Fundamentals of Applied Probability and Random Processes This page intentionally left blank Fundamentals of Applied Probability and Random Processes 2nd Edition Oliver C. Ibe University ofMassachusetts,Lowell, Massachusetts AMSTERDAM (cid:129) BOSTON (cid:129) HEIDELBERG (cid:129) LONDON NEW YORK (cid:129) OXFORD (cid:129) PARIS (cid:129) SAN DIEGO SAN FRANCISCO (cid:129) SINGAPORE (cid:129) SYDNEY (cid:129) TOKYO Academic Press is an imprint of Elsevier AcademicPressisanimprintofElsevier 525BStreet,Suite1900,SanDiego,CA92101-4495,USA 225WymanStreet,Waltham,MA02451,USA Secondedition2014 Copyright©2014,2005ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproduced,storedinaretrievalsystemortransmittedin anyformorbyanymeanselectronic,mechanical,photocopying,recordingorotherwise withoutthepriorwrittenpermissionofthepublisher. PermissionsmaybesoughtdirectlyfromElsevier’sScience&TechnologyRightsDepartment inOxford,UK:phone(+44)(0)1865843830;fax(+44)(0)1865853333; email:permissions@elsevier.com.Alternativelyyoucansubmityourrequestonlineby visitingtheElsevierwebsiteathttp://elsevier.com/locate/permissions,andselecting ObtainingpermissiontouseElseviermaterial. Notice No responsibility is assumed by the publisher for any injury and/or damage to persons orpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseor operationofanymethods,products,instructionsorideascontainedinthematerialherein. Becauseofrapidadvancesinthemedicalsciences,inparticular,independentverification ofdiagnosesanddrugdosagesshouldbemade. LibraryofCongressCataloging-in-PublicationData Ibe,OliverC.(OliverChukwudi),1947- Fundamentalsofappliedprobabilityandrandomprocesses/OliverIbe.–Secondedition. pagescm Includesbibliographicalreferencesandindex. ISBN978-0-12-800852-2(alk.paper) 1.Probabilities.I.Title. QA273.I242014 519.2–dc23 2014005103 BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ForinformationonallAcademicPresspublications visitourwebsiteatstore.elsevier.com PrintedandboundinUSA 14 15 16 17 18 10 9 8 7 6 5 4 3 2 1 ISBN:978-0-12-800852-2 Contents ACKNOWLEDGMENT................................................................................xiv PREFACE TO THE SECOND EDITION........................................................xvi PREFACE TO FIRST EDITION...................................................................xix CHAPTER1 Basic Probability Concepts...................................................1 1.1 Introduction..............................................................................1 1.2 SampleSpaceandEvents.......................................................2 1.3 DefinitionsofProbability.........................................................4 1.3.1 AxiomaticDefinition.....................................................4 1.3.2 Relative-FrequencyDefinition.....................................4 1.3.3 ClassicalDefinition......................................................4 1.4 ApplicationsofProbability.......................................................6 1.4.1 InformationTheory.......................................................6 1.4.2 ReliabilityEngineering.................................................7 1.4.3 QualityControl.............................................................7 1.4.4 ChannelNoise..............................................................8 1.4.5 SystemSimulation.......................................................8 1.5 ElementarySetTheory............................................................9 1.5.1 SetOperations..............................................................9 1.5.2 NumberofSubsetsofaSet......................................10 1.5.3 VennDiagram.............................................................10 1.5.4 SetIdentities..............................................................11 1.5.5 DualityPrinciple.........................................................13 1.6 PropertiesofProbability........................................................13 1.7 ConditionalProbability...........................................................14 1.7.1 TotalProbabilityandtheBayes’Theorem................16 1.7.2 TreeDiagram.............................................................22 1.8 IndependentEvents...............................................................26 1.9 CombinedExperiments..........................................................29 v vi Contents 1.10 BasicCombinatorialAnalysis..............................................30 1.10.1 Permutations..........................................................30 1.10.2 CircularArrangement............................................32 1.10.3 ApplicationsofPermutationsinProbability..........33 1.10.4 Combinations..........................................................34 1.10.5 TheBinomialTheorem...........................................37 1.10.6 Stirling’sFormula..................................................37 1.10.7 TheFundamentalCountingRule...........................38 1.10.8 ApplicationsofCombinationsinProbability..........40 1.11 ReliabilityApplications.........................................................41 1.12 ChapterSummary................................................................46 1.13 Problems..............................................................................46 Section1.2 SampleSpaceandEvents.............................46 Section1.3 DefinitionsofProbability...............................47 Section1.5 ElementarySetTheory..................................48 Section1.6 PropertiesofProbability................................50 Section1.7 ConditionalProbability...................................50 Section1.8 IndependentEvents.......................................52 Section1.10 CombinatorialAnalysis................................52 Section1.11 ReliabilityApplications.................................53 CHAPTER2 Random Variables...............................................................57 2.1 Introduction..........................................................................57 2.2 DefinitionofaRandomVariable..........................................57 2.3 EventsDefinedbyRandomVariables..................................58 2.4 DistributionFunctions..........................................................59 2.5 DiscreteRandomVariables.................................................61 2.5.1 ObtainingthePMFfromtheCDF............................65 2.6 ContinuousRandomVariables............................................67 2.7 ChapterSummary................................................................72 2.8 Problems..............................................................................73 Section2.4 DistributionFunctions...................................73 Section2.5 DiscreteRandomVariables...........................75 Section2.6 ContinuousRandomVariables......................77 CHAPTER3 Moments ofRandom Variables..........................................81 3.1 Introduction..........................................................................81 3.2 Expectation...........................................................................82 3.3 ExpectationofNonnegativeRandomVariables..................84 3.4 MomentsofRandomVariablesandtheVariance...............86 3.5 ConditionalExpectations......................................................95 3.6 TheMarkovInequality..........................................................96 3.7 TheChebyshevInequality....................................................97 Contents vii 3.8 ChapterSummary................................................................98 3.9 Problems..............................................................................98 Section3.2 ExpectedValues.............................................98 Section3.4 MomentsofRandomVariablesandthe Variance........................................................100 Section3.5 ConditionalExpectations.............................101 Sections3.6and3.7 MarkovandChebyshev Inequalities....................................102 CHAPTER4 Special Probability Distributions.......................................103 4.1 Introduction........................................................................103 4.2 TheBernoulliTrialandBernoulliDistribution.................103 4.3 BinomialDistribution.........................................................105 4.4 GeometricDistribution.......................................................108 4.4.1 CDFoftheGeometricDistribution........................111 4.4.2 ModifiedGeometricDistribution............................111 4.4.3 “Forgetfulness”PropertyoftheGeometric Distribution.............................................................112 4.5 PascalDistribution.............................................................113 4.5.1 DistinctionBetweenBinomialandPascal Distributions...........................................................117 4.6 HypergeometricDistribution.............................................118 4.7 PoissonDistribution...........................................................122 4.7.1 PoissonApproximationoftheBinomial Distribution.............................................................123 4.8 ExponentialDistribution.....................................................124 4.8.1 “Forgetfulness”PropertyoftheExponential Distribution.............................................................126 4.8.2 RelationshipbetweentheExponentialand PoissonDistributions.............................................127 4.9 ErlangDistribution.............................................................128 4.10 UniformDistribution..........................................................133 4.10.1 TheDiscreteUniformDistribution......................134 4.11 NormalDistribution...........................................................135 4.11.1 NormalApproximationoftheBinomial Distribution...........................................................138 4.11.2 TheErrorFunction...............................................139 4.11.3 TheQ-Function.....................................................140 4.12 TheHazardFunction..........................................................141 4.13 TruncatedProbabilityDistributions...................................143 4.13.1 TruncatedBinomialDistribution..........................145 4.13.2 TruncatedGeometricDistribution.......................145 viii Contents 4.13.3 TruncatedPoissonDistribution...........................145 4.13.4 TruncatedNormalDistribution............................146 4.14 ChapterSummary..............................................................146 4.15 Problems............................................................................147 Section4.3 BinomialDistribution...................................147 Section4.4 GeometricDistribution.................................151 Section4.5 PascalDistribution.......................................152 Section4.6 HypergeometricDistribution.......................153 Section4.7 PoissonDistribution.....................................154 Section4.8 ExponentialDistribution..............................154 Section4.9 ErlangDistribution.......................................156 Section4.10 UniformDistribution..................................157 Section4.11 NormalDistribution...................................158 CHAPTER5 MultipleRandom Variables...............................................159 5.1 Introduction........................................................................159 5.2 JointCDFsofBivariateRandomVariables.......................159 5.2.1 PropertiesoftheJointCDF...................................159 5.3 DiscreteBivariateRandomVariables................................160 5.4 ContinuousBivariateRandomVariables...........................163 5.5 DeterminingProbabilitiesfromaJointCDF.....................165 5.6 ConditionalDistributions...................................................168 5.6.1 ConditionalPMFforDiscreteBivariate RandomVariables..................................................168 5.6.2 ConditionalPDFforContinuousBivariate RandomVariables..................................................169 5.6.3 ConditionalMeansandVariances..........................170 5.6.4 SimpleRuleforIndependence..............................171 5.7 CovarianceandCorrelationCoefficient.............................172 5.8 MultivariateRandomVariables..........................................176 5.9 MultinomialDistributions..................................................177 5.10 ChapterSummary..............................................................179 5.11 Problems............................................................................179 Section5.3 DiscreteBivariateRandomVariables.........179 Section5.4 ContinuousBivariateRandomVariables.....180 Section5.6 ConditionalDistributions.............................182 Section5.7 CovarianceandCorrelationCoefficient......183 Section5.9 MultinomialDistributions............................183 CHAPTER6 Functions ofRandom Variables........................................185 6.1 Introduction........................................................................185 6.2 FunctionsofOneRandomVariable...................................185 6.2.1 LinearFunctions....................................................185 Contents ix 6.2.2 PowerFunctions....................................................187 6.3 ExpectationofaFunctionofOneRandomVariable.........188 6.3.1 MomentsofaLinearFunction...............................188 6.3.2 ExpectedValueofaConditionalExpectation........189 6.4 SumsofIndependentRandomVariables..........................189 6.4.1 MomentsoftheSumofRandomVariables..........196 6.4.2 SumofDiscreteRandomVariables.......................197 6.4.3 SumofIndependentBinomialRandom Variables.................................................................200 6.4.4 SumofIndependentPoissonRandomVariables..201 6.4.5 TheSparePartsProblem......................................201 6.5 MinimumofTwoIndependentRandomVariables............204 6.6 MaximumofTwoIndependentRandomVariables...........205 6.7 ComparisonoftheInterconnectionModels......................207 6.8 TwoFunctionsofTwoRandomVariables.........................209 6.8.1 ApplicationoftheTransformationMethod...........210 6.9 LawsofLargeNumbers....................................................212 6.10 TheCentralLimitTheorem...............................................214 6.11 OrderStatistics..................................................................215 6.12 ChapterSummary..............................................................219 6.13 Problems............................................................................219 Section6.2 FunctionsofOneRandomVariable.............219 Section6.4 SumsofRandomVariables.........................220 Sections6.4and6.5 MaximumandMinimumof IndependentRandomVariables....221 Section6.8 TwoFunctionsofTwoRandomVariables...222 Section6.10 TheCentralLimitTheorem.......................222 Section6.11 OrderStatistics..........................................223 CHAPTER7 Transform Methods...........................................................225 7.1 Introduction........................................................................225 7.2 TheCharacteristicFunction..............................................225 7.2.1 Moment-GeneratingPropertyofthe CharacteristicFunction..........................................226 7.2.2 SumsofIndependentRandomVariables..............227 7.2.3 TheCharacteristicFunctionsofSome Well-KnownDistributions......................................228 7.3 TheS-Transform.................................................................231 7.3.1 Moment-GeneratingPropertyofthes-Transform231 7.3.2 Thes-TransformofthePDFoftheSumof IndependentRandomVariables.............................232 7.3.3 Thes-TransformsofSomeWell-KnownPDFs.....232
Description: