ebook img

Fundamentals of Astrophysical Fluid Dynamics: Hydrodynamics, Magnetohydrodynamics, and Radiation Hydrodynamics PDF

634 Pages·2020·10.001 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fundamentals of Astrophysical Fluid Dynamics: Hydrodynamics, Magnetohydrodynamics, and Radiation Hydrodynamics

Astronomy and Astrophysics Library Shoji Kato · Jun Fukue Fundamentals of Astrophysical Fluid Dynamics Hydrodynamics, Magnetohydrodynamics, and Radiation Hydrodynamics SeriesEditors: MartinA.Barstow,UniversityofLeicester,Leicester,UK AndreasBurkert,UniversityObservatoryMunich,Munich, Germany AthenaCoustenis,Paris-MeudonObservatory,Meudon, France RobertoGilmozzi,EuropeanSouthernObservatory(ESO), Garching,Germany GeorgesMeynet,GenevaObservatory,Versoix,Switzerland ShinMineshige,DepartmentofAstronomy,Kyoto,Japan IanRobson,TheUKAstronomyTechnologyCentre, Edinburgh,UK PeterSchneider,Argelander-InstitutfürAstronomie,Bonn, Germany StevenN.Shore,UniversitàdiPisa,PISA,Italy VirginiaTrimble,UniversityofCalifornia,Irvine,USA DerekWard-Thompson,UniversityofCentralLancashire, Preston,UK Moreinformationaboutthisseriesathttp://www.springer.com/series/848 Shoji Kato (cid:129) Jun Fukue Fundamentals of Astrophysical Fluid Dynamics Hydrodynamics, Magnetohydrodynamics, and Radiation Hydrodynamics ShojiKato JunFukue KyotoUniversity DivisionofScienceEducation Kyoto,Japan OsakaKyoikuUniversity Kashiwara,Osaka,Japan ISSN0941-7834 ISSN2196-9698 (electronic) AstronomyandAstrophysicsLibrary ISBN978-981-15-4173-5 ISBN978-981-15-4174-2 (eBook) https://doi.org/10.1007/978-981-15-4174-2 ©SpringerNatureSingaporePteLtd.2020 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface Astrophysical fluid dynamics is one of the important branches of astrophysics. In astrophysics, we apply all kinds of physics to investigate and understand the structure and evolution of the Universe. Because information from the Universe were primarily brought to us through optical observations, physics of radiative transfer was first developed in astrophysics. Since then, various branches of physicsincludingnuclearphysics,highenergyphysics,andgeneralrelativityhave been applied and developedin astrophysics. The application of fluid dynamics to astrophysicsis,however,relativelylate,comparedwiththeabove-mentionedfields ofphysics,sincefull-blownstudiesondynamicsofastrophysicalobjectsbeganafter elucidationoftheirstructure. Inthepresentadvancedstagesofastrophysics,however,studiesonastrophysical objects from the dynamical viewpoints are important. Since many astrophysical objects are gaseoussystems subject to magnetic and radiation fields, their studies from the viewpoints of magnetized fluids and radiative fluids are important. The purpose of this textbook is to provide the basics of astrophysicalhydrodynamics, magnetohydrodynamics,andradiationhydrodynamicstoadvancedundergraduates andabove.Atthesametime,wehopethatthematerialspresentedinthistextbook are helpful for researchers to organize their knowledge on astrophysical fluid dynamics. Thepresentbookconsistsofthreeparts.InPartI,wedescribethefundamental and important processes in astrophysical fluid dynamics, and, in Part II, some important magnetohydrodynamical processes are presented. In Part III, starting fromthebasicradiativetransfer,wedescriberadiativefluiddynamics. Finally,weappreciatemanycolleagueswemetinourresearchactivities.Without collaborations and arguments with them, the present book could not be written. We thank the Springer Nature for publishing this textbook of astrophysical fluid dynamics. Kyoto,Japan ShojiKato Osaka,Japan JunFukue 2February2020 v Contents 1 Introduction................................................................. 1 1.1 ObjectsTreatedinAstrophysics..................................... 1 1.2 Gaseous States of Astrophysical Objects onTemperature–DensityDiagram................................... 2 1.2.1 ConditionforEnsembleofFreeParticles ................. 2 1.2.2 ConditionofDegenerateGas .............................. 6 1.2.3 RelativisticGases........................................... 8 1.2.4 GyrationofElectronsaroundMagneticFields............ 9 1.3 CharacteristicsofPhysicalStatesofAstrophysicalObjects ....... 9 1.3.1 GravitationalForceandSelf-Gravity...................... 10 1.3.2 MagneticFields............................................. 11 1.3.3 RadiationFields ............................................ 12 PartI HydrodynamicalPhenomenainAstrophysicalObjects 2 BasicEquationsforHydrodynamics..................................... 17 2.1 ConditionforFluidApproximations................................ 17 2.2 EulerianDescriptionofHydrodynamicalEquations ............... 18 2.3 CommentsonEnergyConservation................................. 19 2.3.1 MechanicalEnergyandItsConservation.................. 20 2.3.2 ConservationofTotalEnergy.............................. 20 2.3.3 ConservationofThermalEnergy .......................... 22 2.4 BernoulliTheoremandVorticityConservation..................... 22 2.4.1 BernoulliTheorem.......................................... 22 2.4.2 HelmholtzTheoremandHelicityConservation........... 23 2.5 LagrangianDescriptionofDisplacementVectorξ ................. 25 2.5.1 Equation Describing Small-Amplitude PerturbationsinTermsofDisplacementVectorξ ........ 27 2.5.2 HermitianCharacterofOperatorL(ξ) .................... 28 vii viii Contents 2.5.3 WaveEnergyandItsConservation ........................ 29 2.5.4 OrthogonalityofNormalModes........................... 30 Reference..................................................................... 31 3 AstrophysicalFluidFlows................................................. 33 3.1 ParkerWindandBondiAccretion................................... 33 3.1.1 BasicEquationsforSteadySphericalFlow............... 34 3.1.2 SoundSpeedandCriticalPoints........................... 35 3.1.3 SolutionBehaviorNeartoCenteroratInfinity........... 36 3.1.4 MachNumberandSingularPointAnalysis............... 37 3.1.5 AGeneralArgumentonTopologyaround CriticalPoint................................................ 39 3.2 AccretionDisks ...................................................... 43 3.2.1 StandardAccretionDiskModel ........................... 43 3.3 SlimDisksandAdvection-DominatedAccretionFlows........... 48 3.3.1 SlimDisks .................................................. 48 3.3.2 Advection-DominatedAccretionFlows(ADAFs)........ 50 3.3.3 ThermalEquilibriumCurves............................... 50 3.4 MeridionalCirculationinStars...................................... 52 3.5 Self-SimilarSphericalAccretion.................................... 53 3.5.1 Self-SimilarTreatments.................................... 54 3.5.2 TypicalSolutions ........................................... 56 References.................................................................... 56 4 WavePhenomenainAstrophysicalObjects ............................. 59 4.1 WavesinGravitationallyStratifiedAtmosphere.................... 59 4.1.1 Brunt–VäisäläFrequency................................... 60 4.1.2 AcousticandGravityWaves............................... 61 4.2 RadialandNonradialOscillationsofStars.......................... 64 4.2.1 BasicEquationsDescribingNonradialOscillations ofStars...................................................... 64 4.3 WavesinRotatingSphericalShell................................... 68 4.3.1 Rossby–HaurwitzWaves................................... 68 4.4 WavesinNonself-GravitatingDisks ................................ 72 4.4.1 UnperturbedState .......................................... 73 4.4.2 SmallAmplitudeAdiabaticPerturbations................. 74 4.4.3 EigenvaluesandEigenfunctions........................... 75 4.4.4 ClassificationofOscillationModesandRossby WaveMode ................................................. 77 4.5 Self-GravitatingDisksandToomre’sQParameter ................ 79 4.5.1 DerivationofDispersionRelation ......................... 80 4.5.2 Collisionless Stellar Disks and Comparison withGaseousDisks......................................... 84 4.6 ShockWavesandShockConditions ................................ 88 4.6.1 Growthof Finite-AmplitudeAcoustic Waves toShockWaves............................................. 89 Contents ix 4.6.2 ConditionofDiscontinuityatShockFront................ 92 4.6.3 StrengthofShockinCaseofIdealGases ................. 94 4.6.4 EntropyIncreasebyShockDiscontinuity................. 95 4.7 PropagationofBlastWavesandSedov–TaylorSimilarity Solution............................................................... 96 References.................................................................... 98 5 ConvectionandRelatedTopics............................................ 101 5.1 ConditionofConvectiveInstability ................................. 101 5.1.1 Boussinesq Approximation and Criterion ofConvectiveInstability ................................... 104 5.2 MixingLengthTheoryandBeyond................................. 107 5.3 GenerationofOscillationsbyTurbulence........................... 109 5.3.1 Lighthill Theory of Excitation of Acoustic OscillationsbyTurbulence................................. 110 5.3.2 StochasticExcitationofOscillationsbyGoldreich andKeeley .................................................. 115 References.................................................................... 117 6 DynamicalInstabilityandDynamicalExcitationofOscillations ..... 119 6.1 IntroductoryRemarks................................................ 119 6.2 Rayleigh–TaylorInstabilityandRayleighCriterion................ 120 6.2.1 Rayleigh–TaylorInstability................................ 120 6.2.2 RayleighCriterion.......................................... 122 6.3 Solberg-HøilandCriterion ........................................... 122 6.3.1 DerivationofDispersionRelation ......................... 123 6.4 GravitationalInstability.............................................. 126 6.5 Kelvin–HelmholtzInstability:ResonantInstabilityI............... 129 6.5.1 WaveEnergyandResonantInteraction ................... 131 6.6 CorotationResonance:ResonantInstabilityII...................... 134 6.6.1 SpiralDensityWavesinSelf-gravitatingDisks........... 135 6.6.2 P-ModeOscillationsinNonself-GravitatingDisks....... 143 6.6.3 RossbyWaveInstability.................................... 148 6.7 Wave-Wave ResonanceInstabilityin DeformedDisks: ResonantInstabilityIII............................................... 152 6.7.1 Quasi-Nonlinear Coupling between Two OscillationsthroughTidalWave........................... 154 6.7.2 WaveEnergyandItsSign.................................. 157 6.7.3 ConditionsofResonantGrowth ........................... 159 6.7.4 AnApplication:SuperhumpsofDwarfNovae............ 160 References.................................................................... 162 7 InstabilitiesDuetoDissipativeProcessesI(SecularInstability)...... 165 7.1 ThermalInstabilityinOpticallyThinMedium ..................... 165 7.1.1 QualitativeArgumentonStabilityCriterion .............. 166 7.1.2 AnalyticalDerivationofInstabilityCriterion............. 168 x Contents 7.2 Flash,Flicker,andShellBurninginStars........................... 170 7.2.1 HeliumandCarbonFlash.................................. 171 7.2.2 FlickerandShellBurninginBinaryStars................. 172 7.3 ThermalandSecularInstabilitiesinDisks.......................... 173 7.3.1 ThermalInstabilityinStandardDisks..................... 174 7.3.2 Secular(Viscous)InstabilityinStandardDisks........... 176 7.3.3 StabilityAnalysesonEquilibriumSequence.............. 179 7.4 Goldreich–Schubert–FrickeCriterion............................... 181 7.5 GravothermalInstability............................................. 185 7.5.1 DerivationofInstabilityCriterion ......................... 186 7.5.2 Relation Between Stability Criterion andEquilibriumSequence ................................. 190 7.5.3 PhysicalProcessesofGravothermalInstability........... 193 References.................................................................... 194 8 OverstabilityDuetoDissipativeProcessesII: Excitationof Oscillations.................................................................. 195 8.1 ExcitationofStellarOscillationsbyThermalProcesses........... 195 8.2 ExcitationofDiskOscillationsbyViscousProcesses.............. 200 8.3 DoubleDiffusiveInstability ......................................... 203 8.3.1 OverstableConvectioninUniformlyRotatingFluid ..... 204 8.3.2 Overstable Convection in Chemically InhomogeneousMedia..................................... 208 8.3.3 Goldreich–Schubert–FrickeCriterion-II .................. 210 References.................................................................... 212 9 GeneralRelativisticHydrodynamics .................................... 213 9.1 RelativisticHydrodynamicEquations............................... 213 9.1.1 RelativisticEquationofState .............................. 215 9.2 GeneralRelativisticSphericalStars................................. 218 9.2.1 StaticLineElementwithSphericalSymmetry............ 218 9.2.2 Tolman–Oppenheimer–VolkoffEquationand CollapseofStars............................................ 219 9.3 SchwarzschildMetricandKerrMetric.............................. 221 9.4 ParticleMotionsinSchwarzschildandKerrMetrics............... 224 9.4.1 AngularVelocityofCircularMotions..................... 224 9.4.2 Stability of Circular Motions and Epicyclic Frequency................................................... 226 9.4.3 EpicyclicFrequency........................................ 229 9.5 RelativisticTori....................................................... 231 9.5.1 DerivationofEq.(9.85) .................................... 236 References.................................................................... 237

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.