Front Matter Page: v Dedication Page: v Preface Page: xix CHANGES IN THE THIRD EDITION Page: xxi Acknowledgements Page: xxiii About the companion website Page: xxiv Part 1 THE DETERMINISTIC LIFE CONTINGENCIES MODEL Page: 1 1 Introduction and motivation Page: 3 1.1 Risk and insurance Page: 3 1.2 Deterministic versus stochastic models Page: 4 1.3 Finance and investments Page: 5 1.4 Adequacy and equity Page: 5 1.5 Reassessment Page: 6 1.6 Conclusion Page: 6 2 The basic deterministic model Page: 7 2.1 Cash flows Page: 7 2.2 An analogy with currencies Page: 8 2.3 Discount functions Page: 9 Definition 2.1 Page: 10 2.4 Calculating the discount function Page: 11 2.5 Interest and discount rates Page: 12 Definition 2.2 Page: 12 Definition 2.3 Page: 12 Remark Page: 12 Remark Page: 12 2.6 Constant interest Page: 12 2.7 Values and actuarial equivalence Page: 13 Example 2.1 Page: 14 Solution Page: 14 Remark Page: 14 Definition 2.4 Page: 14 Notation Page: 15 Definition 2.5 Page: 15 Example 2.2 Page: 16 Solution Page: 16 Figure 2.1 Example 2.2 Page: 16 Figure 2.2 Example 2.3 Page: 17 Example 2.3 Page: 17 Solution Page: 17 2.8 Vector notation Page: 17 2.9 Regular pattern cash flows Page: 18 2.10 Balances and reserves Page: 20 2.10.1 Basic concepts Page: 20 Example 2.4 Page: 20 Figure 2.3 Example 2.4 Page: 20 Solution Page: 20 Notation Page: 21 Definition 2.6 Page: 21 Definition 2.7 Page: 21 2.10.2 Relation between balances and reserves Page: 22 Example 2.5 Page: 22 Figure 2.4 Example 2.5 Page: 23 Solution Page: 23 2.10.3 Prospective versus retrospective methods Page: 23 2.10.4 Recursion formulas Page: 24 2.11 Time shifting and the splitting identity Page: 26 Example 2.6 Page: 27 Solution Page: 27 *2.11 Change of discount function Page: 27 2.12 Internal rates of return Page: 28 Definition 2.8 Page: 29 Remark Page: 29 Theorem 2.1 Page: 29 Proof Page: 29 Theorem 2.2 Page: 30 *2.13 Forward prices and term structure Page: 30 Definition 2.9 Page: 32 Definition 2.10 Page: 32 Example 2.7 Page: 32 Solution Page: 32 2.14 Standard notation and terminology Page: 33 2.14.1 Standard notation for cash flows discounted with interest Page: 33 2.14.2 New notation Page: 34 2.15 Spreadsheet calculations Page: 34 Notes and references Page: 35 Exercises Page: 35 Type A exercises Page: 35 Type B exercises Page: 36 Spreadsheet exercises Page: 38 3 The life table Page: 39 3.1 Basic definitions Page: 39 3.2 Probabilities Page: 40 3.3 Constructing the life table from the values of qx Page: 41 3.4 Life expectancy Page: 42 3.5 Choice of life tables Page: 44 3.6 Standard notation and terminology Page: 44 3.7 A sample table Page: 45 Notes and references Page: 45 Exercises Page: 45 Type A exercises Page: 45 Type B exercises Page: 46 Spreadsheet exercise Page: 46 4 Life annuities Page: 47 4.1 Introduction Page: 47 4.2 Calculating annuity premiums Page: 48 Example 4.1 Page: 49 Solution Page: 50 Figure 4.1 Example 4.1 Page: 50 4.3 The interest and survivorship discount function Page: 50 4.3.1 The basic definition Page: 50 Notation Page: 51 4.3.2 Relations between yx for various values of x Page: 52 Example 4.2 Page: 53 Solution Page: 53 4.4 Guaranteed payments Page: 53 Example 4.3 Page: 54 Solution Page: 54 Example 4.4 Page: 54 Solution Page: 54 4.5 Deferred annuities with annual premiums Page: 55 Example 4.5 Page: 55 Figure 4.2 Example 4.6 Page: 56 Solution Page: 56 4.6 Some practical considerations Page: 56 4.6.1 Gross premiums Page: 56 4.6.2 Gender aspects Page: 56 4.7 Standard notation and terminology Page: 57 4.8 Spreadsheet calculations Page: 58 Exercises Page: 59 Type A exercises Page: 59 Type B exercises Page: 59 Spreadsheet exercises Page: 60 5 Life insurance Page: 61 5.1 Introduction Page: 61 5.2 Calculating life insurance premiums Page: 61 Notation Page: 61 Example 5.1 Page: 63 Figure 5.1 Example 5.1 Page: 63 Solution Page: 63 Example 5.2 Page: 64 Solution Page: 64 5.3 Types of life insurance Page: 64 5.4 Combined insurance–annuity benefits Page: 64 Example 5.3 Page: 65 Solution Page: 65 Example 5.4 Page: 65 Solution Page: 65 Example 5.5 Page: 65 Figure 5.2 Example 5.5 Page: 65 Solution Page: 66 Example 5.6 Page: 66 Figure 5.3 Example 5.6 Page: 66 Solution Page: 66 Example 5.7 Page: 67 Figure 5.4 Example 5.7 Page: 67 Solution Page: 67 Example 5.8 Page: 67 Solution Page: 67 Example 5.9 Page: 68 Remark Page: 68 Example 5.10 Page: 68 Solution Page: 68 Example 5.11 Page: 69 Solution Page: 69 5.5 Insurances viewed as annuities Page: 69 5.6 Summary of formulas Page: 70 5.7 A general insurance–annuity identity Page: 70 5.7.1 The general identity Page: 70 5.7.2 The endowment identity Page: 71 Remark Page: 72 5.8 Standard notation and terminology Page: 72 5.8.1 Single-premium notation Page: 72 5.8.2 Annual-premium notation Page: 73 5.8.3 Identities Page: 74 5.9 Spreadsheet applications Page: 74 Exercises Page: 74 Type A exercises Page: 74 Type B exercises Page: 75 Spreadsheet exercises Page: 77 6 Insurance and annuity reserves Page: 78 6.1 Introduction to reserves Page: 78 Example 6.1 Page: 79 Figure 6.1 Example 6.1 Page: 79 Solution Page: 79 Example 6.2 Page: 80 Figure 6.2 Example 6.2 Page: 80 Solution Page: 80 Remark Page: 81 6.2 The general pattern of reserves Page: 81 Example 6.3 Page: 81 Solution Page: 81 6.3 Recursion Page: 82 Remark Page: 83 Definition 6.1 Page: 83 6.4 Detailed analysis of an insurance or annuity contract Page: 83 6.4.1 Gains and losses Page: 83 Example 6.4 Page: 84 Solution Page: 84 6.4.2 The risk–savings decomposition Page: 85 Example 6.5 Page: 86 Solution Page: 86 Example 6.6 Page: 86 Solution Page: 86 6.5 Bases for reserves Page: 87 Example 6.7 Page: 87 Solution Page: 87 6.6 Nonforfeiture values Page: 88 6.7 Policies involving a return of the reserve Page: 88 Example 6.8 Page: 89 Solution Page: 89 6.8 Premium difference and paid-up formulas Page: 90 6.8.1 Premium difference formulas Page: 90 6.8.2 Paid-up formulas Page: 90 6.8.3 Level endowment reserves Page: 91 6.9 Standard notation and terminology Page: 91 6.10 Spreadsheet applications Page: 93 INPUT FORMULAS Page: 93 INPUT DATA FOR EACH PARTICULAR PROBLEM Page: 93 OUTPUT Page: 94 Exercises Page: 94 Type A exercises Page: 94 Type B exercises Page: 95 Spreadsheet exercise Page: 97 7 Fractional durations Page: 98 7.1 Introduction Page: 98 7.2 Cash flows discounted with interest only Page: 99 Example 7.1 Page: 100 Solution Page: 100 7.3 Life annuities paid mthly Page: 101 7.3.1 Uniform distribution of deaths Page: 101 Example 7.2 Page: 101 Solution Page: 101 7.3.2 Present value formulas Page: 102 Example 7.3 Page: 103 Solution Page: 103 Figure 7.1 Due and immediate quarterly annuity payments Page: 104 7.4 Immediate annuities Page: 104 Example 7.4 Page: 104 Solution Page: 104 7.5 Approximation and computation Page: 105 Example 7.5 Page: 106 Solution Page: 106 *7.6 Fractional period premiums and reserves Page: 106 7.7 Reserves at fractional durations Page: 107 Example 7.6 Page: 109 Solution Page: 109 7.8 Standard notation and terminology Page: 109 Exercises Page: 109 Type A exercises Page: 109 Type B exercises Page: 110 Spreadsheet exercise Page: 111 8 Continuous payments Page: 112 8.1 Introduction to continuous annuities Page: 112 8.2 The force of discount Page: 113 Definition 8.1 Page: 113 Proposition 8.1 Page: 114 Proof Page: 114 Remark Page: 114 8.3 The constant interest case Page: 114 8.4 Continuous life annuities Page: 115 8.4.1 Basic definition Page: 115 8.4.2 Evaluation Page: 116 8.4.3 Life expectancy revisited Page: 117 8.5 The force of mortality Page: 118 Definition 8.2 Page: 118 Example 8.1 Page: 119 Solution Page: 119 Definition 8.3 Page: 119 8.6 Insurances payable at the moment of death Page: 119 8.6.1 Basic definitions Page: 119 8.6.2 Evaluation Page: 120 Example 8.2 Page: 121 Solution Page: 121 Example 8.3 Page: 121 Solution Page: 122 8.7 Premiums and reserves Page: 122 Example 8.4 Page: 122 Solution Page: 123 8.8 The general insurance–annuity identity in the continuous case Page: 123 8.9 Differential equations for reserves Page: 124 8.10 Some examples of exact calculation Page: 125 8.10.1 Constant force of mortality Page: 126 8.10.2 Demoivre's law Page: 127 8.10.3 An example of the splitting identity Page: 128 Example 8.5 Page: 128 Solution Page: 128 8.11 Further approximations from the life table Page: 129 8.12 Standard actuarial notation and terminology Page: 131 Notes and references Page: 132 Exercises Page: 132 Type A exercises Page: 132 Type B exercises Page: 134 Spreadsheet exercise Page: 136 9 Select mortality Page: 137 9.1 Introduction Page: 137 9.2 Select and ultimate tables Page: 138 9.3 Changes in formulas Page: 139 Chapter 3 Page: 139 Chapter 4 Page: 139 Chapter 5 Page: 140 Chapter 6 Page: 140 Chapter 8 Page: 140 Spreadsheets Page: 140 9.4 Projections in annuity tables Page: 141 Example 9.1 Page: 142 Solution Page: 142 9.5 Further remarks Page: 142 Exercises Page: 142 Spreadsheet exercises Page: 143 10 Multiple-life contracts Page: 144 10.1 Introduction Page: 144 10.2 The joint-life status Page: 144 10.3 Joint-life annuities and insurances Page: 146 10.4 Last-survivor annuities and insurances Page: 147 10.4.1 Basic results Page: 147 10.4.2 Reserves on second-death insurances Page: 148 10.5 Moment of death insurances Page: 149 Definition 10.1 Page: 149 10.6 The general two-life annuity contract Page: 150 Example 10.1 Page: 151 Solution Page: 151 Example 10.2 Page: 151 Solution Page: 151 Example 10.3 Page: 151 Solution Page: 151 Example 10.4 Page: 152 Solution Page: 152 Remark Page: 152 10.7 The general two-life insurance contract Page: 152 10.8 Contingent insurances Page: 153 10.8.1 First-death contingent insurances Page: 153 10.8.2 Second-death contingent insurances Page: 154 10.8.3 Moment-of-death contingent insurances Page: 155 Example 10.5 Page: 155 Solution Page: 155 10.8.4 General contingent probabilities Page: 155 10.9 Duration problems Page: 156 Example 10.6 Page: 156 Solution Page: 156 Example 10.7 Page: 157 Solution Page: 157 Example 10.8 Page: 157 Solution Page: 157 Example 10.9 Page: 159 Solution Page: 159 *10.10 Applications to annuity credit risk Page: 159 10.11 Standard notation and terminology Page: 160 10.12 Spreadsheet applications Page: 161 Notes and references Page: 161 Exercises Page: 161 Type A exercises Page: 161 Type B exercises Page: 163 Spreadsheet exercise Page: 165 11 Multiple-decrement theory Page: 166 11.1 Introduction Page: 166 11.2 The basic model Page: 166 11.2.1 The multiple-decrement table Page: 167 11.2.2 Quantities calculated from the multiple-decrement table Page: 168 11.3 Insurances Page: 169 Definition 11.1 Page: 169 11.4 Determining the model from the forces of decrement Page: 170 Example 11.1 Page: 171 Solution Page: 171 11.5 The analogy with joint-life statuses Page: 171 11.6 A machine analogy Page: 171 11.6.1 Method 1 Page: 172 11.6.2 Method 2 Page: 173 Example 11.2 Page: 174 Solution Page: 174 Example 11.3 Page: 174 Solution Page: 174 11.7 Associated single-decrement tables Page: 175 11.7.1 The main methods Page: 175 11.7.2 Forces of decrement in the associated single-decrement tables Page: 176 11.7.3 Conditions justifying the two methods Page: 177 Example 11.4 Page: 178 Solution Page: 179 Example 11.5 Page: 179 Solution Page: 179 11.7.4 Other approaches Page: 180 Notes and references Page: 181 Exercises Page: 181 Type A exercises Page: 181 Type B exercises Page: 182 12 Expenses and profits Page: 184 12.1 Introduction Page: 184 Example 12.1 Page: 185 Solution Page: 185 12.2 Effect on reserves Page: 186 12.3 Realistic reserve and balance calculations Page: 187 Example 12.2 Page: 188 Solution Page: 188 Remark Page: 189 12.4 Profit measurement Page: 189 12.4.1 Advanced gain and loss analysis Page: 189 Example 12.3 Page: 190 Solution Page: 190 12.4.2 Gains by source Page: 191 Example 12.4 Page: 192 Solution Page: 193 12.4.3 Profit testing Page: 193 Example 12.5 Page: 193 Solution Page: 194 Definition 12.1 Page: 194 Example 12.6 Page: 194 Solution Page: 194 Definition 12.12 Page: 195 Example 12.7 Page: 195 Solution Page: 195 Notes and references Page: 196 Exercises Page: 196 Type A exercises Page: 196 Type B exercises Page: 197 *13 Specialized topics Page: 199 13.1 Universal life Page: 199 13.1.1 Description of the contract Page: 199 13.1.2 Calculating account values Page: 201 Example 13.1 Page: 202 Solution Page: 202 Example 13.2 Page: 203 Solution Page: 203 Example 13.3 Page: 203 Solution Page: 203 13.2 Variable annuities Page: 203 13.3 Pension plans Page: 204 13.3.1 DB plans Page: 204 Example 13.4 Page: 205 Solution Page: 205 13.3.2 DC plans Page: 206 Example 13.5 Page: 206 Solution Page: 206 Example 13.6 Page: 207 Solution Page: 207 Exercises Page: 207 Part II THE STOCHASTIC LIFE CONTINGENCIES MODEL Page: 209 14 Survival distributions and failure times Page: 211 14.1 Introduction to survival distributions Page: 211 14.2 The discrete case Page: 212 Definition 14.1 Page: 212 Example 14.1 Page: 213 Solution Page: 213 14.3 The continuous case Page: 213 14.3.1 The basic functions Page: 214 Definition 14.2 Page: 214 14.3.2 Properties of μ Page: 214 14.3.3 Modes Page: 215 14.4 Examples Page: 215 14.5 Shifted distributions Page: 216 Example 14.2 Page: 217 Solution Page: 217 14.6 The standard approximation Page: 217 14.7 The stochastic life table Page: 219 14.8 Life expectancy in the stochastic model Page: 220 Example 14.3 Page: 221 Solution Page: 221 14.9 Stochastic interest rates Page: 221 Notes and references Page: 222 Exercises Page: 222 Type A exercises Page: 222 Type B exercises Page: 222 15 The stochastic approach to insurance and annuities Page: 224 15.1 Introduction Page: 224 15.2 The stochastic approach to insurance benefits Page: 225 15.2.1 The discrete case Page: 225 15.2.2 The continuous case Page: 226 Example 15.1 Page: 226 Solution Page: 226 15.2.3 Approximation Page: 226 15.2.4 Endowment insurances Page: 227 Example 15.2 Page: 228 Solution Page: 228 15.3 The stochastic approach to annuity benefits Page: 229 15.3.1 Discrete annuities Page: 229 Example 15.3 Page: 230 Solution Page: 230 Remark Page: 230 Remark Page: 230 15.3.2 Continuous annuities Page: 231 Example 15.4 Page: 232 First solution Page: 232 *15.4 Deferred contracts Page: 233 15.5 The stochastic approach to reserves Page: 233 Definition 15.1 Page: 234 Remark Page: 234 Definition 15.2 Page: 234 Example 15.5 Page: 235 Solution Page: 235 15.6 The stochastic approach to premiums Page: 235 15.6.1 The equivalence principle Page: 235 15.6.2 Percentile premiums Page: 236 Example 15.6 Page: 236 Solution Page: 236 Example 15.7 Page: 237 Solution Page: 237 15.6.3 Aggregate premiums Page: 237 Definition 15.3 Page: 238 Example 15.8 Page: 239 Solution Page: 240 Example 15.9 Page: 240 Solution Page: 240 15.6.4 General premium principles Page: 240 15.7 The variance of r L Page: 241 Example 15.10 Page: 243 Solution Page: 243 15.8 Standard notation and terminology Page: 243 Notes and references Page: 244 Exercises Page: 244 Type A exercises Page: 244 Type B exercises Page: 246 Spreadsheet exercise Page: 247 16 Simplifications under level benefit contracts Page: 248 16.1 Introduction Page: 248 16.2 Variance calculations in the continuous case Page: 248 16.2.1 Insurances Page: 249 16.2.2 Annuities Page: 249 16.2.3 Prospective losses Page: 249 16.2.4 Using equivalence principle premiums Page: 249 16.3 Variance calculations in the discrete case Page: 250 Example 16.1 Page: 251 Solution Page: 251 16.4 Exact distributions Page: 252 16.4.1 The distribution of Page: 252 16.4.2 The distribution of Page: 252 16.4.3 The distribution of L Page: 252 16.4.4 The case where T is exponentially distributed Page: 253 Example 16.2 Page: 253 Solution Page: 253 16.5 Some non-level benefit examples Page: 254 16.5.1 Term insurance Page: 254 Example 16.3 Page: 254 Solution Page: 254 16.5.2 Deferred insurance Page: 254 Figure 16.1 Graph of for various types of insurance Page: 255 16.5.3 An annual premium policy Page: 255 Figure 16.2 Graph of fL(u) for various types of insurance Page: 256 Exercises Page: 256 Type A exercises Page: 256 Type B exercises Page: 257 17 The minimum failure time Page: 259 17.1 Introduction Page: 259 17.2 Joint distributions Page: 259 17.3 The distribution of T Page: 261 17.3.1 The general case Page: 261 17.3.2 The independent case Page: 261 Example 17.1 Page: 261 Solution Page: 261 17.4 The joint distribution of (T, J) Page: 261 17.4.1 The distribution function for (T, J) Page: 261 Example 17.2 Page: 262 Solution Page: 262 Example 17.3 Page: 263 Solution Page: 263 17.4.2 Density and survival functions for (T, J) Page: 264 Figure 17.1 The graph of fT, J(t, j) Page: 265 17.4.3 The distribution of J Page: 265 Example 17.4 Page: 265 Solution Page: 265 17.4.4 Hazard functions for (T, J) Page: 266 Definition 17.1 Page: 266 17.4.5 The independent case Page: 266 Example 17.5 Page: 267 Solution Page: 267 Example 17.6 Page: 268 Solution Page: 268 17.4.6 Nonidentifiability Page: 268 Example 17.7 Page: 268 Solution Page: 268 Theorem 17.1 Page: 269 Proof Page: 269 17.4.7 Conditions for the independence of T and J Page: 269 Theorem 17.2 Page: 269 Proof Page: 270 17.5 Other problems Page: 270 Example 17.8 Page: 270 Solution Page: 270 17.6 The common shock model Page: 271 Example 17.9 Page: 271 Solution Page: 271 Example 17.10 Page: 271 Solution Page: 271 Example 17.11 Page: 271 Solution Page: 271 Example 17.12 Page: 272 Solution Page: 272 17.7 Copulas Page: 273 Definition 17.2 Page: 274 Example 17.13 Page: 275 Solution Page: 275 Notes and references Page: 276 Exercises Page: 276 Type A exercises Page: 276 Type B exercises Page: 277 Part III ADVANCED STOCHASTIC MODELS Page: 279 18 An introduction to stochastic processes Page: 281 18.1 Introduction Page: 281 Figure 18.1 Evolution of stock price Page: 282 18.2 Markov chains Page: 283 18.2.1 Definitions Page: 283 Definition 18.1 Page: 283 18.2.2 Examples Page: 284 Figure 18.2 Random walk Page: 286 Figure 18.3 Gambler's fortune Page: 286 18.3 Martingales Page: 286 Definition 18.2 Page: 286 18.4 Finite-state Markov chains Page: 287 18.4.1 The transition matrix Page: 287 Remark Page: 287 Example 18.1 Page: 287 Solution Page: 287 18.4.2 Multi-period transitions Page: 288 18.4.3 Distributions Page: 288 Example 18.2 Page: 288 Solution Page: 289 Remark Page: 289 *18.4.4 Limiting distributions Page: 289 *18.4.5 Recurrent and transient states Page: 290 Definition 18.3 Page: 290 Example 18.3 Page: 290 Solution Page: 290 Definition 18.4 Page: 291 Theorem 18.1 Page: 291 Proof Page: 291 Theorem 18.2 Page: 291 Proof Page: 291 Example 18.4 (Random walk with absorbing barriers) Page: 292 Solution Page: 292 18.5 Introduction to continuous time processes Page: 293 Notation Page: 293 Definition 18.5 Page: 293 Definition 18.6 Page: 293 18.6 Poisson processes Page: 293 Definition 18.7 Page: 294 Theorem 18.3 Page: 294 18.6.1 Waiting times Page: 295 18.6.2 Nonhomogeneous Poisson processes Page: 295 Definition 18.8 Page: 295 18.7 Brownian motion Page: 295 18.7.1 The main definition Page: 295 18.7.2 Connection with random walks Page: 296 *18.7.3 Hitting times Page: 297 *18.7.4 Conditional distributions Page: 298 18.7.5 Brownian motion with drift Page: 299 18.7.6 Geometric Brownian motion Page: 299 Notes and references Page: 299 Exercises Page: 300 19 Multi-state models Page: 304 19.1 Introduction Page: 304 Figure 19.1 A two life multi-state model Page: 305 19.2 The discrete-time model Page: 305 19.2.1 Non-stationary Markov Chains Page: 305 Figure 19.2 The healthy-unhealthy-deceased model Page: 306 Example 19.1 Page: 306 Solution Page: 306 19.2.2 Discrete-time multi-state insurances Page: 307 Notation Page: 307 Example 19.2 Page: 307 Solution Page: 307 Example 19.3 Page: 308 Solution Page: 308 Remark Page: 310 19.2.3 Multi-state annuities Page: 310 Example 19.4 Page: 310 Solution Page: 310 Example 19.5 Page: 311 Solution Page: 311 19.3 The continuous-time model Page: 311 Definition 19.1 Page: 311 19.3.1 Forces of transition Page: 311 Definition 19.2 Page: 312 Theorem 19.1 Page: 312 Proof Page: 312 Theorem 19.2 (Kolmogorov forward equations) Page: 312 Proof Page: 312 Theorem 19.3 Page: 314 Proof Page: 314 Theorem 19.4 Page: 315 Remark Page: 315 19.3.2 Path-by-path analysis Page: 316 Example 19.6 Page: 317 Solution Page: 317 19.3.3 Numerical approximation Page: 317 Example 19.7 Page: 318 Solution Page: 318 19.3.4 Stationary continuous time processes Page: 318 Example 19.8 Page: 319 Solution Page: 319 19.3.5 Some methods for non-stationary processes Page: 320 Example 19.9 Page: 320 Solution Page: 320 19.3.6 Extension of the common shock model Page: 321 Example 19.10 Page: 322 Solution Page: 322 Example 19.11 Page: 322 Solution Page: 322 19.3.7 Insurance and annuity applications in continuous time Page: 322 Example 19.12 Page: 323 Solution Page: 323 Example 19.13 Page: 324 Solution Page: 324 19.4 Recursion and differential equations for multi-state reserves Page: 324 Example 19.14 Page: 324 Solution Page: 325 Example 19.15 Page: 326 Solution Page: 326 19.5 Profit testing in multi-state models Page: 327 Example 19.16 Page: 327 Solution Page: 328 19.6 Semi-Markov models Page: 328 Notes and references Page: 328 Exercises Page: 329 20 Introduction to the Mathematics of Financial Markets Page: 333 20.1 Introduction Page: 333 20.2 Modelling prices in financial markets Page: 333 20.3 Arbitrage Page: 334 Definition 20.1 Page: 335 Definition 20.2 Page: 336 Remark Page: 336 Theorem 20.1 Page: 336 Proof Page: 336 Remark Page: 337 Theorem 20.2 Page: 337 Proof Page: 337 Definition 20.3 Page: 337 20.4 Option contracts Page: 337 20.5 Option prices in the one-period binomial model Page: 339 Example 20.1 Page: 342 Solution Page: 342 Theorem 20.3 (Put-call Parity) Page: 342 Proof Page: 342 20.6 The multi-period binomial model Page: 342 Definition 20.4 Page: 343 Example 20.2 Page: 344 Solution Page: 344 Example 20.3 Page: 345 Solution Page: 345 Figure 20.1 Example 20.3 Page: 345 20.7 American options Page: 346 Example 20.4 Page: 347 Solution Page: 347 20.8 A general financial market Page: 348 Figure 20.2 A finanical market with two risky assets Page: 349 Definition 20.5 Page: 350 Definition 20.6 Page: 350 Example 20.5 Page: 350 Solution Page: 350 20.9 Arbitrage-free condition Page: 351 Theorem 20.4 (The fundamental theorem of asset pricing) Page: 352 20.10 Existence and uniqueness of risk-neutral measures Page: 353 20.10.1 Linear algebra background Page: 353 20.10.2 The space of contingent claims Page: 353 Figure 20.3 A picture of the one period binomial market Page: 355 Figure 20.4 A market in which not all contingent claims are replicable Page: 355 Figure 20.5 A market that is not arbitage-free Page: 355 Figure 20.6 See Exercise 20.7 Page: 356 Example 20.6 Page: 356 Solution Page: 356 20.10.3 The Fundamental theorem of asset pricing completed Page: 357 Example 20.7 Page: 359 Solution Page: 359 20.11 Completeness of markets Page: 359 Definition 20.7 Page: 359 Theorem 20.5 Page: 359 Proof Page: 359 Example 20.8 Page: 361 Solution Page: 361 20.12 The Black–Scholes–Merton formula Page: 361 Remark Page: 364 20.13 Bond markets Page: 364 20.13.1 Introduction Page: 364 20.13.2 Extending the notion of conditional expectation Page: 366 Theorem 20.6 Page: 366 Proof Page: 366 20.13.3 The arbitrage-free condition in the bond market Page: 367 Theorem 20.7 Page: 367 Proof Page: 368 20.13.4 Short-rate modelling Page: 368 Example 20.9 Page: 369 Solution Page: 369 Figure 20.7 Example 20.9. Values of Sk(n), k = 0, 1, 2, 3 Page: 370 20.13.5 Forward prices and rates Page: 370 Figure 20.8 Example 20.9. Values of k = 1, 2, 3 Page: 370 20.13.6 Observations on the continuous time bond market Page: 371 Notes and references Page: 372 Exercises Page: 373 Part IV RISK THEORY Page: 375 21 Compound distributions Page: 377 21.1 Introduction Page: 377 21.2 The mean and variance of S Page: 379 21.3 Generating functions Page: 380 21.4 Exact distribution of S Page: 381 Example 21.1 Page: 381 Solution Page: 381 21.5 Choosing a frequency distribution Page: 381 21.6 Choosing a severity distribution Page: 383 21.7 Handling the point mass at 0 Page: 384 Example 21.2 Page: 384 Solution Page: 384 21.8 Counting claims of a particular type Page: 385 21.8.1 One special class Page: 385 Example 21.3 Page: 385 Solution Page: 385 21.8.2 Special classes in the Poisson case Page: 386 21.9 The sum of two compound Poisson distributions Page: 387 21.10 Deductibles and other modifications Page: 388 21.10.1 The nature of a deductible Page: 388 Example 21.4 Page: 389 Solution Page: 389 Example 21.5 Page: 389 Solution Page: 389 21.10.2 Some calculations in the discrete case Page: 389 Example 21.6 Page: 390 Solution Page: 390 21.10.3 Some calculations in the continuous case Page: 390 Example 21.7 Page: 390 Solution Page: 390 Example 21.8 Page: 391 Solution Page: 391 Example 21.9 Page: 391 Solution Page: 391 21.10.4 The effect on aggregate claims Page: 392 Example 21.10 Page: 392 Solution Page: 392 Example 21.11 Page: 393 Solution Page: 393 21.10.5 Other modifications Page: 393 Example 21.12 Page: 393 Solution Page: 393 21.11 A recursion formula for S Page: 393 21.11.1 The positive-valued case Page: 393 Proposition 21.1 Page: 394 Proof Page: 394 Theorem 21.1 (The recursion formula) Page: 394 Proof Page: 394 Theorem 21.2 Page: 396 Proof Page: 396 Example 21.13 Page: 397 Solution Page: 397 21.11.2 The case with claims of zero amount Page: 397 Example 21.14 Page: 398 Solution Page: 398 Notes and references Page: 398 Exercises Page: 398 22 Risk assessment Page: 403 22.1 Introduction Page: 403 22.2 Utility theory Page: 403 Example 22.1 Page: 404 Solution Page: 404 Example 22.2 Page: 405 Solution Page: 405 22.3 Convex and concave functions: Jensen's inequality Page: 406 22.3.1 Basic definitions Page: 406 Definition 22.1 Page: 406 Figure 22.1 Graphs of ud(x) and vd(x) Page: 407 Definition 22.2 Page: 407 22.3.2 Jensen's inequality Page: 407 Theorem 22.1 (Jensen's inequality) Page: 408 Proof Page: 408 22.4 A general comparison method Page: 408 Definition 22.3 Page: 409 Theorem 22.2 Page: 409 Proof Page: 410 Remark Page: 410 Theorem 22.3 (The cut condition) Page: 410 Proof Page: 410 Figure 22.2 The cut condition: X is less risky than Y Page: 411 Remark Page: 411 Theorem 22.4 Page: 412 Proof Page: 412 Remark Page: 412 22.5 Risk measures for capital adequacy Page: 412 22.5.1 The general notion of a risk measure Page: 412 22.5.1 Value-at-risk Page: 413 Definition 22.4 Page: 413 22.5.3 Tail value-at-risk Page: 413 Definition 22.5 Page: 414 Example 22.3 Page: 416 Solution Page: 416 Example 22.4 Page: 416 Solution Page: 416 22.5.4 Distortion risk measures Page: 417 Notes and references Page: 417 Exercises Page: 417 23 Ruin models Page: 420 23.1 Introduction Page: 420 Example 23.1 Page: 421 Solution Page: 421 Remark Page: 422 23.2 A functional equation approach Page: 422 Example 23.2 Page: 423 Solution Page: 423 23.3 The martingale approach to ruin theory Page: 424 23.3.1 Stopping times Page: 424 Example 23.3 Page: 425 Solution Page: 425 Figure 23.1 Tree for Example 23.3 Page: 425 23.3.2 The optional stopping theorem and its consequences Page: 426 Theorem 23.1 (Optional stopping theorem) Page: 426 Proof Page: 426 Corollary Page: 426 Proof Page: 427 Example 23.4 Page: 427 Solution Page: 427 Example 23.5 Page: 427 Solution Page: 427 Example 23.6 Page: 428 Solution Page: 428 Remark Page: 429 23.3.3 The adjustment coefficient Page: 429 Definition 23.1 Page: 429 Figure 23.2 Graph of the function ϕ Page: 430 Example 23.7 Page: 430 Solution Page: 430 Example 23.8 Page: 431 Solution Page: 431 23.3.4 The main conclusions Page: 431 Theorem 23.2 Page: 431 Proof Page: 431 Theorem 23.3 Page: 432 Theorem 23.4 Page: 432 23.4 Distribution of the deficit at ruin Page: 433 23.5 Recursion formulas Page: 434 23.5.1 Calculating ruin probabilities Page: 434 Remark Page: 436 23.5.2 The distribution of D(u) Page: 436 Example 23.9 Page: 437 Solution Page: 437 23.6 The compound Poisson surplus process Page: 438 23.6.1 Description of the process Page: 438 Figure 23.3 A realization of the continuous-time surplus process Page: 439 23.6.2 The probability of eventual ruin Page: 440 23.6.3 The value of ψ(0) Page: 440 23.6.4 The distribution of D(0) Page: 440 23.6.5 The case when X is exponentially distributed Page: 441 Theorem 23.5 Page: 441 23.7 The maximal aggregate loss Page: 441 Definition 23.2 Page: 441 Example 23.10 Page: 443 Solution Page: 443 Example 23.11 Page: 444 Solution Page: 444 Theorem 23.6 Page: 444 Notes and references Page: 445 Exercises Page: 445 24 Credibility theory Page: 449 24.1 Introductory material Page: 449 24.1.1 The nature of credibility theory Page: 449 24.1.2 Information assessment Page: 449 Example 24.1 Page: 449 Solution Page: 450 Example 24.2 Page: 451 Solution Page: 451 Example 24.3 Page: 452 Solution Page: 452 24.2 Conditional expectation and variance with respect to another random variable Page: 453 24.2.1 The random variable E(X|Y) Page: 453 Definition 24.1 Page: 453 Example 24.4 Page: 453 Solution Page: 453 Theorem 24.1 Page: 454 Proof Page: 454 Remark Page: 455 24.2.2 Conditional variance Page: 455 Definition 24.2 Page: 455 Theorem 24.2 Page: 455 Proof Page: 456 Remark Page: 456 Example 24.5 Page: 456 Solution Page: 456 24.3 General framework for Bayesian credibility Page: 457 Remark Page: 458 24.4 Classical examples Page: 459 Example 24.6 Page: 459 Solution Page: 459 Example 24.7 (Poisson–Gamma) Page: 461 Solution Page: 461 24.5 Approximations Page: 462 24.5.1 A general case Page: 462 24.5.2 The Bühlman model Page: 463 24.5.3 Bühlman–Straub Model Page: 464 Example 24.8 Page: 465 Solution Page: 465 24.6 Conditions for exactness Page: 465 Example 24.9 Page: 465 Solution Page: 465 Theorem 24.3 Page: 466 Proof Page: 466 Remark Page: 467 Remark Page: 467 Theorem 24.4 Page: 468 Proof Page: 468 24.7 Estimation Page: 469 24.7.1 Unbiased estimators Page: 469 24.7.2 Calculating in the credibility model Page: 470 24.7.3 Estimation of the Bülhman parameters Page: 470 Example 24.10 Page: 472 Solution Page: 472 24.7.4 Estimation in the Bülhman–Straub model Page: 472 Notes and references Page: 473 Exercises Page: 473 Back Matter Page: 477 Answers to exercises Page: 477 Chapter 2 Page: 477 Chapter 3 Page: 478 Chapter 4 Page: 478 Chapter 5 Page: 478 Chapter 6 Page: 479 Chapter 7 Page: 480 Chapter 8 Page: 480 Chapter 9 Page: 481 Chapter 10 Page: 481 Chapter 11 Page: 483 Chapter 12 Page: 483 Chapter 13 Page: 484 Chater 14 Page: 484 Chapter 15 Page: 484 Chapter 16 Page: 485 Chapter 17 Page: 486 Chapter 18 Page: 487 Chapter 19 Page: 488 Chapter 20 Page: 488 Chapter 21 Page: 489 Chapter 22 Page: 490 Chapter 23 Page: 490 Chapter 24 Page: 491 Appendix A review of probability theory Page: 493 A.1 Sample spaces and probability measures Page: 493 A.2 Conditioning and independence Page: 495 A.3 Random variables Page: 495 A.4 Distributions Page: 496 A.5 Expectations and moments Page: 497 A.6 Expectation in terms of the distribution function Page: 498 A.7 Joint distributions Page: 499 A.8 Conditioning and independence for random variables Page: 501 A.9 Moment generating functions Page: 502 Theorem A.1 Page: 503 Proof Page: 503 Theorem A.2 (The uniqueness theorem) Page: 503 A.10 Probability generating functions Page: 503 A.11 Some standard distributions Page: 505 A.11.1 The binomial distribution Page: 505 A.11.2 The Poisson distribution Page: 505 Example A.1 Page: 506 Solution Page: 506 A.11.3 The negative binomial and geometric distributions Page: 506 A.11.4 The continuous uniform distribution Page: 507 A.11.5 The normal distribution Page: 507 A.11.6 The gamma and exponential distributions Page: 509 A.11.7 The lognormal distribution Page: 510 A.11.8 The Pareto distribution Page: 511 A.12 Convolution Page: 511 A.12.1 The discrete case Page: 511 Example A.2 Page: 513 Solution Page: 513 A.12.2 The continuous case Page: 513 Example A.3 Page: 514 Solution Page: 514 Figure A.1 The region of integration in Example A.3 Page: 515 A.12.3 Notation and remarks Page: 515 A.13 Mixtures Page: 516 References Page: 517 Notation index Page: 519 Index Page: 523 WILEY END USER LICENSE AGREEMENT Page: I
Description: