ebook img

Fundamentals of Causal Inference with R PDF

249 Pages·2021·7.92 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fundamentals of Causal Inference with R

Fundamentals of Causal Inference with R CHAPMAN & HALL/CRC Texts in Statistical Science Series Joseph K. Blitzstein, Harvard University, USA Julian J. Faraway, University of Bath, UK Martin Tanner, Northwestern University, USA Jim Zidek, University of British Columbia, Canada Recently Published Titles Modern Data Science with R, Second Edition Benjamin S. Baumer, Daniel T. Kaplan, and Nicholas J. Horton Probability and Statistical Inference From Basic Principles to Advanced Models Miltiadis Mavrakakis and Jeremy Penzer Bayesian Networks With Examples in R, Second Edition Marco Scutari and Jean-Baptiste Denis Time Series Modeling, Computation, and Inference, Second Edition Raquel Prado, Marco A. R. Ferreira and Mike West A First Course in Linear Model Theory, Second Edition Nalini Ravishanker, Zhiyi Chi, Dipak K. Dey Foundations of Statistics for Data Scientists With R and Python Alan Agresti and Maria Kateri Fundamentals of Causal Inference With R Babette A. Brumback Sampling Design and Analysis, Third Edition Sharon L. Lohr Theory of Statistical Inference Anthony Almudevar Probability, Statistics, and Data A Fresh Approach Using R Darrin Speegle and Brain Claire Bayesian Modeling and Computation in Python Osvaldo A. Martin, Raviv Kumar and Junpeng Lao Bayes Rules! An Introduction to Applied Bayesian Modeling Alicia Johnson, Miles Ott and Mine Dogucu For more information about this series, please visit: https://www.crcpress.com/ Chapman--Hall/CRC-Texts-in-Statistical-Science/book-series/CHTEXSTASCI Fundamentals of Causal Inference with R Babette A. Brumback F irst edition published 2022 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742 and by CRC Press 2 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN © 2022 Babette A. Brumback CRC Press is an imprint of Taylor & Francis Group, LLC The right of Babette A. Brumback to be identified as author of this work has been asserted by him/ her/them in accordance with sections 77 and 78 of the Copyright, Designs and Patents Act 1988. Reasonable efforts have been made to publish reliable data and information, but the author and pub- lisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers. For permission to photocopy or use material electronically from this work, access www.copyright. com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermis- [email protected] Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe. ISBN: 9780367705053 (hbk) ISBN: 9780367705091 (pbk) ISBN: 9781003146674 (ebk) DOI: 10.1201/9781003146674 Typeset in CMR10 by KnowledgeWorks Global Ltd. Visit the companion website/eResources: www.routledge.com/9780367705053 To my parents Contents Preface xi 1 Introduction 1 1.1 A Brief History . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Data Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1 Mortality Rates by Country . . . . . . . . . . . . . . . 6 1.2.2 National Center for Education Statistics . . . . . . . . 8 1.2.3 Reducing Alcohol Consumption . . . . . . . . . . . . . 9 1.2.3.1 The What-If? Study . . . . . . . . . . . . . . 9 1.2.3.2 The Double What-If? Study . . . . . . . . . 10 1.2.4 General Social Survey . . . . . . . . . . . . . . . . . . 13 1.2.5 A Cancer Clinical Trial . . . . . . . . . . . . . . . . . 15 1.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 Conditional Probability and Expectation 19 2.1 Conditional Probability . . . . . . . . . . . . . . . . . . . . . 19 2.2 Conditional Expectation and the Law of Total Expectation . 21 2.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4 Sampling Distributions and the Bootstrap . . . . . . . . . . 29 2.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3 Potential Outcomes and the Fundamental Problem of Causal Inference 37 3.1 Potential Outcomes and the Consistency Assumption . . . . 38 3.2 Circumventing the Fundamental Problem of Causal Inference 39 3.3 Effect Measures . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4 Effect-Measure Modification and Causal Interaction 59 4.1 Effect-Measure Modification and Statistical Interaction . . . 60 4.2 Qualitative Agreement of Effect Measures in Modification . . 71 4.3 Causal Interaction . . . . . . . . . . . . . . . . . . . . . . . . 75 4.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 vii viii Contents 5 Causal Directed Acyclic Graphs 81 5.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 6 Adjusting for Confounding: Backdoor Method via Standardization 99 6.1 Standardization via Outcome Modeling . . . . . . . . . . . . 99 6.1.1 Average Effect of Treatment on the Treated . . . . . . 105 6.1.2 Standardization with a Parametric Outcome Model. . 110 6.2 Standardization via Exposure Modeling . . . . . . . . . . . . 113 6.2.1 Average Effect of Treatment on the Treated . . . . . . 115 6.2.2 Standardization with a Parametric Exposure Model . 116 6.3 Doubly Robust Standardization . . . . . . . . . . . . . . . . 123 6.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 7 Adjusting for Confounding: Difference-in-Differences Estimators 133 7.1 Difference-in-Differences (DiD) Estimators with Linear, Loglinear, and Logistic Models . . . . . . . . . . . . . . . . . 135 7.1.1 DiD Estimator with a Linear Model . . . . . . . . . . 136 7.1.2 DiD Estimator with a Loglinear Model. . . . . . . . . 137 7.1.3 DiD Estimator with a Logistic Model . . . . . . . . . 137 7.2 Comparison with Standardization . . . . . . . . . . . . . . . 138 7.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 8 Adjusting for Confounding: Front-Door Method 147 8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 8.2 Theory and Method . . . . . . . . . . . . . . . . . . . . . . . 150 8.3 Simulated Example . . . . . . . . . . . . . . . . . . . . . . . 152 8.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 9 Adjusting for Confounding: Instrumental Variables 157 9.1 Complier Average Causal Effect and Principal Stratification 158 9.2 Average Effect of Treatment on the Treated and Structural Nested Mean Models . . . . . . . . . . . . . . . . . . . . . . 160 9.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 9.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 10 Adjusting for Confounding: Propensity-Score Methods 175 10.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 10.2 Using the Propensity Score in the Outcome Model . . . . . . 179 10.3 Stratification on the Propensity Score . . . . . . . . . . . . . 180 10.4 Matching on the Propensity Score . . . . . . . . . . . . . . . 181 10.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 Contents ix 11 Gaining Efficiency with Precision Variables 187 11.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 11.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 11.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 12 Mediation 195 12.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 12.2 Traditional Parametric Methods . . . . . . . . . . . . . . . . 199 12.3 More Examples . . . . . . . . . . . . . . . . . . . . . . . . . 200 12.4 Exercise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 13 Adjusting for Time-Dependent Confounding 209 13.1 Marginal Structural Models . . . . . . . . . . . . . . . . . . . 210 13.2 Structural Nested Mean Models . . . . . . . . . . . . . . . . 212 13.3 Optimal Dynamic Treatment Regimes . . . . . . . . . . . . . 215 13.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 Appendix 223 Bibliography 225 Index 233

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.