P1:JZP 0521855705pre CB984/Kausel 0521855705 November16,2005 15:29 FUNDAMENTALSOLUTIONSINELASTODYNAMICS Thisworkisacompilationoffundamentalsolutions(orGreen’sfunctions)for classicalorcanonicalproblemsinelastodynamics,presentedwithacommon formatandnotation.Theseformulasdescribethedisplacementsandstresses elicitedbytransientandharmonicsourcesinsolidelasticmediasuchasfull spaces,half-spaces,andstrataandplatesinbothtwoandthreedimensions,using thethreemajorcoordinatesystems(Cartesian,cylindrical,andspherical).Such formulasareusefulfornumericalmethodsandpracticalapplicationtoprob- lemsofwavepropagationinelasticity,soildynamics,earthquakeengineering, mechanicalvibration,orgeophysics.Togetherwiththeplotsoftheresponse functions,thisworkshouldserveasavaluablereferencetoengineersandsci- entistsalike.Theseformulaswereheretoforefoundonlyscatteredthroughout theliterature.Thesolutionsaretabulatedwithoutproof,butgivingreference toappropriatemodernpapersandbookscontainingfullderivations.Mostfor- mulasinthebookhavebeenprogrammedandtestedwithintheMATLAB environment,andtheprogramsthusdevelopedarebothlistedandavailable forfreedownload. EduardoKauselearnedhisfirstprofessionaldegreein1967,graduatingasa civilengineerfromtheUniversityofChile,andthenworkedatChile’sNational ElectricityCompany.In1969hecarriedoutpostgraduatestudiesattheTech- nicalUniversityinDarmstadt.HeearnedhisMasterofScience(1972)and DoctorofScience(1974)degreesfromMIT.Followinggraduation,Dr.Kausel workedatStoneandWebsterEngineeringCorporationinBoston,andthen joinedtheMITfacultyin1978,wherehehasremainedsince.Heisaregis- teredprofessionalengineerintheStateofMassachusetts,isaseniormember ofvariousprofessionalorganizations(ASCE,SSA,EERI,IACMG),andhas extensiveexperienceasaconsultingengineer. Among the honors he has received are a 1989 Japanese Government Research Award for Foreign Specialists from the Science and Technology Agency,a1992HonoraryFacultyMembershipinEpsilonChi,the1994Konrad Zuse Guest Professorship at the University of Hamburg in Germany, the HumboldtPrizefromtheGermanGovernmentin2000,andthe2001MIT- CEEAwardforConspicuouslyEffectiveTeaching. Dr.Kauselisbestknownforhisworkondynamicsoil–structureinteraction, andforhisverysuccessfulGreen’sfunctions(fundamentalsolutions)forthe dynamicanalysisoflayeredmedia,whichareincorporatedinanowwidely usedprogram.Dr.Kauselistheauthorofmorethan150technicalpapers andreportsintheareasofstructuraldynamics,earthquakeengineering,and computationalmechanics. i i P1:JZP 0521855705pre CB984/Kausel 0521855705 November16,2005 15:29 ii ii P1:JZP 0521855705pre CB984/Kausel 0521855705 November16,2005 15:29 Fundamental Solutions in Elastodynamics A Compendium EDUARDO KAUSEL MassachusettsInstituteofTechnology iii iii Cambridge,NewYork,Melbourne,Madrid,CapeTown,Singapore,SãoPaulo Cambridge University Press TheEdinburghBuilding,Cambridge,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Information on this title: www.cambridg e.org /9780521855709 ©EduardoKausel2006 Thispublicationisincopyright.Subjecttostatutoryexceptionandtotheprovisionof relevantcollectivelicensingagreements,noreproductionofanypartmaytakeplace withoutthewrittenpermissionofCambridgeUniversityPress. Firstpublishedinprintformat - ---- eBook (NetLibrary) - --- eBook (NetLibrary) - ---- hardback - --- hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyofs forexternalorthird-partyinternetwebsitesreferredtointhispublication,anddoesnot guaranteethatanycontentonsuchwebsitesis,orwillremain,accurateorappropriate. P1:JZP 0521855705pre CB984/Kausel 0521855705 November16,2005 15:29 Contents Preface pageix SECTIONI: PRELIMINARIES 1. Fundamentals 1 1.1 Notationandtableofsymbols 1 1.2 Signconvention 4 1.3 Coordinatesystemsanddifferentialoperators 4 1.3.1 Cartesiancoordinates 4 1.3.2 Cylindricalcoordinates 6 1.3.3 Sphericalcoordinates 9 1.4 Strains,stresses,andtheelasticwaveequation 13 1.4.1 Cartesiancoordinates 13 1.4.2 Cylindricalcoordinates 16 1.4.3 Sphericalcoordinates 21 2. Dipoles 27 2.1 Pointdipolesordoublets:singlecouplesandtensilecrack sources 27 2.2 Linedipoles 29 2.3 Torsionalpointsources 30 2.4 Seismicmoments(doublecoupleswithnonetresultant) 30 2.5 Blastloads(explosivelineandpointsources) 31 2.6 Dipolesincylindricalcoordinates 32 SECTIONII: FULLSPACEPROBLEMS 3. Two-dimensionalproblemsinfull,homogeneousspaces 35 3.1 Fundamentalidentitiesanddefinitions 35 3.2 Anti-planelineload(SHwaves) 35 3.3 SHlineloadinanorthotropicspace 36 3.4 In-planelineload(SV-Pwaves) 38 v P1:JZP 0521855705pre CB984/Kausel 0521855705 November16,2005 15:29 vi Contents 3.5 Dipolesinplanestrain 40 3.6 Lineblastsource:suddenlyappliedpressure 43 3.7 Cylindricalcavitysubjectedtopulsatingpressure 44 4. Three-dimensionalproblemsinfull,homogeneousspaces 48 4.1 Fundamentalidentitiesanddefinitions 48 4.2 Pointload(Stokesproblem) 48 4.3 Tensioncracks 52 4.4 Doublecouples(seismicmoments) 54 4.5 Torsionalpointsource 55 4.6 Torsionalpointsourcewithverticalaxis 57 4.7 Pointblastsource 58 4.8 Sphericalcavitysubjectedtoarbitrarypressure 59 4.9 Spatiallyharmoniclinesource(21/2-Dproblem) 63 SECTIONIII: HALF-SPACEPROBLEMS 5. Two-dimensionalproblemsinhomogeneoushalf-spaces 69 5.1 Half-plane,SHlinesourceandreceiveranywhere 69 5.2 SHlineloadinanorthotropichalf-plane 70 5.3 Half-plane,SV-Psourceandreceiveratsurface(Lamb’s problem) 71 5.4 Half-plane,SV-Psourceonsurface,receiveratinterior,orvice versa 73 5.5 Half-plane,lineblastloadappliedinitsinterior(Garvin’s problem) 76 6. Three-dimensionalproblemsinhomogeneoushalf-spaces 78 6.1 3-Dhalf-space,suddenlyappliedverticalpointloadonits surface(Pekeris-Mooney’sproblem) 78 6.2 3-Dhalf-space,suddenlyappliedhorizontalpointloadonits surface(Chao’sproblem) 81 6.3 3-Dhalf-space,buriedtorsionalpointsourcewithverticalaxis 83 SECTIONIV: PLATESANDSTRATA 7. Two-dimensionalproblemsinhomogeneousplatesandstrata 87 7.1 PlatesubjectedtoSHlinesource 87 7.1.1 Solutionusingthemethodofimages 87 7.1.2 Normalmodesolution 87 7.2 StratumsubjectedtoSHlinesource 88 7.2.1 Solutionusingthemethodofimages 89 7.2.2 Normalmodesolution 90 7.3 PlatewithmixedboundaryconditionssubjectedtoSV-Pline source 90 7.3.1 Solutionusingthemethodofimages 91 7.3.2 Normalmodesolution 92 P1:JZP 0521855705pre CB984/Kausel 0521855705 November16,2005 15:29 Contents vii SECTIONV: ANALYTICALANDNUMERICALMETHODS Readmefirst 97 8. SolutiontotheHelmholtzandwaveequations 98 8.1 Summaryofresults 98 8.2 ScalarHelmholtzequationinCartesiancoordinates 101 8.3 VectorHelmholtzequationinCartesiancoordinates 102 8.4 ElasticwaveequationinCartesiancoordinates 104 8.4.1 Horizontallystratifiedmedia,planestrain 105 8.5 ScalarHelmholtzequationincylindricalcoordinates 108 8.6 VectorHelmholtzequationincylindricalcoordinates 109 8.7 Elasticwaveequationincylindricalcoordinates 110 8.7.1 Horizontallystratifiedmedia 112 8.7.2 Radiallystratifiedmedia 114 8.8 ScalarHelmholtzequationinsphericalcoordinates 117 8.9 VectorHelmholtzequationinsphericalcoordinates 118 8.10 Elasticwaveequationinsphericalcoordinates 120 9. Integraltransformmethod 125 9.1 Cartesiancoordinates 125 9.2 Cylindricalcoordinates 130 9.2.1 Horizontallystratifiedmedia 130 9.2.2 Cylindricallystratifiedmedia 136 9.3 Sphericalcoordinates 137 10. Stiffnessmatrixmethodforlayeredmedia 140 10.1 Summaryofmethod 141 10.2 StiffnessmatrixmethodinCartesiancoordinates 142 10.2.1 Analyticcontinuationinthelayers 148 10.2.2 Numericalcomputationofstiffnessmatrices 150 10.2.3 Summaryofcomputation 151 10.3 Stiffnessmatrixmethodincylindricalcoordinates 159 10.3.1 Horizontallylayeredsystem 160 10.3.2 Radiallylayeredsystem 164 10.4 Stiffnessmatrixmethodforlayeredspheres 175 10.4.1 Propertiesanduseofimpedancematrices 180 10.4.2 Asymmetry 180 10.4.3 Expansionofsourceanddisplacementsintospherical harmonics 181 10.4.4 Rigidbodyspheroidalmodes 182 SECTIONVI: APPENDICES 11. Basicpropertiesofmathematicalfunctions 185 11.1 Besselfunctions 185 11.1.1 Differentialequation 185 11.1.2 Recurrencerelations 185 P1:JZP 0521855705pre CB984/Kausel 0521855705 November16,2005 15:29 viii Contents 11.1.3 Derivatives 186 11.1.4 Wronskians 186 11.1.5 Orthogonalityconditions 186 11.1.6 Usefulintegrals 187 11.2 SphericalBesselfunctions 187 11.2.1 Differentialequation 187 11.2.2 Trigonometricrepresentations 188 11.2.3 Recurrencerelations 189 11.3 Legendrepolynomials 189 11.3.1 Differentialequation 189 11.3.2 Rodrigues’sformula 190 11.3.3 Trigonometricexpansion(x=cosφ) 190 11.3.4 Recurrencerelations 190 11.3.5 Orthogonalitycondition 190 11.3.6 ExpansioninLegendreseries 191 11.4 AssociatedLegendrefunctions(spheroidalharmonics) 191 11.4.1 Differentialequation 191 11.4.2 Recurrencerelations 192 11.4.3 Orthogonalityconditions 192 11.4.4 Orthogonalityofco-latitudematrix 193 11.4.5 Expansionofarbitraryfunctioninspheroidal harmonics 193 11.4.6 Leibnizruleforthederivativeofaproductoftwo functions 193 12. Brieflistingofintegraltransforms 194 12.1 Fouriertransforms 194 12.2 Hankeltransforms 196 12.3 SphericalHankeltransforms 197 13. MATLABprograms 198 P1:JZP 0521855705pre CB984/Kausel 0521855705 November16,2005 15:29 Preface Wepresentinthisworkacollectionoffundamentalsolutions,orso-calledGreen’sfunc- tions,forsomeclassicalorcanonicalproblemsinelastodynamics.Suchformulasprovide thedynamicresponsefunctionsfortransientpointsourcesactingwithinisotropic,elastic media,inboththefrequencydomainandthetimedomain,andinbothtwoandthree dimensions.Thebodiesconsideredarefullspaces,half-spaces,andplatesofinfinitelateral extent,whilethesourcesrangefrompointandlineforcestotorques,seismicmoments,and pressurepulses.Byappropriateconvolutions,thesesolutionscanbeextendedtospatially distributedsourcesand/orsourceswithanarbitraryvariationintime. Thesefundamentalsolutions,astheirnameimplies,constituteinvaluabletoolsfora largeclassofnumericalsolutiontechniquesforwavepropagationproblemsinelasticity, soildynamics,earthquakeengineering,orgeophysics.ExamplesaretheBoundaryIntegral (orelement)Method(BIM),whichisoftenusedtoobtainthesolutiontowavepropagation problemsinfinitebodiesofirregularshape,evenwhileworkingwiththeGreen’sfunctions forafullspace. Thesolutionsincludedhereinarefoundscatteredthroughouttheliterature,andno singlebookwasfoundtodealwiththemallinoneplace.Inaddition,eachauthor,paper, orbookusessignconventionsandsymbolsthatdifferfromoneanother,ortheyinclude onlypartialresults,sayonlythesolutioninthefrequencydomainorforsomeparticular valueofPoisson’sratio.Sometimes,publishedresultsarealsodisplayedinunconventional manners,forexample,takingforcestobepositivedown,butdisplacementsup,orscaling thedisplaysinunusualwaysorusingtoosmallascale,andsoforth.Thus,itwasfelt thatacompendiumoftheknownsolutionsinacommonformatwouldserveauseful purpose.Withthisinmind,weusethroughoutaconsistentnotation,coordinatesystems, andsignconvention,whichshouldgreatlyfacilitatetheapplicationofthesefundamental solutions.Also,whileweanguishedinitiallyatthechoiceofsymbolsfortheanglesin sphericalcoordinates,wedecidedintheendtouseθfortheazimuthandφforthepolar angle.Althoughthiscontravenesthecommonnotation,itprovidesconsistencybetween sphericalandcylindricalcoordinatesandeasesthetransitionbetweenoneandtheother system. Wetabulatethesesolutionshereinwithoutproof,givingreferencetoappropriatemod- ernpapersandbookscontainingfullderivations,butmakingnoeffortatestablishingthe originalsourcesofthederivationsor,forthatmatter,providingahistoricalaccountof ix