ebook img

Fundamental Statistical Inference A Computational Approach PDF

572 Pages·2018·12.89 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fundamental Statistical Inference A Computational Approach

Fundamental Statistical Inference WILEYSERIESINPROBABILITYANDSTATISTICS EstablishedbyWalterA.ShewhartandSamuelS.Wilks Editors:DavidJ.Balding,NoelA.C.Cressie,GarrettM.Fitzmaurice, GeofH.Givens,HarveyGoldstein,GeertMolenberghs,DavidW.Scott, AdrianF.M.Smith,RueyS.Tsay EditorsEmeriti:J.StuartHunter,IainM.Johnstone,JosephB.Kadane, JozefL.Teugels TheWileySeriesinProbabilityandStatisticsiswellestablishedandauthoritative.Itcovers manytopicsofcurrentresearchinterestinbothpureandappliedstatisticsandprobability theory.Writtenbyleadingstatisticiansandinstitutions,thetitlesspanbothstate-of-the-art developmentsinthefieldandclassicalmethods. Reflectingthewiderangeofcurrentresearchinstatistics,theseriesencompassesapplied, methodological and theoretical statistics, ranging from applications and new techniques made possible by advances in computerized practice to rigorous treatment of theoreti- cal approaches. This series provides essential and invaluable reading for all statisticians, whetherinacademia,industry,government,orresearch. Acompletelistoftitlesinthisseriescanbefoundathttp://www.wiley.com/go/wsps Fundamental Statistical Inference A Computational Approach MarcS.Paolella DepartmentofBankingandFinance UniversityofZurich Switzerland (cid:2) Thiseditionfirstpublished2018 ©2018JohnWiley&SonsLtd Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,in anyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedby law.Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailableathttp://www.wiley.com/ go/permissions. TherightofMarcS.Paolellatobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewithlaw. RegisteredOffices JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK EditorialOffice 9600GarsingtonRoad,Oxford,OX42DQ,UK Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitus atwww.wiley.com. Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthat appearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats. LimitofLiability/DisclaimerofWarranty Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakenorepresentations orwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkandspecificallydisclaim allwarranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityorfitnessforaparticular purpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensalesmaterialsor promotionalstatementsforthiswork.Thefactthatanorganization,website,orproductisreferredtointhis (cid:2) (cid:2) workasacitationand/orpotentialsourceoffurtherinformationdoesnotmeanthatthepublisherandauthors endorsetheinformationorservicestheorganization,website,orproductmayprovideorrecommendationsit maymake.Thisworkissoldwiththeunderstandingthatthepublisherisnotengagedinrenderingprofessional services.Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsult withaspecialistwhereappropriate.Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhave changedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublishernor authorsshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedto special,incidental,consequential,orotherdamages. LibraryofCongressCataloging-in-PublicationDataappliedfor HardbackISBN:9781119417866 CoverdesignbyWiley Coverimages:CourtesyofMarcS.Paolella Setin10/12ptTimesLTStdbySPiGlobal,Chennai,India 10 9 8 7 6 5 4 3 2 1 (cid:2) Contents PREFACE xi PARTI ESSENTIALCONCEPTSINSTATISTICS 1 IntroducingPointandIntervalEstimation 3 1.1 PointEstimation / 4 1.1.1 BernoulliModel / 4 1.1.2 GeometricModel / 6 1.1.3 SomeRemarksonBiasandConsistency / 11 1.2 IntervalEstimationviaSimulation / 12 1.3 IntervalEstimationviatheBootstrap / 18 1.3.1 ComputationandComparisonwithParametricBootstrap / 18 1.3.2 ApplicationtoBernoulliModelandModification / 20 1.3.3 DoubleBootstrap / 24 1.3.4 DoubleBootstrapwithAnalyticInnerLoop / 26 1.4 BootstrapConfidenceIntervalsintheGeometricModel / 31 1.5 Problems / 35 2 GoodnessofFitandHypothesisTesting 37 2.1 EmpiricalCumulativeDistributionFunction / 38 2.1.1 TheGlivenko–CantelliTheorem / 38 2.1.2 ProofsoftheGlivenko–CantelliTheorem / 41 v vi CONTENTS 2.1.3 ExamplewithContinuousDataandApproximateConfidence Intervals / 45 2.1.4 ExamplewithDiscreteDataandApproximateConfidence Intervals / 49 2.2 ComparingParametricandNonparametricMethods / 52 2.3 Kolmogorov–SmirnovDistanceandHypothesisTesting / 57 2.3.1 TheKolmogorov–SmirnovandAnderson–DarlingStatistics / 57 2.3.2 SignificanceandHypothesisTesting / 59 2.3.3 Small-SampleCorrection / 63 2.4 TestingNormalitywithKDandAD / 65 2.5 TestingNormalitywithW2andU2 / 68 2.6 TestingtheStableParetianDistributionalAssumption:FirstAttempt / 69 2.7 Two-SampleKolmogorovTest / 73 2.8 Moreon(Moron?)HypothesisTesting / 74 2.8.1 Explanation / 75 2.8.2 MisuseofHypothesisTesting / 77 2.8.3 UseandMisuseofp-Values / 79 2.9 Problems / 82 3 Likelihood 85 3.1 Introduction / 85 3.1.1 ScalarParameterCase / 87 3.1.2 VectorParameterCase / 92 3.1.3 RobustnessandtheMCDEstimator / 100 3.1.4 AsymptoticPropertiesoftheMaximumLikelihoodEstimator / 102 3.2 Cramér–RaoLowerBound / 107 3.2.1 UnivariateCase / 108 3.2.2 MultivariateCase / 111 3.3 ModelSelection / 114 3.3.1 ModelMisspecification / 114 3.3.2 TheLikelihoodRatioStatistic / 117 3.3.3 UseofInformationCriteria / 119 3.4 Problems / 120 4 NumericalOptimization 123 4.1 RootFinding / 123 4.1.1 OneParameter / 124 4.1.2 SeveralParameters / 131 4.2 ApproximatingtheDistributionoftheMaximumLikelihoodEstimator / 135 4.3 GeneralNumericalLikelihoodMaximization / 136 CONTENTS vii 4.3.1 Newton–RaphsonandQuasi-NewtonMethods / 137 4.3.2 ImposingParameterRestrictions / 140 4.4 EvolutionaryAlgorithms / 145 4.4.1 DifferentialEvolution / 146 4.4.2 CovarianceMatrixAdaptionEvolutionaryStrategy / 149 4.5 Problems / 155 5 MethodsofPointEstimation 157 5.1 UnivariateMixedNormalDistribution / 157 5.1.1 Introduction / 157 5.1.2 SimulationofUnivariateMixtures / 160 5.1.3 DirectLikelihoodMaximization / 161 5.1.4 UseoftheEMAlgorithm / 169 5.1.5 Shrinkage-TypeEstimation / 174 5.1.6 Quasi-BayesianEstimation / 176 5.1.7 ConfidenceIntervals / 178 5.2 AlternativePointEstimationMethodologies / 184 5.2.1 MethodofMomentsEstimator / 185 5.2.2 UseofGoodness-of-FitMeasures / 190 5.2.3 QuantileLeastSquares / 191 5.2.4 PearsonMinimumChi-Square / 193 5.2.5 EmpiricalMomentGeneratingFunctionEstimator / 195 5.2.6 EmpiricalCharacteristicFunctionEstimator / 198 5.3 ComparisonofMethods / 199 5.4 APrimeronShrinkageEstimation / 200 5.5 Problems / 202 PARTII FURTHERFUNDAMENTALCONCEPTSINSTATISTICS 6 Q-QPlotsandDistributionTesting 209 6.1 P-PPlotsandQ-QPlots / 209 6.2 NullBands / 211 6.2.1 DefinitionandMotivation / 211 6.2.2 PointwiseNullBandsviaSimulation / 212 6.2.3 AsymptoticApproximationofPointwiseNullBands / 213 6.2.4 MappingPointwiseandSimultaneousSignificanceLevels / 215 6.3 Q-QTest / 217 6.4 FurtherP-PandQ-QTypePlots / 219 6.4.1 (Horizontal)StabilizedP-PPlots / 219 viii CONTENTS 6.4.2 ModifiedS-PPlots / 220 6.4.3 MSPTestforNormality / 224 6.4.4 ModifiedPercentile(Fowlkes-MP)Plots / 228 6.5 FurtherTestsforCompositeNormality / 231 6.5.1 Motivation / 232 6.5.2 Jarque–BeraTest / 234 6.5.3 ThreePowerful(andMoreRecent)NormalityTests / 237 6.5.4 TestingGoodnessofFitviaBinning:Pearson’sX2 Test / 240 P 6.6 CombiningTestsandPowerEnvelopes / 247 6.6.1 CombiningTests / 248 6.6.2 PowerComparisonsforTestingCompositeNormality / 252 6.6.3 MostPowerfulTestsandPowerEnvelopes / 252 6.7 DetailsofaFailedAttempt / 255 6.8 Problems / 260 7 UnbiasedPointEstimationandBiasReduction 269 7.1 Sufficiency / 269 7.1.1 Introduction / 269 7.1.2 Factorization / 272 7.1.3 MinimalSufficiency / 276 7.1.4 TheRao–BlackwellTheorem / 283 7.2 CompletenessandtheUniformlyMinimumVarianceUnbiasedEstimator / 286 7.3 AnExamplewithi.i.d.GeometricData / 289 7.4 MethodsofBiasReduction / 293 7.4.1 TheBias-FunctionApproach / 293 7.4.2 Median-UnbiasedEstimation / 296 7.4.3 Mode-AdjustedEstimator / 297 7.4.4 TheJackknife / 302 7.5 Problems / 305 8 AnalyticIntervalEstimation 313 8.1 Definitions / 313 8.2 PivotalMethod / 315 8.2.1 ExactPivots / 315 8.2.2 AsymptoticPivots / 318 8.3 IntervalsAssociatedwithNormalSamples / 319 8.3.1 SingleSample / 319 8.3.2 PairedSample / 320 8.3.3 TwoIndependentSamples / 322 8.3.4 Welch’sMethodfor𝜇 −𝜇 when𝜎2 ≠𝜎2 / 323 1 2 1 2 8.3.5 Satterthwaite’sApproximation / 324 CONTENTS ix 8.4 CumulativeDistributionFunctionInversion / 326 8.4.1 ContinuousCase / 326 8.4.2 DiscreteCase / 330 8.5 ApplicationoftheNonparametricBootstrap / 334 8.6 Problems / 337 PARTIII ADDITIONALTOPICS 9 InferenceinaHeavy-TailedContext 341 9.1 EstimatingtheMaximallyExistingMoment / 342 9.2 APrimeronTailEstimation / 346 9.2.1 Introduction / 346 9.2.2 TheHillEstimator / 346 9.2.3 UsewithStableParetianData / 349 9.3 NoncentralStudent’stEstimation / 351 9.3.1 Introduction / 351 9.3.2 DirectDensityApproximation / 352 9.3.3 Quantile-BasedTableLookupEstimation / 353 9.3.4 ComparisonofNCTEstimators / 354 9.4 AsymmetricStableParetianEstimation / 358 9.4.1 Introduction / 358 9.4.2 TheHintEstimator / 359 9.4.3 MaximumLikelihoodEstimation / 360 9.4.4 TheMcCullochEstimator / 361 9.4.5 TheEmpiricalCharacteristicFunctionEstimator / 364 9.4.6 TestingforSymmetryintheStableModel / 366 9.5 TestingtheStableParetianDistribution / 368 9.5.1 TestBasedontheEmpiricalCharacteristicFunction / 368 9.5.2 SummabilityTestandModification / 371 9.5.3 ALHADI:The𝛼-HatDiscrepancyTest / 375 9.5.4 JointTestProcedure / 383 9.5.5 LikelihoodRatioTests / 384 9.5.6 SizeandPoweroftheSymmetricStableTests / 385 9.5.7 ExtensiontoTestingtheAsymmetricStableParetianCase / 395 10 TheMethodofIndirectInference 401 10.1 Introduction / 401 10.2 ApplicationtotheLaplaceDistribution / 403 10.3 ApplicationtoRandomizedResponse / 403 10.3.1 Introduction / 403 10.3.2 EstimationviaIndirectInference / 406 x CONTENTS 10.4 ApplicationtotheStableParetianDistribution / 409 10.5 Problems / 416 A ReviewofFundamentalConceptsinProbabilityTheory 419 A.1 CombinatoricsandSpecialFunctions / 420 A.2 BasicProbabilityandConditioning / 423 A.3 UnivariateRandomVariables / 424 A.4 MultivariateRandomVariables / 427 A.5 ContinuousUnivariateRandomVariables / 430 A.6 ConditionalRandomVariables / 432 A.7 GeneratingFunctionsandInversionFormulas / 434 A.8 ValueatRiskandExpectedShortfall / 437 A.9 JacobianTransformations / 451 A.10 SumsandOtherFunctions / 453 A.11 SaddlepointApproximations / 456 A.12 OrderStatistics / 460 A.13 TheMultivariateNormalDistribution / 462 A.14 NoncentralDistributions / 465 A.15 InequalitiesandConvergence / 467 A.15.1 InequalitiesforRandomVariables / 467 A.15.2 ConvergenceofSequencesofSets / 469 A.15.3 ConvergenceofSequencesofRandomVariables / 473 A.16 TheStableParetianDistribution / 483 A.17 Problems / 492 A.18 Solutions / 509 REFERENCES 537 INDEX 561

Description:
A hands-on approach to statistical inference that addresses the latest developments in this ever-growing field This clear and accessible book for beginning graduate students offers a practical and detailed approach to the field of statistical inference, providing complete derivations of results, dis
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.