ebook img

Fundamentals of Artificial Neural Networks - PAMI - University of PDF

213 Pages·2009·7.94 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fundamentals of Artificial Neural Networks - PAMI - University of

Introduction Features Fundamentals Madaline CaseStudy:BinaryClassificationUsingPerceptron Fundamentals of Artificial Neural Networks () May22,2009 1/61 Introduction Features Fundamentals Madaline CaseStudy:BinaryClassificationUsingPerceptron Outline Introduction ABriefHistory FeaturesofANNs NeuralNetworkTopologies ActivationFunctions LearningParadigms FundamentalsofANNs McCulloch-PittsModel Perceptron Adaline(AdaptiveLinearNeuron) Madaline CaseStudy: BinaryClassificationUsingPerceptron () May22,2009 2/61 Introduction Features Fundamentals Madaline CaseStudy:BinaryClassificationUsingPerceptron Introduction ArtificialNeuralNetworks(ANNs)arephysicalcellularsystems,which canacquire,storeandutilizeexperientialknowledge. ANNsareasetofparallelanddistributedcomputationalelements classifiedaccordingtotopologies,learningparadigmsandattheway informationflowswithinthenetwork. ANNsaregenerallycharacterizedbytheir: Architecture Learningparadigm Activationfunctions () May22,2009 3/61 Introduction Features Fundamentals Madaline CaseStudy:BinaryClassificationUsingPerceptron Typical Representation of a Feedforward ANN () May22,2009 4/61 Introduction Features Fundamentals Madaline CaseStudy:BinaryClassificationUsingPerceptron Interconnections Between Neurons () May22,2009 5/61 Introduction Features Fundamentals Madaline CaseStudy:BinaryClassificationUsingPerceptron History A Brief History ANNshavebeenoriginally designedintheearlyfortiesforpattern classificationpurposes. ⇒Theyhaveevolvedsomuchsincethen. ANNsarenowusedinalmosteverydisciplineofscienceandtechnology: fromStockMarketPredictiontothedesignofSpaceStationframe, frommedicaldiagnosistodataminingandknowledgediscovery, fromchaospredictiontocontrolofnuclearplants. () May22,2009 6/61 Introduction Features Fundamentals Madaline CaseStudy:BinaryClassificationUsingPerceptron Features of ANNs ANNareclassifiedaccordingtothefollowing: Architecture ActivationFunctions LearningParadigms Feedforward Binary Supervised Recurrent Continuous Unsupervised Hybrid () May22,2009 7/61 Introduction Features Fundamentals Madaline CaseStudy:BinaryClassificationUsingPerceptron NeuralNetworkTopologies Neural Network Topologies FeedforwardFlowofInformation () May22,2009 8/61 Introduction Features Fundamentals Madaline CaseStudy:BinaryClassificationUsingPerceptron NeuralNetworkTopologies Neural Network Topologies (cont.) RecurrentFlowofInformation () May22,2009 9/61 Introduction Features Fundamentals Madaline CaseStudy:BinaryClassificationUsingPerceptron ActivationFunctions Binary Activation Functions StepFunction SignumFunction 1, ifx >0 1, ifx >0 step(x)= sigum(x)= 0, ifx =0 0, otherwise  (cid:26) −1, otherwise  2 2  1 1 0 0 -1 -1 -2 -2 0 2 -2 -2 0 2 () May22,2009 10/61

Description:
Fundamentals. Madaline. Case Study: Binary Classification Using Perceptron. Fundamentals of Artificial Neural Networks. (). May 22, 2009. 1 / 61. Fakhri Karray .
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.