ebook img

Fundamentals of Applied Probability and Random Processes, Second Edition PDF

457 Pages·2014·3.15 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fundamentals of Applied Probability and Random Processes, Second Edition

Fundamentals of Applied Probability and Random Processes This page intentionally left blank Fundamentals of Applied Probability and Random Processes 2nd Edition Oliver C. Ibe University ofMassachusetts,Lowell, Massachusetts AMSTERDAM (cid:129) BOSTON (cid:129) HEIDELBERG (cid:129) LONDON NEW YORK (cid:129) OXFORD (cid:129) PARIS (cid:129) SAN DIEGO SAN FRANCISCO (cid:129) SINGAPORE (cid:129) SYDNEY (cid:129) TOKYO Academic Press is an imprint of Elsevier AcademicPressisanimprintofElsevier 525BStreet,Suite1900,SanDiego,CA92101-4495,USA 225WymanStreet,Waltham,MA02451,USA Secondedition2014 Copyright©2014,2005ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproduced,storedinaretrievalsystemortransmittedin anyformorbyanymeanselectronic,mechanical,photocopying,recordingorotherwise withoutthepriorwrittenpermissionofthepublisher. PermissionsmaybesoughtdirectlyfromElsevier’sScience&TechnologyRightsDepartment inOxford,UK:phone(+44)(0)1865843830;fax(+44)(0)1865853333; email:permissions@elsevier.com.Alternativelyyoucansubmityourrequestonlineby visitingtheElsevierwebsiteathttp://elsevier.com/locate/permissions,andselecting ObtainingpermissiontouseElseviermaterial. Notice No responsibility is assumed by the publisher for any injury and/or damage to persons orpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseor operationofanymethods,products,instructionsorideascontainedinthematerialherein. Becauseofrapidadvancesinthemedicalsciences,inparticular,independentverification ofdiagnosesanddrugdosagesshouldbemade. LibraryofCongressCataloging-in-PublicationData Ibe,OliverC.(OliverChukwudi),1947- Fundamentalsofappliedprobabilityandrandomprocesses/OliverIbe.–Secondedition. pagescm Includesbibliographicalreferencesandindex. ISBN978-0-12-800852-2(alk.paper) 1.Probabilities.I.Title. QA273.I242014 519.2–dc23 2014005103 BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ForinformationonallAcademicPresspublications visitourwebsiteatstore.elsevier.com PrintedandboundinUSA 14 15 16 17 18 10 9 8 7 6 5 4 3 2 1 ISBN:978-0-12-800852-2 Contents ACKNOWLEDGMENT................................................................................xiv PREFACE TO THE SECOND EDITION........................................................xvi PREFACE TO FIRST EDITION...................................................................xix CHAPTER1 Basic Probability Concepts...................................................1 1.1 Introduction..............................................................................1 1.2 SampleSpaceandEvents.......................................................2 1.3 DefinitionsofProbability.........................................................4 1.3.1 AxiomaticDefinition.....................................................4 1.3.2 Relative-FrequencyDefinition.....................................4 1.3.3 ClassicalDefinition......................................................4 1.4 ApplicationsofProbability.......................................................6 1.4.1 InformationTheory.......................................................6 1.4.2 ReliabilityEngineering.................................................7 1.4.3 QualityControl.............................................................7 1.4.4 ChannelNoise..............................................................8 1.4.5 SystemSimulation.......................................................8 1.5 ElementarySetTheory............................................................9 1.5.1 SetOperations..............................................................9 1.5.2 NumberofSubsetsofaSet......................................10 1.5.3 VennDiagram.............................................................10 1.5.4 SetIdentities..............................................................11 1.5.5 DualityPrinciple.........................................................13 1.6 PropertiesofProbability........................................................13 1.7 ConditionalProbability...........................................................14 1.7.1 TotalProbabilityandtheBayes’Theorem................16 1.7.2 TreeDiagram.............................................................22 1.8 IndependentEvents...............................................................26 1.9 CombinedExperiments..........................................................29 v vi Contents 1.10 BasicCombinatorialAnalysis..............................................30 1.10.1 Permutations..........................................................30 1.10.2 CircularArrangement............................................32 1.10.3 ApplicationsofPermutationsinProbability..........33 1.10.4 Combinations..........................................................34 1.10.5 TheBinomialTheorem...........................................37 1.10.6 Stirling’sFormula..................................................37 1.10.7 TheFundamentalCountingRule...........................38 1.10.8 ApplicationsofCombinationsinProbability..........40 1.11 ReliabilityApplications.........................................................41 1.12 ChapterSummary................................................................46 1.13 Problems..............................................................................46 Section1.2 SampleSpaceandEvents.............................46 Section1.3 DefinitionsofProbability...............................47 Section1.5 ElementarySetTheory..................................48 Section1.6 PropertiesofProbability................................50 Section1.7 ConditionalProbability...................................50 Section1.8 IndependentEvents.......................................52 Section1.10 CombinatorialAnalysis................................52 Section1.11 ReliabilityApplications.................................53 CHAPTER2 Random Variables...............................................................57 2.1 Introduction..........................................................................57 2.2 DefinitionofaRandomVariable..........................................57 2.3 EventsDefinedbyRandomVariables..................................58 2.4 DistributionFunctions..........................................................59 2.5 DiscreteRandomVariables.................................................61 2.5.1 ObtainingthePMFfromtheCDF............................65 2.6 ContinuousRandomVariables............................................67 2.7 ChapterSummary................................................................72 2.8 Problems..............................................................................73 Section2.4 DistributionFunctions...................................73 Section2.5 DiscreteRandomVariables...........................75 Section2.6 ContinuousRandomVariables......................77 CHAPTER3 Moments ofRandom Variables..........................................81 3.1 Introduction..........................................................................81 3.2 Expectation...........................................................................82 3.3 ExpectationofNonnegativeRandomVariables..................84 3.4 MomentsofRandomVariablesandtheVariance...............86 3.5 ConditionalExpectations......................................................95 3.6 TheMarkovInequality..........................................................96 3.7 TheChebyshevInequality....................................................97 Contents vii 3.8 ChapterSummary................................................................98 3.9 Problems..............................................................................98 Section3.2 ExpectedValues.............................................98 Section3.4 MomentsofRandomVariablesandthe Variance........................................................100 Section3.5 ConditionalExpectations.............................101 Sections3.6and3.7 MarkovandChebyshev Inequalities....................................102 CHAPTER4 Special Probability Distributions.......................................103 4.1 Introduction........................................................................103 4.2 TheBernoulliTrialandBernoulliDistribution.................103 4.3 BinomialDistribution.........................................................105 4.4 GeometricDistribution.......................................................108 4.4.1 CDFoftheGeometricDistribution........................111 4.4.2 ModifiedGeometricDistribution............................111 4.4.3 “Forgetfulness”PropertyoftheGeometric Distribution.............................................................112 4.5 PascalDistribution.............................................................113 4.5.1 DistinctionBetweenBinomialandPascal Distributions...........................................................117 4.6 HypergeometricDistribution.............................................118 4.7 PoissonDistribution...........................................................122 4.7.1 PoissonApproximationoftheBinomial Distribution.............................................................123 4.8 ExponentialDistribution.....................................................124 4.8.1 “Forgetfulness”PropertyoftheExponential Distribution.............................................................126 4.8.2 RelationshipbetweentheExponentialand PoissonDistributions.............................................127 4.9 ErlangDistribution.............................................................128 4.10 UniformDistribution..........................................................133 4.10.1 TheDiscreteUniformDistribution......................134 4.11 NormalDistribution...........................................................135 4.11.1 NormalApproximationoftheBinomial Distribution...........................................................138 4.11.2 TheErrorFunction...............................................139 4.11.3 TheQ-Function.....................................................140 4.12 TheHazardFunction..........................................................141 4.13 TruncatedProbabilityDistributions...................................143 4.13.1 TruncatedBinomialDistribution..........................145 4.13.2 TruncatedGeometricDistribution.......................145 viii Contents 4.13.3 TruncatedPoissonDistribution...........................145 4.13.4 TruncatedNormalDistribution............................146 4.14 ChapterSummary..............................................................146 4.15 Problems............................................................................147 Section4.3 BinomialDistribution...................................147 Section4.4 GeometricDistribution.................................151 Section4.5 PascalDistribution.......................................152 Section4.6 HypergeometricDistribution.......................153 Section4.7 PoissonDistribution.....................................154 Section4.8 ExponentialDistribution..............................154 Section4.9 ErlangDistribution.......................................156 Section4.10 UniformDistribution..................................157 Section4.11 NormalDistribution...................................158 CHAPTER5 MultipleRandom Variables...............................................159 5.1 Introduction........................................................................159 5.2 JointCDFsofBivariateRandomVariables.......................159 5.2.1 PropertiesoftheJointCDF...................................159 5.3 DiscreteBivariateRandomVariables................................160 5.4 ContinuousBivariateRandomVariables...........................163 5.5 DeterminingProbabilitiesfromaJointCDF.....................165 5.6 ConditionalDistributions...................................................168 5.6.1 ConditionalPMFforDiscreteBivariate RandomVariables..................................................168 5.6.2 ConditionalPDFforContinuousBivariate RandomVariables..................................................169 5.6.3 ConditionalMeansandVariances..........................170 5.6.4 SimpleRuleforIndependence..............................171 5.7 CovarianceandCorrelationCoefficient.............................172 5.8 MultivariateRandomVariables..........................................176 5.9 MultinomialDistributions..................................................177 5.10 ChapterSummary..............................................................179 5.11 Problems............................................................................179 Section5.3 DiscreteBivariateRandomVariables.........179 Section5.4 ContinuousBivariateRandomVariables.....180 Section5.6 ConditionalDistributions.............................182 Section5.7 CovarianceandCorrelationCoefficient......183 Section5.9 MultinomialDistributions............................183 CHAPTER6 Functions ofRandom Variables........................................185 6.1 Introduction........................................................................185 6.2 FunctionsofOneRandomVariable...................................185 6.2.1 LinearFunctions....................................................185 Contents ix 6.2.2 PowerFunctions....................................................187 6.3 ExpectationofaFunctionofOneRandomVariable.........188 6.3.1 MomentsofaLinearFunction...............................188 6.3.2 ExpectedValueofaConditionalExpectation........189 6.4 SumsofIndependentRandomVariables..........................189 6.4.1 MomentsoftheSumofRandomVariables..........196 6.4.2 SumofDiscreteRandomVariables.......................197 6.4.3 SumofIndependentBinomialRandom Variables.................................................................200 6.4.4 SumofIndependentPoissonRandomVariables..201 6.4.5 TheSparePartsProblem......................................201 6.5 MinimumofTwoIndependentRandomVariables............204 6.6 MaximumofTwoIndependentRandomVariables...........205 6.7 ComparisonoftheInterconnectionModels......................207 6.8 TwoFunctionsofTwoRandomVariables.........................209 6.8.1 ApplicationoftheTransformationMethod...........210 6.9 LawsofLargeNumbers....................................................212 6.10 TheCentralLimitTheorem...............................................214 6.11 OrderStatistics..................................................................215 6.12 ChapterSummary..............................................................219 6.13 Problems............................................................................219 Section6.2 FunctionsofOneRandomVariable.............219 Section6.4 SumsofRandomVariables.........................220 Sections6.4and6.5 MaximumandMinimumof IndependentRandomVariables....221 Section6.8 TwoFunctionsofTwoRandomVariables...222 Section6.10 TheCentralLimitTheorem.......................222 Section6.11 OrderStatistics..........................................223 CHAPTER7 Transform Methods...........................................................225 7.1 Introduction........................................................................225 7.2 TheCharacteristicFunction..............................................225 7.2.1 Moment-GeneratingPropertyofthe CharacteristicFunction..........................................226 7.2.2 SumsofIndependentRandomVariables..............227 7.2.3 TheCharacteristicFunctionsofSome Well-KnownDistributions......................................228 7.3 TheS-Transform.................................................................231 7.3.1 Moment-GeneratingPropertyofthes-Transform231 7.3.2 Thes-TransformofthePDFoftheSumof IndependentRandomVariables.............................232 7.3.3 Thes-TransformsofSomeWell-KnownPDFs.....232

Description:
The long-awaited revision of Fundamentals of Applied Probability and Random Processes expands on the central components that made the first edition a classic. The title is based on the premise that engineers use probability as a modeling tool, and that probability can be applied to the solution of e
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.