ebook img

Fundamental Homomorphism Theorems for Neutrosophic Extended Triplet Groups PDF

2018·0.53 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fundamental Homomorphism Theorems for Neutrosophic Extended Triplet Groups

SS symmetry Article Fundamental Homomorphism Theorems for Neutrosophic Extended Triplet Groups MehmetÇelik,MogesMekonnenShallaandNecatiOlgun* ID DepartmentofMathematics,GaziantepUniversity,Gaziantep27310,Turkey;[email protected](M.Ç.); [email protected](M.M.S.) * Correspondence:[email protected];Tel.:+90-536-321-4006 (cid:1)(cid:2)(cid:3)(cid:1)(cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:1) (cid:1)(cid:2)(cid:3)(cid:4)(cid:5)(cid:6)(cid:7) Received:17July2018;Accepted:31July2018;Published:3August2018 Abstract: Inclassicalgrouptheory,homomorphismandisomorphismaresignificanttostudythe relationbetweentwoalgebraicsystems. Throughthisarticle,weproposeneutro-homomorphismand neutro-isomorphismfortheneutrosophicextendedtripletgroup(NETG)whichplaysasignificant roleinthetheoryofneutrosophictripletalgebraicstructures.Then,wedefineneutro-monomorphism, neutro-epimorphism,andneutro-automorphism. Wegiveandprovesometheoremsrelatedtothese structures. Furthermore, the Fundamental homomorphism theorem for the NETG is given and somespecialcasesarediscussed. Firstandsecondneutro-isomorphismtheoremsarestated. Finally, byapplyinghomomorphismtheoremstoneutrosophicextendedtripletalgebraicstructures,wehave examinedhowcloselydifferentsystemsarerelated. Keywords: neutro-monomorphism; neutro-epimorphism; neutro-automorphism; fundamental neutro-homomorphism theorem; first neutro-isomorphism theorem; and second neutro -isomorphismtheorem 1. Introduction Groupsarefiniteorinfinitesetofelementswhicharevitaltomodernalgebraequippedwith anoperation(suchasmultiplication,addition,orcomposition)thatsatisfiesthefourbasicaxiomsof closure,associativity,theidentityproperty,andtheinverseproperty. Groupscanbefoundingeometry studiedby“Felixkleinin1872”[1],characterizingphenomenalitylikesymmetryandcertaintypes oftransformations. Grouptheory,firstlyintroducedby“Galois”[2],withthestudyofpolynomials hasapplicationsinphysics,chemistry,andcomputerscience,andalsopuzzlesliketheRubik’scube as it may be expressed utilizing group theory. Homomorphism is both a monomorphism and an epimorphism maintaining a map between two algebraic structures of the same type (such as two groups, two rings, two fields, two vector spaces) and isomorphism is a bijective homomorphism definedasamorphism,whichhasaninversethatisalsomorphism. Accordingly,homomorphisms are effective in analyzing and calculating algebraic systems as they enable one to recognize how intently distinct systems are associated. Similar to the classical one, neuro-homomorphism is the transformbetweentwoneutrosophictripletalgebraicobjectsNandH.Thatis,ifelementsinNsatisfy somealgebraicequationinvolvingbinaryoperation“*”,theirimagesinHsatisfythesamealgebraic equation. Aneutro-isomorphismidentifiestwoalgebraicobjectswithoneanother. Themostcommon useofneutro-homomorphismsandneutro-isomorphismsinthisstudyistodealwithhomomorphism theoremswhichallowfortheidentificationofsomeneutrosophictripletquotientobjectswithcertain otherneutrosophictripletsubgroups,andsoon. Theneutrosophiclogicandaneutrosophicset,firstlymadeknownbyFlorentinSmarandache[3] in 1995, has been widely applied to several scientific fields. This study leads to a new direction, exploration, path of thinking to mathematicians, engineers, computer scientists, and Symmetry2018,10,321;doi:10.3390/sym10080321 www.mdpi.com/journal/symmetry Symmetry2018,10,321 2of14 many other researchers, so the area of study grew extremely and applications were found in many areas of neutrosophic logic and sets such as computational modelling [4], artificial intelligence[5],datamining[6],decisionmakingproblems[7],practicalachievements[8],andsoforth. FlorentinSmarandacheandMumtaziAliinvestigatedtheneutrosophictripletgroupandneutrosophic triplet as expansion of matter plasma, nonmatter plasma, and antimatter plasma [9,10]. By using theconceptofneutrosophictheoryVasanthaandSmarandacheintroducedneutrosophicalgebraic systemsandN-algebraicstructures[11]andthiswasthefirstneutrosoficationofalgerbraicstructures. Thecharacterizationofcancellableweakneutrosophicdupletsemi-groupsandcancellableNTGare investigated[12]in2017. FlorentinSmarandacheandMumtazAliexaminedtheapplicationsofthe neutrosophictripletfieldandneutrosophictripletring[13,14]in2017. S¸ahinMehmetandAbdullah Kargındevelopedtheneutrosophictripletnormedspaceandneutrosophictripletinnerproduct[15,16]. The neutrosophic triplet G-module and fixed point theorem for NT partial metric space are given inliterature[17,18]. Similaritymeasuresofbipolarneutrosophicsetsandsinglevaluedtriangular neutrosophic numbers and their appliance to multi-attribute group decision making investigated in[19,20]. Byutilizingdistance-basedsimilaritymeasures,refinedneutrosophichierchicalclustering methodsareachievedin[21].Singlevaluedneutrosophicsetstodealwithpatternrecognitionproblems aregivenwiththeirapplicationin[22]. Neutrosophicsoftlatticesandneutrosophicsoftexpertsetsare analyzedin[23,24]. CentroidsinglevaluedneutrosophicnumbersandtheirapplicationsinMCDM isconsideredin[25]. BalMikail,MogesMekonnenShalla,andNecatiOlgunreviewedneutrosophic tripletcosetsandquotientgroups[26]byusingtheconceptofNETin2018. Theconceptsconcerning neutrosophicsetsandneutrosophicmodulesaredescribedin[27,28],respectively. Amethodtohandle MCDMproblemsundertheSVNSsareintroducedin[29]. Bipolarneutrosophicsoftexpertsettheory anditsbasicoperationsaredefinedin[30]. Theotherpartsofapaperiscoordinatedthusly. Subsequently,throughtheliteratureanalysis inthefirstsectionandpreliminariesinthesecondsection,weinvestigatedneutro-monomorphism, neutro-epimorphism,neutro-isomorphism,andneutro-automorphisminSection3andafundamental homomorphismtheoremforNETGinSection4. Wegiveandprovethefirstneutro-isomorphism theoremforNETGinSection5,andthenthesecondneutro-isomorphismtheoremforNETGisgiven inSection6. Finally,resultsaregiveninSection7. 2. Preliminaries Inthissection,weprovidebasicdefinitions,notationsandfactswhicharesignificanttodevelop thepaper. 2.1. NeutrosophicExtendedTriplet LetUbeauniverseofdiscourse,and(N,∗)asetincludedinit,endowedwithawell-defined binarylaw∗. Definition1([3]). ThesetNiscalledaneutrosophicextendedtripletsetifforanyx∈Nthereexisteneut(x) ∈Nandeanti(x) ∈N.Thus,aneutrosophicextendedtripletisanobjectoftheform(x,eneut(x),eanti(x))where eneut(x) isextendedneutralofx,whichcanbeequalordifferentfromtheclassicalalgebraicunitaryelementif any,suchthat x∗eneut(x) = eneut(x)∗x = x andeanti(x) ∈Nistheextendedoppositeofxsuchthat x∗eanti(x) = eanti(x)∗x = eneut(x) Ingeneral,foreachx∈Ntherearemanyexistingeneut(x)(cid:48)s andeanti(x)(cid:48)s. Theorem1([11]). Let(N,∗)beacommutativeNETwithrespectto∗anda,b∈N; Symmetry2018,10,321 3of14 (i) neut(a)∗neut(b) = neut(a∗b); (ii) anti(a)∗anti(b) = anti(a∗b); Theorem2([11]). Let(N,∗)beacommutativeNETwithrespectto∗anda∈N; (i) neut(a)∗neut(a) = neut(a); (ii) anti(a)∗neut(a) = neut(a)∗anti(a) = anti(a) 2.2. NETG Definition 2 ([3]). Let (N, ∗) be a neutrosophic extended triplet set. Then (N, ∗) is called a NETG, if the followingclassicalaxiomsaresatisfied. (a) (N,∗)iswelldefined,i.e.,foranyx,y ∈ Nonehasx∗y ∈ N. (b) (N,∗)isassociative,i.e.,foranyx,y,z ∈ Nonehasx∗(y∗z) = (x∗y)∗z. Weconsider,thattheextendedneutralelementsreplacetheclassicalunitaryelementaswelltheextended oppositeelementsreplacetheinverseelementofclassicalgroup. Therefore,NETGsarenotagroupinclassical way. InthecasewhenNETGenrichesthestructureofaclassicalgroup,sincetheremaybeelementswithmore extendedopposites. 2.3. NeutrosophicExtendedTripletSubgroup Definition3([26]). GivenaNETG(N,∗),aneutrosophictripletsubsetHiscalledaneutrosophicextended tripletsubgroupofNifititselfformsaneutrosophicextendedtripletgroupunder∗. Explicitythismeans (1) Theextendedneutralelementeneut(x) liesinH. (2) Foranyx,y ∈ H,x∗y ∈ H. (3) Ifx ∈ Htheneanti(x) ∈ H. Ingeneral,wecanshowH ≤ N asx ∈ Handtheneanti(x) ∈ H, i.ex∗eanti(x) = eneut(x) ∈ H. Definition4. SupposethatNisNETGand H ,H ≤ N.H and H arecalledneutrosophictripletconjugates 1 2 1 2 ofNifn ∈ NtherebyH = nH (anti(n)). 1 2 2.4. Neutro-Homomorphism Definition 5 ([26]). Let (N , ∗) and (N , ◦) be two NETGs. A mapping f : N → N is called a 1 2 1 2 neutro-homomorphismif (a) Foranyx,y ∈ N,wehave f(x∗y) = f(x)◦ f(y) (b) If(x,neut(x),anti(x) isaneutrosophicextendedtripletfromN ,then 1 f(neut(x)) = neut(f(x)) and f(anti(x)) = anti(f(x)). Symmetry2018,10,321 4of14 Definition 6 ([26]). Let f: N →N be a neutro-homomorphism from a NETG (N , ∗) to a NETG (N , ◦). 1 2 1 2 Theneutrosophictripletimageoffis Im(f) = {f(g) : g ∈ N ,∗}. 1 Definition7([26]). Letf: N →N beaneutro-homomorphismfromaNETG(N ,∗)toaNETG(N ,◦)andB 1 2 1 2 ⊆N . Then 2 f−1(B) = {x ∈ N : f(x) ∈ B} 1 istheneutrosophictripletinverseimageofBunderf. Definition8([26]). Let f : N → N beaneutro-homomorphismfromaNETG(N ,∗)toaNETG(N ,◦). 1 2 1 2 Theneutrosophictripletkerneloffisasubset Ker(f) = {x ∈ N : f(x) = neut(x)}of N , 1 1 whereneut(x)denotestheneutralelementofN . 2 Definition9. TheneutrosophictripletkernelofφiscalledtheneutrosophictripletcenterofNETGNanditis denotedbyZ(N).Explicitly, Z(N) = {a ∈ N : ϕ = neut } a N = {a ∈ N : ab(anti(a)) = b,∀b ∈ N} = {a ∈ N : ab = ba,∀b ∈ N}. HenceZ(N)istheneutrosophictripletsetofelementsinNthatcommutewithallelementsinN.Notethat obviouslyZ(N)isaneutrosophictriplet. WehaveZ(N) = NinthecasethatNisabelian. Definition10([26]). LetNbeaNETGandH ⊆ N.∀x ∈ N,thesetxh/h ∈ Hiscalledneutrosophictriplet cosetdenotedbyxH.Analogously, Hx = hx/h ∈ H and (xH)anti(x) = (xh)anti(x)/h ∈ H. Whenh ≤ N,xHiscalledtheleftneutrosophictripletcosetofHinNcontainingx,andHxiscalledthe rightneutrosophictripletcosetofHinNcontainingx. | xH | and | Hx |areusedtodenotethenumberof elementsinxH and Hx,respectively. 2.5. NeutrosophicTripletNormalSubgroupandQuotientGroup Definition11([26]). AneutrosophicextendedtripletsubgroupHofaNETGofNiscalledaneutrosophic tripletnormalsubgroupofNifaH(anti(a)) ⊆ H,∀x ∈ NandwedenoteitasH (cid:69) N andH (cid:67) Nif H (cid:54)= N. Example1. LetNbeNETG.{neut} NandN N. (cid:1) (cid:2) Definition 12 ([26]). If N is a NETG and H N is a neutrosophic triplet normal subgroup, then the neutrosophictripletquotientgroupN/Hhaselem(cid:2)entsxH : x ∈ N,theneutrosophictripletcosetsofHinN, andoperation(xH)(yH) = (xy)H. Symmetry2018,10,321 5of14 3. Neutro-Monomorphism,Neutro-Epimorphism,Neutro-Isomorphism,Neutro-Automorphism Inthissection,wedefineneutro-monomorphism,neutro-epimorphism,neutro-isomorphism,and neutro-automorphism. Then,wegiveandsomeimportanttheoremsrelatedtothem. 3.1. Neutro-Monomorphism Definition13. Assumethat(N ,∗)and(N ,◦)betwoNETG’s. Ifamapping f : N → N ofNETGisonly 1 2 1 2 onetoone(injective)fiscalledneutro-monomorphism. Theorem3. Let(N ,∗)and(N ,◦)betwoNETG’s. ϕ : N → N isaneutro-monomorphismofNETGif 1 2 1 2 andonlyifkerϕ = {neut }. N1 Proof. Assume ϕisinjective. Ifa∈kerϕ,then ϕ(a) = neut = ϕ(neut ),∀a ∈ N N2 N1 1 andhencebyinjectivitya=neut . Conversely,assumekerϕ= ϕ(neut ). Leta,b∈N suchthat ϕ(a)= N1 N1 1 ϕ(b). Weneedtoshowthata=b. neut = ϕ(b)anti(ϕ(a)) H = ϕ(b)ϕ(anti(a)) = ϕ(b(anti(a))). Thus b(anti(a))) ∈ kerϕ, and hence, by assumption kerϕ = ϕ(neut ). We conclude that N1 b(anti(a)))= neut ,i.e., a = b. N1 Definition14. Let(N ,∗)and(N ,◦)betwoNETG’s. Ifamapping f : N → N isonlyonto(surjective)fis 1 2 1 calledneutro-epimorphism. Theorem4. LetNandHbetwoNETG’s. If ϕ : N → H isaneutro-homomorphismofNETG,thensois ϕ−1: H→N. Proof. Letx = ϕ(a),y = ϕ(b),∀a,b ∈ Nand∀x,y ∈ H.Soa = anti(ϕ(x)),b = anti(ϕ(y)).Now anti(xy) = ϕ(ϕ(a)ϕ(b)) = anti(ϕ(ab) = ab = anti(ϕ(x))anti(ϕ(y)). Theorem 5. Let N be NETG and a,b ∈ N. The map φ : N → AutN.Then,a → ϕ , is a a neutro-homomorphism. Proof. Foranyfixedn ∈ N,wehave ϕ (N) = abn(anti(ab)) = abn(anti(a))anti(b) ab = ϕ (bn(anti(b)) = ϕ ϕ (n), a a b So ϕ = ϕ ϕ ,i.e.,φ(ab) = φ(a)φ(b). ab a b Symmetry2018,10,321 6of14 It is in fact has anti-neutral element i.e., ϕ(anti(n)) = anti(ϕ ). Since ϕ anti(ϕ (a)) = n n n n(anti(n)an)anti(n) = a,andso ϕ isinjective. n Theorem 6. Let f : N → H be a neutro-homomorphism of NETG N and H. For h ∈ H and x ∈ f−1(h), f−1(h) = x ∈ kerf. Proof. (1) Let’s show that f−1(h) ⊆ x kerf. If x ∈ f−1(h), then f(x) = h and b ∈ f−1(h), then f(b) = h.If f(x) = f(y),then: anti(f(x))f(x) = anti(f(x))f(b)(bytheorem1) neut = f(anti(x))f(b)(bydefinition1) H ⇒ anti(x)b ∈ kerf. Foratleastk ∈ kerf,anti(x)b = k.Ifb = xk,then, b ∈ xkerf ⇒ f−1(h) ⊆ xkerf (1) (2) Let’sshowthatxkerf ⊆ f−1(h).Letb ∈ xkerf.Foratleastk ∈ kerf,b = xk ⇒ f(b) = f(xk) = f(x)f(k) = hneut = h H If f−1(h) = bandb ∈ f−1(h),then xkerf ⊆ f−1(h) (2) by(1)and(2),weobtainxkerf = f−1(h). Theorem7. Let ϕ : N → N beaneutro-homomorphismofNETGN andN . 1 2 1 2 (1) If H (cid:69) N , then ϕ−1(H )(cid:69) N . 2 2 2 1 (2) IfH (cid:69) N and ϕisaneutro−epimorhismthen ϕ(H )(cid:69) N . 1 1 1 2 Proof. (1) If x ∈ ϕ−1(H ) and a ∈ N , then ϕ(x) ∈ H and so 2 1 2 ϕ((ax)(anti(a)) = ϕ(a)ϕ(x)anti(ϕ(a)) ∈ H . SinceH isneutrosophictripletnormalsubgroup. 2 2 Weconcludeax(anti(a)) ∈ ϕ−1(H ). 2 (2) Since H is neutrosophic triplet normal subgroup, we have ϕ(a)ϕ(H )anti(ϕ(a)) ⊆ ϕ(H ). 1 1 1 Since we assume ϕ is surjective, every b ∈ N can be written as b = ϕ(a),a ∈ N . Therefore, 2 1 bϕ(H )anti(b) ∈ ϕ(H ). 1 1 Theorem8([26]). Let f : N → H beaneutro-homomorphismfromaNETGNtoaNETGH.Kerf (cid:67) N. Theorem9. LetNbeNETGandH N.Themap ϕ : N → N/H, n → nH, isaneutro-homomorphism withneutrosophictripletkernelker ϕ(cid:2)= H. Symmetry2018,10,321 7of14 Proof. We have ϕ(ab) = (ab)H = (aH)(bH) = ϕ(a)ϕ(a), so φ is a neutro-homomorphism. As to the neutrosophic triplet kernel, a ∈ kerϕ ⇔ ϕ(a) = H (since H is neutral in N/H) ⇔ aH = H (by definitionofφ) ⇔ a ∈ H. Theorem10. LetNbeNETGandH ⊆ Nbeanon-emptyneutrosophicextendedtripletsubset. Then H (cid:69) N, ifandonlyifthereexistsaneutro-homomorphism ϕ : N → N with H = kerϕ. 1 2 Proof. Itsstraightforward. 3.2. Neutro-Isomorphism Definition15. Let(N ,∗)and(N ,◦)betwoNETGs. Ifamapping f : N → N neutro-homomorphismis 1 2 1 2 onetooneandontofiscalledneutro-isomorphism. Here,N andN arecalledneutro-isomorphicanddenoted 1 2 ∼ asN = N . 1 2 Theorem11. Let(N ,∗)and(N ,◦)betwoNETG’s. If f : N → N isaneutro-isomorphismofNETG’s, 1 2 1 2 thensois f−1 : N → N . 2 1 Proof. It is obvious to show that f is one to one and onto. Now let’s show that f is neutro-homomorphism. Let x = ϕ(a),y = ϕ(b),∀a,b ∈ N ,∀x,y ∈ N andso, a = anti(ϕ(x)),b = 1 2 anti(ϕ(y)).Nowanti(xy) = anti(ϕ(ϕ(a)ϕ(b)))= anti(ϕ(ϕ(ab))) = ab = anti(ϕ(x))anti(ϕ(y)). 3.3. Neutro-Automorphism. Definition16. Let(N ,∗)and(N ,◦)betwoNETG’S.Ifamapping f : N → N isonetooneandontofis 1 2 1 2 calledneutro-automorphism. Definition17. LetNbeNETG. ϕ ∈ AutN iscalledaneutro-innerautomorphismifthereisan ∈ N such that ϕ = ϕ . n Proposition 1. Let N be a NETG. For a ∈ N, f : N → N such that x → ax(anti(a) is a a neutro-automorphism(AutN). Proof. (1) ∀x,y ∈ N,wehavetoshowthat f(x) = f(y) ⇒ x = y.ax(anti(a)) = ay(anti(a))⇒ ax(anti(a))a = ay(anti(a))a ⇒ ax(neut(a))= ay(neut(a)) ⇒ ax = ay ⇒ anti(a)ax = anti(a)ay⇒ neut(a)x = neut(a)y ⇒ x = y. Therefore,f isonetoone. (2) ∀x,y ∈ N,wehavetoshowthat f(x) = ax(anti(a)) = y.ax(anti(a))a = ya⇒ ax(neut(a)) = ya ⇒ ax = ya ⇒ anti(a)ax = anti(a)ya⇒ neut(a)x = anti(a)ya ⇒ x = anti(a)ya. So,f isonto. Therefore,f isaneutro-automorphism. a Symmetry2018,10,321 8of14 Lemma1. LetabeanelementofNETGNsuchthata2 = a.Thena = neut(a). Proof. Wehave = (anti(a)∗a)∗aforanti(a) ∈ N (antiaxiom) = anti(a)∗a2 (associativityaxiom) = anti(a)∗a(byassumption) = neut(a)(bydefinitionofanti) Theorem 12. Let N be NETG and H ,H ≤ N. Then the neutrosophic extended triplet set H H = 1 2 1 2 {ab : a ∈ H ,b ∈ H }isaneutrosophicextendedtripletsubgroupinthecasethatH H = H H . 1 2 1 2 2 1 Symmetry 2018, 10, x 9 of 15 Proof. SupposeH H isaneutrosophicextendedtripletsubgroup. Then,foralla ∈ H ,b ∈ H ,we 1 2 1 2 haveaa∈ntHi(a,) abn∈ti(Hb) ∈ Hth1eHre2,biy.e .,Ha2nHti1(⊆h)H 1=H 2a.bB,ut aalsnodf orthhe∈n H1hH 2=w eafinntid(ba)∈aHnt1i,(ba∈)∈H2HthHere.by So anti(h) =1ab,andt2henh = anti(b)anti(a) ∈ H H .So H H ⊆ H H ,that’s, H H = H H .O2n1the otheHr1hHan2d⊆, aHss2uHm1e, tthhaatt’sH, 1HH21H=2H=2 HH12.HTh1.e nO2∀na 1,thae(cid:48) ∈othH1e1r, 2bh,abn(cid:48)d∈,2 aHs12suwmeeh tahvaet 1aHb2a1(cid:48)Hb(cid:48)2∈=2a HH122HH11b.(cid:48) =Then aH1∀Ha2b,(cid:48) a='∈HH1H,2 b.,F ubr't∈heHrmor ew,e∀ ah∈avHe 1,bab∈a'Hb'2∈waeHhaHveba' n=ti( aabH) =Habn't i=(b) HantHi(a.) ∈ FuHr2thHe1rm=ore, 1 2 2 1 1 2 1 2 H1H∀2a. ∈H , b∈H we have anti(ab) = anti(b)anti(a)∈H H = H H . □ 1 2 2 1 1 2 4. Fundamental Theorem of Neutro-Homomorphism 4. FundamentalTheoremofNeutro-Homomorphism The fundamental theorem of neutro-homomorphism relates the structure of two objects Thefundamentaltheoremofneutro-homomorphismrelatesthestructureoftwoobjectsbetween between which a neutrosophic kernel and image of the neutro-homomorphism is given. It is also whichaneutrosophickernelandimageoftheneutro-homomorphismisgiven. Itisalsosignificant significant to prove neutro-isomorphism theorems. In this section, we give and prove the toproveneutro-isomorphismtheorems. Inthissection,wegiveandprovethefundamentaltheorem fundamental theorem of neutro-homomorphism. Then, we discuss a few special cases. Finally, we of neutro-homomorphism. Then, we discuss a few special cases. Finally, we give examples by give examples by using NETG. usingNETG. TheTohreemore1m3. L1e3t. NL1,etN 2Nb1e, NNE2T Gb’es aNndETφG:’sN 1a→nd Nφ2 b:e aNn1e→utroN-h2om boem oar phniesumtr.oT-hhoemno,mNo1r/pkheirsm(φ. ) T∼=hen, im(φN).F/ukretrhe(rφm)o≌reiifmϕ(iφs)n.e uFturor-tehpeirmmoorrpeh iifs mϕ ,isth neenutro-epimorphism, then 1 ∼ NN1//kkeerrϕφ ≌= NN.2 . 1 2 N ϕ im(ϕ) 1 φ i N /ker(ϕ) 1 Proof. We will construct an explicit map i : N /ker(φ)→im(φ) and prove that it is a 1 Pronoef.utWroe-isowmillorpchonissmtr uacntd awnelle dxpefliicnietd.m Sainpce ik:erN(ϕ1/) kise rn(φeu)t→rosiomp(hφi)c trainpdlet pnroorvmeal tshuabtgritouips ofa N1. neuLtreot -isomoKrp=hiskmera(φnd),well d aenfidn ed. Srinecceallk er(ϕ)tihsant eutrosoNph/icKt ri=pl e{tanKor m: aal∈suNbg}ro.up of DNe1f.ine 1 1 LetiK := Nker/(φK),→andimre(cφal)l,th ia t:N n1/KK→=φ{a(Kn):,a n∈∈N1N}..D Tefhinues, iw:eN n1/eeKd→ to icmh(eφck), tih:en fKol→lowφi(nng) ,cnon∈dNit1io.ns. Thus,wen1eedtocheckthefollowingconditions. 1 (1) i is well defined (1) iiswelldefined (2) i is injective (2) iisinjective (3) i is surjective (3) iissurjective (4) i is a neutro-homomorphism (4) iisaneutro-homomorphism (1) We must show that if aK = bK, then i(aK) = (bK). Suppose aK = bK. We have aK = bK anti(b)aK = K anti(b)a∈K. Here, neut = φ(anti(b)a) = φ(anti(b) φ(a) (n2) = anti(φ(b)) φ(a)φ(a) = φ(b). Hence, i(aK) = φ(a) = φ(b) = i(bK). Therefore, it is well defined. i(aK) = i(bK)aK = bK. i(aK) = i(bK). (2) We must show that Suppose that Then i(aK) = i(bK)aK = bK. φ(anti(b)) φ(a) = neut φ(anti(b)a) = neut anti(b)a∈K (n2) (n2) anti(b)aK = K (aN = N ⇔a∈N ). 2 2 2 Thus, i is injective. (3) We must show that for any element in the domain (N1/K) gets mapped to it by i. let’s pick any element φ(a)∈im(φ). By definition, i(aK) = φ(a), hence i is surjective. Symmetry 2018, 10, x 9 of 15 a∈H , b∈H thereby anti(h) = ab, and then h = anti(b)anti(a)∈H H . So 1 2 2 1 H H ⊆ H H , that’s, H H = H H . On the other hand, assume that H H = H H . Then 1 2 2 1 1 2 2 1 1 2 2 1 ∀a, a'∈H , b, b'∈H we have aba'b'∈aH H b' = aH H b' = H H . Furthermore, 1 2 2 1 1 2 1 2 ∀a∈H , b∈H we have anti(ab) = anti(b)anti(a)∈H H = H H . □ 1 2 2 1 1 2 4. Fundamental Theorem of Neutro-Homomorphism The fundamental theorem of neutro-homomorphism relates the structure of two objects between which a neutrosophic kernel and image of the neutro-homomorphism is given. It is also significant to prove neutro-isomorphism theorems. In this section, we give and prove the fundamental theorem of neutro-homomorphism. Then, we discuss a few special cases. Finally, we give examples by using NETG. Theorem 13. Let N1, N2 be NETG’s and φ : N1 → N2 be a neutro-homomorphism. Then, N /ker(φ)≌im(φ). Furthermore if ϕ is neutro-epimorphism, then 1 N /kerϕ ≌ N . 1 2 N ϕ im(ϕ) 1 φ i N /ker(ϕ) 1 Proof. We will construct an explicit map i : N /ker(φ)→im(φ) and prove that it is a 1 neutro-isomorphism and well defined. Since ker(ϕ) is neutrosophic triplet normal subgroup of N1. Let K =ker(φ), and recall that N /K = {aK : a∈N }. Define 1 1 i : N /K →im(φ), i : nK →φ(n), n∈N . Thus, we need to check the following conditions. 1 1 (1) i is well defined (2) i is injective (3) i is surjective (4) i is a neutro-homomorphism (1) We must show that if aK = bK, then i(aK) = (bK). Suppose aK = bK. We have Symmetry2018,10,321 9of14 aK = bK anti(b)aK = K anti(b)a∈K. (1) We mHuestre,s how that if aK = bK, then i(aK) =ne(ubtK). =Su pφp(oasnetia(Kb)a=) =bK .φ(Waentih(abv)e φ(a) (n2) aK = b=K a⇒ntain(φti((bb))a)K φ=(aK)⇒aφnt(ia(b)) a=∈ Kφ.(bH)e.re, Hneeuntc(en,2 ) =i(aφK(a)n ti=(b )φa)(a=) =φ( aφn(tbi()b )φ=(a i)(bK). = anti(φ(b))φ(a) ⇒ φ(a) = φ(b). Hence, i(aK) = φ(a) = φ(b) = i(bK). Therefore, it is welldTefihnereedf.ore, it is well defined. (2) Wemustshowthat i(aK) =i(ia(bKK)) ⇒= aiK(b=Kb)K. SaupKp o=se bthKat.i(aK) =i(bK).Tih(aenK) = i(bK). (2) We must show that Suppose that Then i(aK) = i(bK)aK = bK. φ(anti(b)) φ(a) = neut φ(anti(b)a) = neut anti(b)a∈K (n2) (n2) anti(b)aK = K (aN = N ⇔a∈N ). 2 2 2 Thus,Tiihsuisn,j ei cisti vinej.ective. (3) W(3e)m uWste smhouwst tshhaotwfo trhaant yfoerl eamnye netleinmtehnet dino mthaei ndo(Nma/inK )(Nge1/tKs)m gaeptsp emdatpopietdb ytoi .itl ebty’s ip. ilcekt’sa npyick any elemenelteφm(ean)t∈ φim(a(φ))∈.Bimyd(φefi)n.i tBioyn d,ei(fainKi)tio=n,φ i((aa),Khe)n 1c=e iφis(sau)r,je chteivnec.e i is surjective. (4) We must show that i(aKbK) = i(aK)i(bK).i(aKbK) = i(abK)(aKbK = abK) = φ(ab) = φ (a)φ(b) =i(aKbK) =i(aK)i(bK).Thus,iisaneutro-homomorphism. Insummary,since i : N /K →im(φ) isawell-definedneutro-homomorphismthatisinjective 1 and surjective. Therefore, it is a neutro-isomorphism. i.e.,N /K ∼= im(φ), and the fundamental 1 theoremofneutro-homomorphismisproven. Corollary1(AFewSpecialCasesofFundamentalTheoremofNeutro-homomorphism). • LetN=(1,1,1)beatrivialneutrosophicextendedtriplet.Ifϕ:N →N isanembedding,thenneutrosophic 1 2 ∼ ∼ ker(ϕ)={neut(1)=1N }. TheTheorem12saysthatim(ϕ)={N /1N }=N . 1 1 1 1 • If ϕ: N →N isamap ϕ(n)=neut(1)=1N foralln ∈N ,thenneutrosophicker(ϕ)=N ,soTheorem 1 2 2 2 1 1 ∼ 13saysthat1N =im(ϕ)=N /N . 2 1 1 Example2. TheneutrosophicextendedtripletalternatinggroupA (theneutrosophicextendedtripletsubgroup n ofevenpermutationinNETGS )hasindex2inS . n n Solution. Toprovethat[S :A ]=2. Wewillconstructasurjectiveneutro-homomorphismφ: S →Z with n n n 2 neutrosophictripletkerφ = A . HeretheneutrosophicextendedtripletsofZ are(0,0,0)and(1,1,1). Ifthis n 2 ∼ isachieved,itwouldfollowthatS /A = Z ,so|S /A |=|Z |=2,andtherefore[S :A ]=|S /A |=2, n n 2 n n 2 n n n n (cid:40) [0]if f iseven asdesired. Defineφ: S →Z byφ(f)= n 2 [1]if f isodd Byconstructionφissurjective. Toprovethatφisaneutro-homomorphismweneedtoshowthat φ(x)+φ(y)=φ(xy),∀x,y∈S . Hereifxandyarebothevenorbothodd,thenxyiseven. Ifxiseven n andyisodd,orifxisoddandyiseven,thenxyisodd. Letusseethesefourdifferentcasesasfollows: (1) x and y are both even. Then xy is also even. So, φ(x) = φ(y) = φ(xy) = [0]. Since [0] + [0] = [0]holds. (2) xiseven,andyisodd. Thenxyisodd. So,φ(x)+φ(y)=[0]+[1]=[1]=φ(xy). (3) xisodd,andyiseven. Thiscaseisanalogoustocase2. (4) xandyarebothodd. Thenxyiseven,soφ(x)+φ(y)=[1]+[1]=[0]=φ(xy). Thus,weverified thatφisaneutro-homomorphism. Finally,neutrosophictrpletkerφ={x∈S : φ(x)=[0] }isthe n 2 neutrosophicextendedtripletsetofallevenpermutations,soneutrosophictrietkerϕ = A . n Symmetry2018,10,321 10of14 5. FirstNeutro-IsomorphismTheorem Thefirstneutro-isomorphismtheoremrelatestwoneutrosophictripletquotientgroupsinvolving productsandintersectionsofneutrosophicextendedtripletsubgroups. Inthissection,wegiveand provethefirstneutro-isomorphismtheorem. Finally,wegiveanexamplebyusingNETG. Theorem 14. Let N be NETG and H, K be two neutrosophic extended triplet subgroup of N and H is a neutrosophictripletnormalinK.Then (a) HKisneutrosophictripletsubgroupofN. (cid:84) (b) H KisneutrosophictripletnormalsubgroupinK. (c) HHK ∼= HK(cid:84)K Proof. (a) Letxy ∈ HK.Ifx = h k andy = h k ,h h ∈ Handk ,k ∈ K.Consider 1 1 2 2 1 2 1 2 x(anti(y)) = (h k ) anti(h k ) 1 1 2 2 = (h k )anti(k )anti(h ) 1 1 2 2 = h (k (anti(k )))anti(h ),(k = k (anti(k2)) : k ∈ K 1 1 2 2 3 1 3 = h k (anti(h )) 1 3 2 = h k (anti(h ))anti(k )k 1 3 2 3 3 = h k (anti(h ))anti(k )k 1 3 2 3 3 = h h k because H (cid:67)ksoh = k (anti(h ))anti(k ) ∈ H 1 2 3 3 3 2 3 ⇒ x(anti(y) = h k ∈ HK,(h = h h ) 4 3 4 1 2 ⇒ HKisNETGofN. (b) WehavetoproveH∩KisneutrosophictripletnormalsubgroupinkorH∩K (cid:67)k.Letx ∈ H∩K andx ∈ K.Ifx ∈ Handx ∈ K,thenkx(anti(k)) ∈ HbecauseH (cid:67)kandkx(anti(k)) ∈ Kbecause xk ∈ K.Thus,kx(anti(k)) ∈ H∩K.SinceH∩K (cid:67)k. (c) HHK ∼= HK(cid:84)K. LetH(cid:84)K=D,so DK = HK(cid:84)K. Nowlet’sdefineamappingϕ: HK→DK byφ(hk) = KD. 1. ϕiswelldefined h k = h k ,h h ∈ Handk k ∈ K 1 1 2 2 1 2 1 2 k h(cid:48) = k h(cid:48) 1 1 2 2 ⇒ anti(k )k h(cid:48) = h(cid:48) 2 1 1 2 ⇒ anti(k )k = h(cid:48)(anti(h )),h(cid:48)(anti(h )) ∈ H 2 1 2 1 2 1 ⇒ anti(k )k ∈ H, butanti(k )k ∈ K 2 1 2 1 ⇒ anti(k )k ∈ H∩K = D 2 1 ⇒ anti(k )k ∈ D 2 1 ⇒ anti(k )k D = D 2 1 ⇒ k D = k D 1 2 ⇒ φ(h k ) = φ(h k ). 1 1 2 2 2. ϕisneutro-homomorphism. Φ(h k .h k ) = φ(h (k h )k 1 1 2 2 1 1 2 2 = φ(h h2(cid:48)k k ) 1 1 2 = K k D 1 2 = k Dk D 1 2 = φ(h k ).φ(h k ) 1 1 2 2 3. ϕisonto.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.