ebook img

Fundamentals of Actuarial Mathematics PDF

2.99 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fundamentals of Actuarial Mathematics

Front Matter Page: v Dedication Page: v Preface Page: xix CHANGES IN THE THIRD EDITION Page: xxi Acknowledgements Page: xxiii About the companion website Page: xxiv Part 1 THE DETERMINISTIC LIFE CONTINGENCIES MODEL Page: 1 1 Introduction and motivation Page: 3 1.1 Risk and insurance Page: 3 1.2 Deterministic versus stochastic models Page: 4 1.3 Finance and investments Page: 5 1.4 Adequacy and equity Page: 5 1.5 Reassessment Page: 6 1.6 Conclusion Page: 6 2 The basic deterministic model Page: 7 2.1 Cash flows Page: 7 2.2 An analogy with currencies Page: 8 2.3 Discount functions Page: 9 Definition 2.1 Page: 10 2.4 Calculating the discount function Page: 11 2.5 Interest and discount rates Page: 12 Definition 2.2 Page: 12 Definition 2.3 Page: 12 Remark Page: 12 Remark Page: 12 2.6 Constant interest Page: 12 2.7 Values and actuarial equivalence Page: 13 Example 2.1 Page: 14 Solution Page: 14 Remark Page: 14 Definition 2.4 Page: 14 Notation Page: 15 Definition 2.5 Page: 15 Example 2.2 Page: 16 Solution Page: 16 Figure 2.1 Example 2.2 Page: 16 Figure 2.2 Example 2.3 Page: 17 Example 2.3 Page: 17 Solution Page: 17 2.8 Vector notation Page: 17 2.9 Regular pattern cash flows Page: 18 2.10 Balances and reserves Page: 20 2.10.1 Basic concepts Page: 20 Example 2.4 Page: 20 Figure 2.3 Example 2.4 Page: 20 Solution Page: 20 Notation Page: 21 Definition 2.6 Page: 21 Definition 2.7 Page: 21 2.10.2 Relation between balances and reserves Page: 22 Example 2.5 Page: 22 Figure 2.4 Example 2.5 Page: 23 Solution Page: 23 2.10.3 Prospective versus retrospective methods Page: 23 2.10.4 Recursion formulas Page: 24 2.11 Time shifting and the splitting identity Page: 26 Example 2.6 Page: 27 Solution Page: 27 *2.11 Change of discount function Page: 27 2.12 Internal rates of return Page: 28 Definition 2.8 Page: 29 Remark Page: 29 Theorem 2.1 Page: 29 Proof Page: 29 Theorem 2.2 Page: 30 *2.13 Forward prices and term structure Page: 30 Definition 2.9 Page: 32 Definition 2.10 Page: 32 Example 2.7 Page: 32 Solution Page: 32 2.14 Standard notation and terminology Page: 33 2.14.1 Standard notation for cash flows discounted with interest Page: 33 2.14.2 New notation Page: 34 2.15 Spreadsheet calculations Page: 34 Notes and references Page: 35 Exercises Page: 35 Type A exercises Page: 35 Type B exercises Page: 36 Spreadsheet exercises Page: 38 3 The life table Page: 39 3.1 Basic definitions Page: 39 3.2 Probabilities Page: 40 3.3 Constructing the life table from the values of qx Page: 41 3.4 Life expectancy Page: 42 3.5 Choice of life tables Page: 44 3.6 Standard notation and terminology Page: 44 3.7 A sample table Page: 45 Notes and references Page: 45 Exercises Page: 45 Type A exercises Page: 45 Type B exercises Page: 46 Spreadsheet exercise Page: 46 4 Life annuities Page: 47 4.1 Introduction Page: 47 4.2 Calculating annuity premiums Page: 48 Example 4.1 Page: 49 Solution Page: 50 Figure 4.1 Example 4.1 Page: 50 4.3 The interest and survivorship discount function Page: 50 4.3.1 The basic definition Page: 50 Notation Page: 51 4.3.2 Relations between yx for various values of x Page: 52 Example 4.2 Page: 53 Solution Page: 53 4.4 Guaranteed payments Page: 53 Example 4.3 Page: 54 Solution Page: 54 Example 4.4 Page: 54 Solution Page: 54 4.5 Deferred annuities with annual premiums Page: 55 Example 4.5 Page: 55 Figure 4.2 Example 4.6 Page: 56 Solution Page: 56 4.6 Some practical considerations Page: 56 4.6.1 Gross premiums Page: 56 4.6.2 Gender aspects Page: 56 4.7 Standard notation and terminology Page: 57 4.8 Spreadsheet calculations Page: 58 Exercises Page: 59 Type A exercises Page: 59 Type B exercises Page: 59 Spreadsheet exercises Page: 60 5 Life insurance Page: 61 5.1 Introduction Page: 61 5.2 Calculating life insurance premiums Page: 61 Notation Page: 61 Example 5.1 Page: 63 Figure 5.1 Example 5.1 Page: 63 Solution Page: 63 Example 5.2 Page: 64 Solution Page: 64 5.3 Types of life insurance Page: 64 5.4 Combined insurance–annuity benefits Page: 64 Example 5.3 Page: 65 Solution Page: 65 Example 5.4 Page: 65 Solution Page: 65 Example 5.5 Page: 65 Figure 5.2 Example 5.5 Page: 65 Solution Page: 66 Example 5.6 Page: 66 Figure 5.3 Example 5.6 Page: 66 Solution Page: 66 Example 5.7 Page: 67 Figure 5.4 Example 5.7 Page: 67 Solution Page: 67 Example 5.8 Page: 67 Solution Page: 67 Example 5.9 Page: 68 Remark Page: 68 Example 5.10 Page: 68 Solution Page: 68 Example 5.11 Page: 69 Solution Page: 69 5.5 Insurances viewed as annuities Page: 69 5.6 Summary of formulas Page: 70 5.7 A general insurance–annuity identity Page: 70 5.7.1 The general identity Page: 70 5.7.2 The endowment identity Page: 71 Remark Page: 72 5.8 Standard notation and terminology Page: 72 5.8.1 Single-premium notation Page: 72 5.8.2 Annual-premium notation Page: 73 5.8.3 Identities Page: 74 5.9 Spreadsheet applications Page: 74 Exercises Page: 74 Type A exercises Page: 74 Type B exercises Page: 75 Spreadsheet exercises Page: 77 6 Insurance and annuity reserves Page: 78 6.1 Introduction to reserves Page: 78 Example 6.1 Page: 79 Figure 6.1 Example 6.1 Page: 79 Solution Page: 79 Example 6.2 Page: 80 Figure 6.2 Example 6.2 Page: 80 Solution Page: 80 Remark Page: 81 6.2 The general pattern of reserves Page: 81 Example 6.3 Page: 81 Solution Page: 81 6.3 Recursion Page: 82 Remark Page: 83 Definition 6.1 Page: 83 6.4 Detailed analysis of an insurance or annuity contract Page: 83 6.4.1 Gains and losses Page: 83 Example 6.4 Page: 84 Solution Page: 84 6.4.2 The risk–savings decomposition Page: 85 Example 6.5 Page: 86 Solution Page: 86 Example 6.6 Page: 86 Solution Page: 86 6.5 Bases for reserves Page: 87 Example 6.7 Page: 87 Solution Page: 87 6.6 Nonforfeiture values Page: 88 6.7 Policies involving a return of the reserve Page: 88 Example 6.8 Page: 89 Solution Page: 89 6.8 Premium difference and paid-up formulas Page: 90 6.8.1 Premium difference formulas Page: 90 6.8.2 Paid-up formulas Page: 90 6.8.3 Level endowment reserves Page: 91 6.9 Standard notation and terminology Page: 91 6.10 Spreadsheet applications Page: 93 INPUT FORMULAS Page: 93 INPUT DATA FOR EACH PARTICULAR PROBLEM Page: 93 OUTPUT Page: 94 Exercises Page: 94 Type A exercises Page: 94 Type B exercises Page: 95 Spreadsheet exercise Page: 97 7 Fractional durations Page: 98 7.1 Introduction Page: 98 7.2 Cash flows discounted with interest only Page: 99 Example 7.1 Page: 100 Solution Page: 100 7.3 Life annuities paid mthly Page: 101 7.3.1 Uniform distribution of deaths Page: 101 Example 7.2 Page: 101 Solution Page: 101 7.3.2 Present value formulas Page: 102 Example 7.3 Page: 103 Solution Page: 103 Figure 7.1 Due and immediate quarterly annuity payments Page: 104 7.4 Immediate annuities Page: 104 Example 7.4 Page: 104 Solution Page: 104 7.5 Approximation and computation Page: 105 Example 7.5 Page: 106 Solution Page: 106 *7.6 Fractional period premiums and reserves Page: 106 7.7 Reserves at fractional durations Page: 107 Example 7.6 Page: 109 Solution Page: 109 7.8 Standard notation and terminology Page: 109 Exercises Page: 109 Type A exercises Page: 109 Type B exercises Page: 110 Spreadsheet exercise Page: 111 8 Continuous payments Page: 112 8.1 Introduction to continuous annuities Page: 112 8.2 The force of discount Page: 113 Definition 8.1 Page: 113 Proposition 8.1 Page: 114 Proof Page: 114 Remark Page: 114 8.3 The constant interest case Page: 114 8.4 Continuous life annuities Page: 115 8.4.1 Basic definition Page: 115 8.4.2 Evaluation Page: 116 8.4.3 Life expectancy revisited Page: 117 8.5 The force of mortality Page: 118 Definition 8.2 Page: 118 Example 8.1 Page: 119 Solution Page: 119 Definition 8.3 Page: 119 8.6 Insurances payable at the moment of death Page: 119 8.6.1 Basic definitions Page: 119 8.6.2 Evaluation Page: 120 Example 8.2 Page: 121 Solution Page: 121 Example 8.3 Page: 121 Solution Page: 122 8.7 Premiums and reserves Page: 122 Example 8.4 Page: 122 Solution Page: 123 8.8 The general insurance–annuity identity in the continuous case Page: 123 8.9 Differential equations for reserves Page: 124 8.10 Some examples of exact calculation Page: 125 8.10.1 Constant force of mortality Page: 126 8.10.2 Demoivre's law Page: 127 8.10.3 An example of the splitting identity Page: 128 Example 8.5 Page: 128 Solution Page: 128 8.11 Further approximations from the life table Page: 129 8.12 Standard actuarial notation and terminology Page: 131 Notes and references Page: 132 Exercises Page: 132 Type A exercises Page: 132 Type B exercises Page: 134 Spreadsheet exercise Page: 136 9 Select mortality Page: 137 9.1 Introduction Page: 137 9.2 Select and ultimate tables Page: 138 9.3 Changes in formulas Page: 139 Chapter 3 Page: 139 Chapter 4 Page: 139 Chapter 5 Page: 140 Chapter 6 Page: 140 Chapter 8 Page: 140 Spreadsheets Page: 140 9.4 Projections in annuity tables Page: 141 Example 9.1 Page: 142 Solution Page: 142 9.5 Further remarks Page: 142 Exercises Page: 142 Spreadsheet exercises Page: 143 10 Multiple-life contracts Page: 144 10.1 Introduction Page: 144 10.2 The joint-life status Page: 144 10.3 Joint-life annuities and insurances Page: 146 10.4 Last-survivor annuities and insurances Page: 147 10.4.1 Basic results Page: 147 10.4.2 Reserves on second-death insurances Page: 148 10.5 Moment of death insurances Page: 149 Definition 10.1 Page: 149 10.6 The general two-life annuity contract Page: 150 Example 10.1 Page: 151 Solution Page: 151 Example 10.2 Page: 151 Solution Page: 151 Example 10.3 Page: 151 Solution Page: 151 Example 10.4 Page: 152 Solution Page: 152 Remark Page: 152 10.7 The general two-life insurance contract Page: 152 10.8 Contingent insurances Page: 153 10.8.1 First-death contingent insurances Page: 153 10.8.2 Second-death contingent insurances Page: 154 10.8.3 Moment-of-death contingent insurances Page: 155 Example 10.5 Page: 155 Solution Page: 155 10.8.4 General contingent probabilities Page: 155 10.9 Duration problems Page: 156 Example 10.6 Page: 156 Solution Page: 156 Example 10.7 Page: 157 Solution Page: 157 Example 10.8 Page: 157 Solution Page: 157 Example 10.9 Page: 159 Solution Page: 159 *10.10 Applications to annuity credit risk Page: 159 10.11 Standard notation and terminology Page: 160 10.12 Spreadsheet applications Page: 161 Notes and references Page: 161 Exercises Page: 161 Type A exercises Page: 161 Type B exercises Page: 163 Spreadsheet exercise Page: 165 11 Multiple-decrement theory Page: 166 11.1 Introduction Page: 166 11.2 The basic model Page: 166 11.2.1 The multiple-decrement table Page: 167 11.2.2 Quantities calculated from the multiple-decrement table Page: 168 11.3 Insurances Page: 169 Definition 11.1 Page: 169 11.4 Determining the model from the forces of decrement Page: 170 Example 11.1 Page: 171 Solution Page: 171 11.5 The analogy with joint-life statuses Page: 171 11.6 A machine analogy Page: 171 11.6.1 Method 1 Page: 172 11.6.2 Method 2 Page: 173 Example 11.2 Page: 174 Solution Page: 174 Example 11.3 Page: 174 Solution Page: 174 11.7 Associated single-decrement tables Page: 175 11.7.1 The main methods Page: 175 11.7.2 Forces of decrement in the associated single-decrement tables Page: 176 11.7.3 Conditions justifying the two methods Page: 177 Example 11.4 Page: 178 Solution Page: 179 Example 11.5 Page: 179 Solution Page: 179 11.7.4 Other approaches Page: 180 Notes and references Page: 181 Exercises Page: 181 Type A exercises Page: 181 Type B exercises Page: 182 12 Expenses and profits Page: 184 12.1 Introduction Page: 184 Example 12.1 Page: 185 Solution Page: 185 12.2 Effect on reserves Page: 186 12.3 Realistic reserve and balance calculations Page: 187 Example 12.2 Page: 188 Solution Page: 188 Remark Page: 189 12.4 Profit measurement Page: 189 12.4.1 Advanced gain and loss analysis Page: 189 Example 12.3 Page: 190 Solution Page: 190 12.4.2 Gains by source Page: 191 Example 12.4 Page: 192 Solution Page: 193 12.4.3 Profit testing Page: 193 Example 12.5 Page: 193 Solution Page: 194 Definition 12.1 Page: 194 Example 12.6 Page: 194 Solution Page: 194 Definition 12.12 Page: 195 Example 12.7 Page: 195 Solution Page: 195 Notes and references Page: 196 Exercises Page: 196 Type A exercises Page: 196 Type B exercises Page: 197 *13 Specialized topics Page: 199 13.1 Universal life Page: 199 13.1.1 Description of the contract Page: 199 13.1.2 Calculating account values Page: 201 Example 13.1 Page: 202 Solution Page: 202 Example 13.2 Page: 203 Solution Page: 203 Example 13.3 Page: 203 Solution Page: 203 13.2 Variable annuities Page: 203 13.3 Pension plans Page: 204 13.3.1 DB plans Page: 204 Example 13.4 Page: 205 Solution Page: 205 13.3.2 DC plans Page: 206 Example 13.5 Page: 206 Solution Page: 206 Example 13.6 Page: 207 Solution Page: 207 Exercises Page: 207 Part II THE STOCHASTIC LIFE CONTINGENCIES MODEL Page: 209 14 Survival distributions and failure times Page: 211 14.1 Introduction to survival distributions Page: 211 14.2 The discrete case Page: 212 Definition 14.1 Page: 212 Example 14.1 Page: 213 Solution Page: 213 14.3 The continuous case Page: 213 14.3.1 The basic functions Page: 214 Definition 14.2 Page: 214 14.3.2 Properties of μ Page: 214 14.3.3 Modes Page: 215 14.4 Examples Page: 215 14.5 Shifted distributions Page: 216 Example 14.2 Page: 217 Solution Page: 217 14.6 The standard approximation Page: 217 14.7 The stochastic life table Page: 219 14.8 Life expectancy in the stochastic model Page: 220 Example 14.3 Page: 221 Solution Page: 221 14.9 Stochastic interest rates Page: 221 Notes and references Page: 222 Exercises Page: 222 Type A exercises Page: 222 Type B exercises Page: 222 15 The stochastic approach to insurance and annuities Page: 224 15.1 Introduction Page: 224 15.2 The stochastic approach to insurance benefits Page: 225 15.2.1 The discrete case Page: 225 15.2.2 The continuous case Page: 226 Example 15.1 Page: 226 Solution Page: 226 15.2.3 Approximation Page: 226 15.2.4 Endowment insurances Page: 227 Example 15.2 Page: 228 Solution Page: 228 15.3 The stochastic approach to annuity benefits Page: 229 15.3.1 Discrete annuities Page: 229 Example 15.3 Page: 230 Solution Page: 230 Remark Page: 230 Remark Page: 230 15.3.2 Continuous annuities Page: 231 Example 15.4 Page: 232 First solution Page: 232 *15.4 Deferred contracts Page: 233 15.5 The stochastic approach to reserves Page: 233 Definition 15.1 Page: 234 Remark Page: 234 Definition 15.2 Page: 234 Example 15.5 Page: 235 Solution Page: 235 15.6 The stochastic approach to premiums Page: 235 15.6.1 The equivalence principle Page: 235 15.6.2 Percentile premiums Page: 236 Example 15.6 Page: 236 Solution Page: 236 Example 15.7 Page: 237 Solution Page: 237 15.6.3 Aggregate premiums Page: 237 Definition 15.3 Page: 238 Example 15.8 Page: 239 Solution Page: 240 Example 15.9 Page: 240 Solution Page: 240 15.6.4 General premium principles Page: 240 15.7 The variance of r L Page: 241 Example 15.10 Page: 243 Solution Page: 243 15.8 Standard notation and terminology Page: 243 Notes and references Page: 244 Exercises Page: 244 Type A exercises Page: 244 Type B exercises Page: 246 Spreadsheet exercise Page: 247 16 Simplifications under level benefit contracts Page: 248 16.1 Introduction Page: 248 16.2 Variance calculations in the continuous case Page: 248 16.2.1 Insurances Page: 249 16.2.2 Annuities Page: 249 16.2.3 Prospective losses Page: 249 16.2.4 Using equivalence principle premiums Page: 249 16.3 Variance calculations in the discrete case Page: 250 Example 16.1 Page: 251 Solution Page: 251 16.4 Exact distributions Page: 252 16.4.1 The distribution of Page: 252 16.4.2 The distribution of Page: 252 16.4.3 The distribution of L Page: 252 16.4.4 The case where T is exponentially distributed Page: 253 Example 16.2 Page: 253 Solution Page: 253 16.5 Some non-level benefit examples Page: 254 16.5.1 Term insurance Page: 254 Example 16.3 Page: 254 Solution Page: 254 16.5.2 Deferred insurance Page: 254 Figure 16.1 Graph of for various types of insurance Page: 255 16.5.3 An annual premium policy Page: 255 Figure 16.2 Graph of fL(u) for various types of insurance Page: 256 Exercises Page: 256 Type A exercises Page: 256 Type B exercises Page: 257 17 The minimum failure time Page: 259 17.1 Introduction Page: 259 17.2 Joint distributions Page: 259 17.3 The distribution of T Page: 261 17.3.1 The general case Page: 261 17.3.2 The independent case Page: 261 Example 17.1 Page: 261 Solution Page: 261 17.4 The joint distribution of (T, J) Page: 261 17.4.1 The distribution function for (T, J) Page: 261 Example 17.2 Page: 262 Solution Page: 262 Example 17.3 Page: 263 Solution Page: 263 17.4.2 Density and survival functions for (T, J) Page: 264 Figure 17.1 The graph of fT, J(t, j) Page: 265 17.4.3 The distribution of J Page: 265 Example 17.4 Page: 265 Solution Page: 265 17.4.4 Hazard functions for (T, J) Page: 266 Definition 17.1 Page: 266 17.4.5 The independent case Page: 266 Example 17.5 Page: 267 Solution Page: 267 Example 17.6 Page: 268 Solution Page: 268 17.4.6 Nonidentifiability Page: 268 Example 17.7 Page: 268 Solution Page: 268 Theorem 17.1 Page: 269 Proof Page: 269 17.4.7 Conditions for the independence of T and J Page: 269 Theorem 17.2 Page: 269 Proof Page: 270 17.5 Other problems Page: 270 Example 17.8 Page: 270 Solution Page: 270 17.6 The common shock model Page: 271 Example 17.9 Page: 271 Solution Page: 271 Example 17.10 Page: 271 Solution Page: 271 Example 17.11 Page: 271 Solution Page: 271 Example 17.12 Page: 272 Solution Page: 272 17.7 Copulas Page: 273 Definition 17.2 Page: 274 Example 17.13 Page: 275 Solution Page: 275 Notes and references Page: 276 Exercises Page: 276 Type A exercises Page: 276 Type B exercises Page: 277 Part III ADVANCED STOCHASTIC MODELS Page: 279 18 An introduction to stochastic processes Page: 281 18.1 Introduction Page: 281 Figure 18.1 Evolution of stock price Page: 282 18.2 Markov chains Page: 283 18.2.1 Definitions Page: 283 Definition 18.1 Page: 283 18.2.2 Examples Page: 284 Figure 18.2 Random walk Page: 286 Figure 18.3 Gambler's fortune Page: 286 18.3 Martingales Page: 286 Definition 18.2 Page: 286 18.4 Finite-state Markov chains Page: 287 18.4.1 The transition matrix Page: 287 Remark Page: 287 Example 18.1 Page: 287 Solution Page: 287 18.4.2 Multi-period transitions Page: 288 18.4.3 Distributions Page: 288 Example 18.2 Page: 288 Solution Page: 289 Remark Page: 289 *18.4.4 Limiting distributions Page: 289 *18.4.5 Recurrent and transient states Page: 290 Definition 18.3 Page: 290 Example 18.3 Page: 290 Solution Page: 290 Definition 18.4 Page: 291 Theorem 18.1 Page: 291 Proof Page: 291 Theorem 18.2 Page: 291 Proof Page: 291 Example 18.4 (Random walk with absorbing barriers) Page: 292 Solution Page: 292 18.5 Introduction to continuous time processes Page: 293 Notation Page: 293 Definition 18.5 Page: 293 Definition 18.6 Page: 293 18.6 Poisson processes Page: 293 Definition 18.7 Page: 294 Theorem 18.3 Page: 294 18.6.1 Waiting times Page: 295 18.6.2 Nonhomogeneous Poisson processes Page: 295 Definition 18.8 Page: 295 18.7 Brownian motion Page: 295 18.7.1 The main definition Page: 295 18.7.2 Connection with random walks Page: 296 *18.7.3 Hitting times Page: 297 *18.7.4 Conditional distributions Page: 298 18.7.5 Brownian motion with drift Page: 299 18.7.6 Geometric Brownian motion Page: 299 Notes and references Page: 299 Exercises Page: 300 19 Multi-state models Page: 304 19.1 Introduction Page: 304 Figure 19.1 A two life multi-state model Page: 305 19.2 The discrete-time model Page: 305 19.2.1 Non-stationary Markov Chains Page: 305 Figure 19.2 The healthy-unhealthy-deceased model Page: 306 Example 19.1 Page: 306 Solution Page: 306 19.2.2 Discrete-time multi-state insurances Page: 307 Notation Page: 307 Example 19.2 Page: 307 Solution Page: 307 Example 19.3 Page: 308 Solution Page: 308 Remark Page: 310 19.2.3 Multi-state annuities Page: 310 Example 19.4 Page: 310 Solution Page: 310 Example 19.5 Page: 311 Solution Page: 311 19.3 The continuous-time model Page: 311 Definition 19.1 Page: 311 19.3.1 Forces of transition Page: 311 Definition 19.2 Page: 312 Theorem 19.1 Page: 312 Proof Page: 312 Theorem 19.2 (Kolmogorov forward equations) Page: 312 Proof Page: 312 Theorem 19.3 Page: 314 Proof Page: 314 Theorem 19.4 Page: 315 Remark Page: 315 19.3.2 Path-by-path analysis Page: 316 Example 19.6 Page: 317 Solution Page: 317 19.3.3 Numerical approximation Page: 317 Example 19.7 Page: 318 Solution Page: 318 19.3.4 Stationary continuous time processes Page: 318 Example 19.8 Page: 319 Solution Page: 319 19.3.5 Some methods for non-stationary processes Page: 320 Example 19.9 Page: 320 Solution Page: 320 19.3.6 Extension of the common shock model Page: 321 Example 19.10 Page: 322 Solution Page: 322 Example 19.11 Page: 322 Solution Page: 322 19.3.7 Insurance and annuity applications in continuous time Page: 322 Example 19.12 Page: 323 Solution Page: 323 Example 19.13 Page: 324 Solution Page: 324 19.4 Recursion and differential equations for multi-state reserves Page: 324 Example 19.14 Page: 324 Solution Page: 325 Example 19.15 Page: 326 Solution Page: 326 19.5 Profit testing in multi-state models Page: 327 Example 19.16 Page: 327 Solution Page: 328 19.6 Semi-Markov models Page: 328 Notes and references Page: 328 Exercises Page: 329 20 Introduction to the Mathematics of Financial Markets Page: 333 20.1 Introduction Page: 333 20.2 Modelling prices in financial markets Page: 333 20.3 Arbitrage Page: 334 Definition 20.1 Page: 335 Definition 20.2 Page: 336 Remark Page: 336 Theorem 20.1 Page: 336 Proof Page: 336 Remark Page: 337 Theorem 20.2 Page: 337 Proof Page: 337 Definition 20.3 Page: 337 20.4 Option contracts Page: 337 20.5 Option prices in the one-period binomial model Page: 339 Example 20.1 Page: 342 Solution Page: 342 Theorem 20.3 (Put-call Parity) Page: 342 Proof Page: 342 20.6 The multi-period binomial model Page: 342 Definition 20.4 Page: 343 Example 20.2 Page: 344 Solution Page: 344 Example 20.3 Page: 345 Solution Page: 345 Figure 20.1 Example 20.3 Page: 345 20.7 American options Page: 346 Example 20.4 Page: 347 Solution Page: 347 20.8 A general financial market Page: 348 Figure 20.2 A finanical market with two risky assets Page: 349 Definition 20.5 Page: 350 Definition 20.6 Page: 350 Example 20.5 Page: 350 Solution Page: 350 20.9 Arbitrage-free condition Page: 351 Theorem 20.4 (The fundamental theorem of asset pricing) Page: 352 20.10 Existence and uniqueness of risk-neutral measures Page: 353 20.10.1 Linear algebra background Page: 353 20.10.2 The space of contingent claims Page: 353 Figure 20.3 A picture of the one period binomial market Page: 355 Figure 20.4 A market in which not all contingent claims are replicable Page: 355 Figure 20.5 A market that is not arbitage-free Page: 355 Figure 20.6 See Exercise 20.7 Page: 356 Example 20.6 Page: 356 Solution Page: 356 20.10.3 The Fundamental theorem of asset pricing completed Page: 357 Example 20.7 Page: 359 Solution Page: 359 20.11 Completeness of markets Page: 359 Definition 20.7 Page: 359 Theorem 20.5 Page: 359 Proof Page: 359 Example 20.8 Page: 361 Solution Page: 361 20.12 The Black–Scholes–Merton formula Page: 361 Remark Page: 364 20.13 Bond markets Page: 364 20.13.1 Introduction Page: 364 20.13.2 Extending the notion of conditional expectation Page: 366 Theorem 20.6 Page: 366 Proof Page: 366 20.13.3 The arbitrage-free condition in the bond market Page: 367 Theorem 20.7 Page: 367 Proof Page: 368 20.13.4 Short-rate modelling Page: 368 Example 20.9 Page: 369 Solution Page: 369 Figure 20.7 Example 20.9. Values of Sk(n), k = 0, 1, 2, 3 Page: 370 20.13.5 Forward prices and rates Page: 370 Figure 20.8 Example 20.9. Values of k = 1, 2, 3 Page: 370 20.13.6 Observations on the continuous time bond market Page: 371 Notes and references Page: 372 Exercises Page: 373 Part IV RISK THEORY Page: 375 21 Compound distributions Page: 377 21.1 Introduction Page: 377 21.2 The mean and variance of S Page: 379 21.3 Generating functions Page: 380 21.4 Exact distribution of S Page: 381 Example 21.1 Page: 381 Solution Page: 381 21.5 Choosing a frequency distribution Page: 381 21.6 Choosing a severity distribution Page: 383 21.7 Handling the point mass at 0 Page: 384 Example 21.2 Page: 384 Solution Page: 384 21.8 Counting claims of a particular type Page: 385 21.8.1 One special class Page: 385 Example 21.3 Page: 385 Solution Page: 385 21.8.2 Special classes in the Poisson case Page: 386 21.9 The sum of two compound Poisson distributions Page: 387 21.10 Deductibles and other modifications Page: 388 21.10.1 The nature of a deductible Page: 388 Example 21.4 Page: 389 Solution Page: 389 Example 21.5 Page: 389 Solution Page: 389 21.10.2 Some calculations in the discrete case Page: 389 Example 21.6 Page: 390 Solution Page: 390 21.10.3 Some calculations in the continuous case Page: 390 Example 21.7 Page: 390 Solution Page: 390 Example 21.8 Page: 391 Solution Page: 391 Example 21.9 Page: 391 Solution Page: 391 21.10.4 The effect on aggregate claims Page: 392 Example 21.10 Page: 392 Solution Page: 392 Example 21.11 Page: 393 Solution Page: 393 21.10.5 Other modifications Page: 393 Example 21.12 Page: 393 Solution Page: 393 21.11 A recursion formula for S Page: 393 21.11.1 The positive-valued case Page: 393 Proposition 21.1 Page: 394 Proof Page: 394 Theorem 21.1 (The recursion formula) Page: 394 Proof Page: 394 Theorem 21.2 Page: 396 Proof Page: 396 Example 21.13 Page: 397 Solution Page: 397 21.11.2 The case with claims of zero amount Page: 397 Example 21.14 Page: 398 Solution Page: 398 Notes and references Page: 398 Exercises Page: 398 22 Risk assessment Page: 403 22.1 Introduction Page: 403 22.2 Utility theory Page: 403 Example 22.1 Page: 404 Solution Page: 404 Example 22.2 Page: 405 Solution Page: 405 22.3 Convex and concave functions: Jensen's inequality Page: 406 22.3.1 Basic definitions Page: 406 Definition 22.1 Page: 406 Figure 22.1 Graphs of ud(x) and vd(x) Page: 407 Definition 22.2 Page: 407 22.3.2 Jensen's inequality Page: 407 Theorem 22.1 (Jensen's inequality) Page: 408 Proof Page: 408 22.4 A general comparison method Page: 408 Definition 22.3 Page: 409 Theorem 22.2 Page: 409 Proof Page: 410 Remark Page: 410 Theorem 22.3 (The cut condition) Page: 410 Proof Page: 410 Figure 22.2 The cut condition: X is less risky than Y Page: 411 Remark Page: 411 Theorem 22.4 Page: 412 Proof Page: 412 Remark Page: 412 22.5 Risk measures for capital adequacy Page: 412 22.5.1 The general notion of a risk measure Page: 412 22.5.1 Value-at-risk Page: 413 Definition 22.4 Page: 413 22.5.3 Tail value-at-risk Page: 413 Definition 22.5 Page: 414 Example 22.3 Page: 416 Solution Page: 416 Example 22.4 Page: 416 Solution Page: 416 22.5.4 Distortion risk measures Page: 417 Notes and references Page: 417 Exercises Page: 417 23 Ruin models Page: 420 23.1 Introduction Page: 420 Example 23.1 Page: 421 Solution Page: 421 Remark Page: 422 23.2 A functional equation approach Page: 422 Example 23.2 Page: 423 Solution Page: 423 23.3 The martingale approach to ruin theory Page: 424 23.3.1 Stopping times Page: 424 Example 23.3 Page: 425 Solution Page: 425 Figure 23.1 Tree for Example 23.3 Page: 425 23.3.2 The optional stopping theorem and its consequences Page: 426 Theorem 23.1 (Optional stopping theorem) Page: 426 Proof Page: 426 Corollary Page: 426 Proof Page: 427 Example 23.4 Page: 427 Solution Page: 427 Example 23.5 Page: 427 Solution Page: 427 Example 23.6 Page: 428 Solution Page: 428 Remark Page: 429 23.3.3 The adjustment coefficient Page: 429 Definition 23.1 Page: 429 Figure 23.2 Graph of the function ϕ Page: 430 Example 23.7 Page: 430 Solution Page: 430 Example 23.8 Page: 431 Solution Page: 431 23.3.4 The main conclusions Page: 431 Theorem 23.2 Page: 431 Proof Page: 431 Theorem 23.3 Page: 432 Theorem 23.4 Page: 432 23.4 Distribution of the deficit at ruin Page: 433 23.5 Recursion formulas Page: 434 23.5.1 Calculating ruin probabilities Page: 434 Remark Page: 436 23.5.2 The distribution of D(u) Page: 436 Example 23.9 Page: 437 Solution Page: 437 23.6 The compound Poisson surplus process Page: 438 23.6.1 Description of the process Page: 438 Figure 23.3 A realization of the continuous-time surplus process Page: 439 23.6.2 The probability of eventual ruin Page: 440 23.6.3 The value of ψ(0) Page: 440 23.6.4 The distribution of D(0) Page: 440 23.6.5 The case when X is exponentially distributed Page: 441 Theorem 23.5 Page: 441 23.7 The maximal aggregate loss Page: 441 Definition 23.2 Page: 441 Example 23.10 Page: 443 Solution Page: 443 Example 23.11 Page: 444 Solution Page: 444 Theorem 23.6 Page: 444 Notes and references Page: 445 Exercises Page: 445 24 Credibility theory Page: 449 24.1 Introductory material Page: 449 24.1.1 The nature of credibility theory Page: 449 24.1.2 Information assessment Page: 449 Example 24.1 Page: 449 Solution Page: 450 Example 24.2 Page: 451 Solution Page: 451 Example 24.3 Page: 452 Solution Page: 452 24.2 Conditional expectation and variance with respect to another random variable Page: 453 24.2.1 The random variable E(X|Y) Page: 453 Definition 24.1 Page: 453 Example 24.4 Page: 453 Solution Page: 453 Theorem 24.1 Page: 454 Proof Page: 454 Remark Page: 455 24.2.2 Conditional variance Page: 455 Definition 24.2 Page: 455 Theorem 24.2 Page: 455 Proof Page: 456 Remark Page: 456 Example 24.5 Page: 456 Solution Page: 456 24.3 General framework for Bayesian credibility Page: 457 Remark Page: 458 24.4 Classical examples Page: 459 Example 24.6 Page: 459 Solution Page: 459 Example 24.7 (Poisson–Gamma) Page: 461 Solution Page: 461 24.5 Approximations Page: 462 24.5.1 A general case Page: 462 24.5.2 The Bühlman model Page: 463 24.5.3 Bühlman–Straub Model Page: 464 Example 24.8 Page: 465 Solution Page: 465 24.6 Conditions for exactness Page: 465 Example 24.9 Page: 465 Solution Page: 465 Theorem 24.3 Page: 466 Proof Page: 466 Remark Page: 467 Remark Page: 467 Theorem 24.4 Page: 468 Proof Page: 468 24.7 Estimation Page: 469 24.7.1 Unbiased estimators Page: 469 24.7.2 Calculating in the credibility model Page: 470 24.7.3 Estimation of the Bülhman parameters Page: 470 Example 24.10 Page: 472 Solution Page: 472 24.7.4 Estimation in the Bülhman–Straub model Page: 472 Notes and references Page: 473 Exercises Page: 473 Back Matter Page: 477 Answers to exercises Page: 477 Chapter 2 Page: 477 Chapter 3 Page: 478 Chapter 4 Page: 478 Chapter 5 Page: 478 Chapter 6 Page: 479 Chapter 7 Page: 480 Chapter 8 Page: 480 Chapter 9 Page: 481 Chapter 10 Page: 481 Chapter 11 Page: 483 Chapter 12 Page: 483 Chapter 13 Page: 484 Chater 14 Page: 484 Chapter 15 Page: 484 Chapter 16 Page: 485 Chapter 17 Page: 486 Chapter 18 Page: 487 Chapter 19 Page: 488 Chapter 20 Page: 488 Chapter 21 Page: 489 Chapter 22 Page: 490 Chapter 23 Page: 490 Chapter 24 Page: 491 Appendix A review of probability theory Page: 493 A.1 Sample spaces and probability measures Page: 493 A.2 Conditioning and independence Page: 495 A.3 Random variables Page: 495 A.4 Distributions Page: 496 A.5 Expectations and moments Page: 497 A.6 Expectation in terms of the distribution function Page: 498 A.7 Joint distributions Page: 499 A.8 Conditioning and independence for random variables Page: 501 A.9 Moment generating functions Page: 502 Theorem A.1 Page: 503 Proof Page: 503 Theorem A.2 (The uniqueness theorem) Page: 503 A.10 Probability generating functions Page: 503 A.11 Some standard distributions Page: 505 A.11.1 The binomial distribution Page: 505 A.11.2 The Poisson distribution Page: 505 Example A.1 Page: 506 Solution Page: 506 A.11.3 The negative binomial and geometric distributions Page: 506 A.11.4 The continuous uniform distribution Page: 507 A.11.5 The normal distribution Page: 507 A.11.6 The gamma and exponential distributions Page: 509 A.11.7 The lognormal distribution Page: 510 A.11.8 The Pareto distribution Page: 511 A.12 Convolution Page: 511 A.12.1 The discrete case Page: 511 Example A.2 Page: 513 Solution Page: 513 A.12.2 The continuous case Page: 513 Example A.3 Page: 514 Solution Page: 514 Figure A.1 The region of integration in Example A.3 Page: 515 A.12.3 Notation and remarks Page: 515 A.13 Mixtures Page: 516 References Page: 517 Notation index Page: 519 Index Page: 523 WILEY END USER LICENSE AGREEMENT Page: I

Description:
Fundamentals of Actuarial Mathematics, 3rd Edition
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.