ebook img

Fundamental Numerical Methods for Electrical Engineering PDF

293 Pages·2008·4.805 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fundamental Numerical Methods for Electrical Engineering

Lecture Notes Electrical Engineering Volume 18 Stanisław Rosłoniec Fundamental Numerical Methods for Electrical Engineering 123 Prof.Dr.Hab.Ing.StanisławRosłoniec InstituteofRadioelectronics WarsawUniversityofTechnology Nowowiejska15/19 00-665Warsaw Poland [email protected] ISBN:978-3-540-79518-6 e-ISBN:978-3-540-79519-3 LibraryofCongressControlNumber:2008927874 (cid:2)c 2008Springer-VerlagBerlinHeidelberg Thisworkissubjecttocopyright.Allrightsarereserved,whetherthewholeorpartofthematerialis concerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation,broadcasting, reproductiononmicrofilmorinanyotherway,andstorageindatabanks.Duplicationofthispublication orpartsthereofispermittedonlyundertheprovisionsoftheGermanCopyrightLawofSeptember9, 1965,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer.Violationsare liabletoprosecutionundertheGermanCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,etc.inthispublicationdoesnotimply, evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevantprotectivelaws andregulationsandthereforefreeforgeneraluse. Coverdesign:eStudioCalamarS.L. Printedonacid-freepaper 9 8 7 6 5 4 3 2 1 springer.com Contents Introduction ....................................................... xi 1 MethodsforNumericalSolutionofLinearEquations................ 1 1.1 DirectMethods.............................................. 5 1.1.1 TheGaussEliminationMethod.......................... 5 1.1.2 TheGauss–JordanEliminationMethod................... 9 1.1.3 TheLUMatrixDecompositionMethod................... 11 1.1.4 TheMethodofInverseMatrix........................... 14 1.2 IndirectorIterativeMethods .................................. 17 1.2.1 TheDirectIterationMethod ............................ 17 1.2.2 JacobiandGauss–SeidelMethods ....................... 18 1.3 ExamplesofApplicationsinElectricalEngineering ............... 23 References ...................................................... 27 2 MethodsforNumericalSolvingtheSingleNonlinearEquations ...... 29 2.1 DeterminationoftheComplexRootsofPolynomialEquations byUsingtheLin’sandBairstow’sMethods...................... 30 2.1.1 Lin’sMethod......................................... 30 2.1.2 Bairstow’sMethod .................................... 32 2.1.3 LaguerreMethod ..................................... 35 2.2 IterativeMethodsUsedforSolvingTranscendentalEquations ...... 36 2.2.1 BisectionMethodofBolzano ........................... 37 2.2.2 TheSecantMethod.................................... 38 2.2.3 MethodofTangents(Newton–Raphson) .................. 40 2.3 OptimizationMethods........................................ 42 2.4 ExamplesofApplications..................................... 44 References ...................................................... 47 3 MethodsforNumericalSolutionofNonlinearEquations............. 49 3.1 TheMethodofDirectIterations................................ 49 3.2 TheIterativeParameterPerturbationProcedure................... 51 3.3 TheNewtonIterativeMethod.................................. 52 v vi Contents 3.4 TheEquivalentOptimizationStrategies ......................... 56 3.5 ExamplesofApplicationsintheMicrowaveTechnique ............ 58 References ...................................................... 68 4 Methods for the Interpolation and Approximation of One VariableFunction ............................................... 69 4.1 FundamentalInterpolationMethods ............................ 72 4.1.1 ThePiecewiseLinearInterpolation ...................... 72 4.1.2 TheLagrangeInterpolatingPolynomial................... 73 4.1.3 TheAitkenInterpolationMethod ........................ 76 4.1.4 TheNewton–GregoryInterpolatingPolynomial............ 77 4.1.5 InterpolationbyCubicSplineFunctions .................. 82 4.1.6 Interpolation by a Linear Combination of Chebyshev PolynomialsoftheFirstKind .......................... 86 4.2 FundamentalApproximationMethodsforOneVariableFunctions... 89 4.2.1 TheEqualRipple(Chebyshev)Approximation ............ 89 4.2.2 TheMaximallyFlat(Butterworth)Approximation.......... 94 4.2.3 Approximation(CurveFitting)bytheMethodofLeastSquares 97 4.2.4 ApproximationofPeriodicalFunctionsbyFourierSeries....102 4.3 Examples of the Application of Chebyshev Polynomials in Synthesis of Radiation Patterns of the In-Phase Linear ArrayAntenna.............................................. 111 References ......................................................120 5 MethodsforNumericalIntegrationofOneandTwo VariableFunctions ...............................................121 5.1 Integration of Definite Integrals by Expanding the Integrand FunctioninFiniteSeriesofAnalyticallyIntegrableFunctions ...... 123 5.2 Fundamental Methods for Numerical Integration ofOneVariableFunctions .................................... 125 5.2.1 RectangularandTrapezoidalMethodsofIntegration........125 5.2.2 TheRombergIntegrationRule ..........................130 5.2.3 TheSimpsonMethodofIntegration......................132 5.2.4 TheNewton–CotesMethodofIntegration.................136 5.2.5 TheCubicSplineFunctionQuadrature ...................138 5.2.6 TheGaussandChebyshevQuadratures...................140 5.3 MethodsforNumericalIntegrationofTwoVariableFunctions ......147 5.3.1 TheMethodofSmall(Elementary)Cells .................147 5.3.2 TheSimpsonCubatureFormula .........................148 5.4 AnExampleofApplications ..................................151 References ......................................................154 6 NumericalDifferentiationofOne andTwoVariableFunctions ......................................155 6.1 ApproximatingtheDerivativesofOneVariableFunctions..........157 Contents vii 6.2 Calculating the Derivatives of One Variable Function byDifferentiationoftheCorrespondingInterpolatingPolynomial ... 163 6.2.1 Differentiation of the Newton–Gregory Polynomial andCubicSplineFunctions ............................ 163 6.3 Formulas for Numerical Differentiation of Two VariableFunctions .......................................... 168 6.4 An Example of the Two-Dimensional Optimization Problem anditsSolutionbyUsingtheGradientMinimizationTechnique .... 172 References ......................................................177 7 MethodsforNumericalIntegrationofOrdinary DifferentialEquations ...........................................179 7.1 TheInitialValueProblemandRelatedSolutionMethods...........179 7.2 TheOne-StepMethods .......................................180 7.2.1 TheEulerMethodanditsModifiedVersion ...............180 7.2.2 TheHeunMethod.....................................182 7.2.3 TheRunge–KuttaMethod(RK4)........................184 7.2.4 TheRunge–Kutta–FehlbergMethod(RKF45).............186 7.3 TheMulti-stepPredictor–CorrectorMethods.....................189 7.3.1 TheAdams–Bashforth–MoulthonMethod ................193 7.3.2 TheMilne–SimpsonMethod............................194 7.3.3 TheHammingMethod.................................197 7.4 Examples of Using the RK 4 Method for Integration ofDifferentialEquationsFormulatedforSomeElectricalRectifier Devices.................................................... 199 7.4.1 TheUnsymmetricalVoltageDoubler.....................199 7.4.2 TheFull-WaveRectifierIntegratedwiththeThree-Element Low-PassFilter ...................................... 204 7.4.3 TheQuadrupleSymmetricalVoltageMultiplier ............208 7.5 An Example of Solution of Riccati Equation Formulated foraNonhomogenousTransmissionLineSegment ............... 215 7.6 An Example of Application of the Finite Difference Method forSolvingtheLinearBoundaryValueProblem.................. 219 References ......................................................221 8 The Finite Difference Method Adopted for Solving Laplace BoundaryValueProblems........................................223 8.1 TheInteriorandExternalLaplaceBoundaryValueProblems .......226 8.2 TheAlgorithmforNumericalSolvingofTwo-DimensionalLaplace BoundaryProblemsbyUsingtheFiniteDifferenceMethod ........ 228 8.2.1 TheLiebmannComputationalProcedure..................231 8.2.2 TheSuccessiveOver-RelaxationMethod(SOR) ...........238 8.3 Difference Formulas for Numerical Calculation of a Normal Component of an Electric Field Vector atGoodConductingPlanes ................................... 242 viii Contents 8.4 Examples of Computation of the Characteristic Impedance andAttenuationCoefficientforSomeTEMTransmissionLines..... 245 8.4.1 TheShieldedTriplateStripline ..........................246 8.4.2 TheSquareCoaxialLine ...............................249 8.4.3 TheTriplateStripline ..................................251 8.4.4 TheShieldedInvertedMicrostripLine....................253 8.4.5 TheShieldedSlabLine ................................258 8.4.6 ShieldedEdgeCoupledTriplateStriplines ................263 References ......................................................268 A EquationofaPlaneinThree-DimensionalSpace....................269 B TheInverseoftheGivenNonsingularSquareMatrix................271 C TheFastEliminationMethod.....................................273 D The Doolittle Formulas Making Possible Presentation of a Nonsingular Square Matrix in the form of the Product of Two TriangularMatrices .............................................275 E Difference Formula for Calculation of the Electric Potential at PointsLyingontheBorderBetweentwoLooselessDielectricMedia WithoutElectricalCharges.......................................277 F CompleteEllipticIntegralsoftheFirstKind .......................279 SubjectIndex ......................................................281 About the Author Stanisław Rosłoniec received his M.Sc. degree in electronic engineering from the Warsaw University of Technology, Warsaw, in 1972. After graduation he joined the Department of Electronics, (Institute of Radioelectronics), Warsaw University of Technology where in 1976 he was granted with distinction his doctor’s degree (Ph.D). The thesis has been devoted to nonlinear phenomena occurring in mi- crowaveoscillatorswithavalancheandGunndiodes.In1991,hereceivedDoctorate inSciencedegreeinelectronicengineeringfromtheWarsawUniversityofTechnol- ogyforahabilitationthesisonnewmethodsofdesigninglinearmicrowavecircuits. Finally, he received in 2001 the degree of professor of technical science. In 1996, he was appointed as associate professor in the Warsaw University of Technology, where he lectured on “Fundamentals of radar and radionavigation techniques”, “UHFandmicrowaveantennas”,“Numericalmethods”and“Methodsforanalysis ix x AbouttheAuthor and synthesisofmicrowavecircuits”.Hismainresearchinterestiscomputer-aided design of different microwave circuits, and especially planar multi-element array antennas. He is the author of more than 80 scientific papers, 30 technical reports and6books,viz.“Algorithmsfordesignofselectedlinearmicrowavecircuits”(in Polish),WkŁ,Warsaw1987, “Mathematical methods fordesigning electronic cir- cuitswithdistributedparameters”(inPolish),WNT,Warsaw1988,“Algorithmsfor computer-aided design of linear microwave circuits”, Artech House, Inc. Boston– London 1990, “Linear microwave circuits – methods for analysis and synthesis” (inPolish),WKŁ,Warsaw1999and“Fundamentalsoftheantennatechnique”(in Polish),PublishingHouseoftheWarsawUniversityofTechnology,Warsaw2006. The last of them is the present book “Fundamental Numerical Methods for Elec- tricalEngineering”.Since1992,Prof.Rosloniechasbeentightlycooperatingwith theTelecommunicationsResearchInstitute(PIT)inWarsaw.Themainsubjectofhis professionalactivityinPITisdesigningtheplanar,in-phasearrayantennasintended for operation in long-range three-dimensional (3D) surveillance radar stations. A fewoftwo-dimensional(planar)arrayantennasdesignedbyhimoperateinradars of type TRD-12, RST-12M, CAR 1100 and TRS-15. These modern radar stations havebeenfabricatedbyPITforthePolishArmyandforeigncontractors. Introduction Stormy development of electronic computation techniques (computer systems and software),observedduringthelastdecades,hasmadepossibleautomationofdata processing in many important human activity areas, such as science, technology, economics and labor organization. In a broadly understood technology area, this developmentledtoseparationofspecializedformsofusingcomputersforthedesign andmanufacturingprocesses,thatis: – computer-aideddesign(CAD) – computer-aidedmanufacture(CAM) In order to show the role of computer in the first of the two applications men- tionedabove,letusconsiderbasicstagesofthedesignprocessforastandardpiece ofelectronicsystem,orequipment: – formulationofrequirementsconcerninguserproperties(characteristics,parame- ters)ofthedesignedequipment, – elaborationoftheinitial,possiblygeneralelectricstructure, – determinationofmathematicalmodelofthesystemonthebasisoftheadopted electricstructure, – determinationofbasicresponses(frequency-ortime-domain)ofthesystem,on thebaseofpreviouslyestablishedmathematicalmodel, – repeatedmodificationoftheadopteddiagram(changingitsstructureorelement values)incase,whenitdoesnotsatisfytheadoptedrequirements, – preparationofdesignandtechnologicaldocumentation, – manufacturingofmodel(prototype)series,accordingtotheprepareddocumen- tation, – testingtheprototypeundertheaspectofitselectricproperties,mechanicaldura- bilityandsensitivitytoenvironmentconditions, – modification of prototype documentation, if necessary, and handing over the documentationtoseriesproduction. The most important stages of the process under discussion are illustrated in Fig.I.1. xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.