al 198 3 9.4.2 NiAl 208 10. Creep Fracture 213 10.1. Background 215 10.2. Cavity Nucleation 218 10.2.1 Vacancy Accumulation 218 10.2.2 Grain-Boundary Sliding 221 10.2.3 Dislocation Pile-ups 222 10.2.4 Location 224 10.3. Growth 225 10.3.1 Grain Boundary Diffusion-Controlled Growth 225 10.3.2 Surface Diffusion-Controlled Growth 228 10.3.3 Grain-Boundary Sliding 229 10.3.4 Constrained Diffusional Cavity Growth 229 10.3.5 Plasticity 234 10.3.6 Coupled Diffusion and Plastic Growth 234 10.3.7 Creep Crack Growth 237 10.4. Other Considerations 240 References 243 Index 269
Description: