ebook img

Fundamental high pressure calibration from all-electron quantum Monte Carlo calculations PDF

1.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fundamental high pressure calibration from all-electron quantum Monte Carlo calculations

Fundamental highpressure calibrationfrom all-electronquantum MonteCarlo calculations K. P. Esler,1,2 R. E. Cohen,1 B. Militzer,3 Jeongnim Kim,2 R.J. Needs,4 and M.D. Towler4 1Carnegie Institution of Washington, Geophysical Laboratory 2University of Illinois at Urbana-Champaign, NCSA∗ 3Universityof California, Berkeley, Dept. of Earthand PlanetaryScience and of Astronomy 4TheoryofCondensed MatterGroup, CavendishLaboratory, Cambridge CB30HE,UnitedKingdom (Dated:January13,2010) Wedevelopanall-electronquantumMonteCarlo(QMC)methodforsolidsthatdoesnotrelyonpseudopo- 0 tentials, and use it toconstruct a primaryultra-high pressure calibration based theequation of stateof cubic 1 boronnitride(c-BN).WecomputethestaticcontributiontothefreeenergywithQMC,andobtainthephonon 0 contributionfromdensityfunctionaltheory,yieldingahigh-accuracycalibrationupto900GPausabledirectly 2 inexperiment. Furthermore, wecompute theanharmonic Ramanfrequency shiftwithQMCasafunctionof n pressureandtemperature,allowingopticalpressurecalibrationintable-topexperiments. Incontrasttopresent a experimentalapproaches,smallsystematicerrorsinthetheoreticalEOSdonotincreasewithpressure,andno J extrapolationisneeded. Thisall-electronmethodology isgenerallyapplicabletofirst-rowsolids, andcanbe 3 usedtoprovideanewreferenceforabinitiocalculationsofsolidsandtobenchmarkpseudopotentialaccuracy. 1 PACSnumbers:64.30.Jk,81.05.Je,02.70.Ss,63.20.dk ] i c s Althoughthe numberofstudiesofmaterialsusingdensity ulus, in conjunctionwith X-ray diffraction measurementsof - functional theory (DFT) continues to grow explosively, the volume, can be integrated to provide an EOS, but a correc- l r accuracyoftheirpredictionsisvariable,sometimesexcellent tionmustbemadetotransferfromanadiabatictoanisother- t m and sometimes poor, limiting the confidence one may place malpath[3]. Newapproachessuchasquasi-adiabaticZ-pinch . in DFT results as a quantitative calibration for experimen- based experiments[4, 5] also hold future promise for a pri- t a tal studies. Quantum Monte Carlo (QMC), particularly dif- mary scale. There have been attempts to refine the ruby m fusion Monte Carlo (DMC), is the highest-accuracy method scale[6], and new calibrations have also been suggested[3]. - forfindingthe groundstate ofa many-electronHamiltonian. Cubicboronnitride(c-BN)hasbeenidentifiedasapromising d ForsolidswithatomsheavierthanHe,however,theHamilto- materialfora newscale[7]. InthisLetter, we providea new n nianitselfisapproximatedusingpseudopotentials(PPs)based pressurescalebasedonDMCcalculationsoftheEOSandRa- o c onalower-accuracytheory,limitingitsreliability,andaswe manfrequencyofc-BN.Thistheoreticalapproachhasthead- [ show,commonlyusedPPsgivedisparateresults. InthisLet- vantagethat, in contrastto presentexperimentalapproaches, ter, we pushthe state ofthe artin accuracyby introducinga the methodworksequallywellunderhighcompression,and 1 v method for an all-electron DMC simulation of solids, elimi- uncertaintydoesnotgrowwithpressure. 9 natingthebiasfrompseudopotentials,andapplyittocreatea PressureisthenegativevolumederivativeoftheHelmholtz 7 high-accuracypressurecalibrationscale. 0 free energy. In a wide-gap insulator such as c-BN, the free 2 The combination of ultra-high pressure mineralogy with energycanbewrittenasasumofthefrozenlatticeenthalpy, . seismology has yielded a wealth of insight into the internal dependentonlyonvolume,andaphononthermalfreeenergy, 1 0 structure of our planet. Pressure is the key that links these which depends on both volume and temperature. Since the 0 disciplines,mappingphasetransitionsandmineralproperties static enthalpy is the dominantcontributionat ordinarytem- 1 to planetary depth. Establishing an absolute pressure cali- peratures, errors in a theoretical EOS can most often be at- : v bration at multi-megabarpressures, however, poses a funda- tributed to the static part. Previous calculations of the EOS i mentalandcontinuingproblemforhigh-pressureexperiment. ofc-BNhavebeenbasedonDFT[7],whichuseapproximate X Current primary calibrations are based on data from shock- functionalstotreatelectronexchangeandcorrelation.Several r a waveexperiments,whichinferpressurefromconservationof functionalsareincommonuse,eachgivingrisetoadifferent momentumandenergyastheshocktraversesthesample.Ex- EOS,andthereis noa prioriway to predictwhichwillgive perimentaluncertainty,combinedwitherrorsinmodelextrap- themostreliableresult. olation,yieldscaleswhichdifferfromeachotherbyasmuch QuantumMonte Carlo simulationmethodsexplicitly treat to7%atroomtemperature,withevengreaterdiscrepanciesat electron exchangeand correlationinstead of resorting to ap- hightemperature[1]. Suchdisparityremainsaseriousobsta- proximatefunctionals. VariationalMonteCarlo(VMC)com- cletoaquantitativeunderstandingofEarth’sinterior. putespropertiesbyaMetropolissamplingofatrialwavefunc- Apressurecalibrantisamaterialwithaknownequationof tion. DiffusionMonteCarlo samplesthe many-bodyground state(EOS),asmallsampleofwhichmaybeincludedinhy- state of the Hamiltonian through a stochastic projection of drostaticequilibriumwith the test subject(e.g. ruby[2]). As the trial function. In practice, a fixed node approximationis an alternative to shock experiments, high-pressure Brillouin usedforfermions,suchaselectrons,whichtestshaveshown scattering, which provides a measurement of the bulk mod- giverelativelysmallerrorwhenthe nodesare obtainedfrom 2 high-qualityDFT orbitalsfor electronicallysimple materials (a)Parametersfor300KEOS suchasc-BN.DMCforsolidshasbeendemonstratedtogive Source PP/AEatoms V0(A˚3) B0(GPa) B0′ (nondim.) significantly more accurate cohesive energies[8], equations Trail-NeedsPP+AE 64/8 11.792(18) 381(6) 3.87(6) ofstateandRamanfrequencies[9], andphasetransitions[10] OPIUMGGAPP+AE 64/8 11.769(17) 385(6) 3.86(6) than DFT. We have used both the CASINO QMC software BFDHFPP+AE 64/8 11.781(20) 382(7) 3.87(7) suite[11]andQMCPACK[12]. BFDHFPP+AE 128/16 11.812(8) 378(3) 3.87(3) QMCsimulationsofsolidsarecurrentlyperformedwithin Datchietal.[24] 11.8124 395(2) 3.62(5) the pseudopotential (PP) approximation, in which the core Goncharovetal. 11.817(32) 387(4) 3.06(15) electronsareeliminatedandtheireffectreplacedbyanonlo- calpotentialoperator[8]. SincePPsarepresentlyconstructed (b)Parametersforthermalpressure with a lower-accuracy theory, such as Hartree-Fock (HF) or DFT,thisreplacementrepresentsanuncontrolledapproxima- θn0(KA˚−3n) αn(K−1A˚−3n) βn(KA˚−3n) n=0 4.836656×103 2.598608×10−3 -4.869563×103 tion. To eliminate this error, we develop a method for all- n=1 -6.929704×101 -1.200504×10−4 1.763443×102 electron(AE)QMCsimulationsofsolidsinQMCPACKusing n=2 4.634278×10−1 2.789128×10−6 -2.186053×100 trialwavefunctionsderivedfromfull-potentiallinearizedaug- n=3 -1.273468×10−3 -2.008994×10−8 9.303181×10−3 mented plane wave (FP-LAPW) calculations using the EX- CITING code[13]. Space is divided into spherical muffin (c)ParametersforRamancalibration tin regions around the nuclei, and an interstitial region. Or- bitalsarerepresentedinsidethemuffintinsasaproductofra- c0(cm−1) c1(cm−1) c2(K) b R0(GPa) R1(GPa) R2(GPa) dialfunctionsandsphericalharmonics,andoutsideasplane- 1055.9 -144.24 1497.8 3.0155 349.87 1849.4 112.33 waves. Toensurethatawavefunctionsatisfiesthevariational principle,itmustbebothcontinuousandsmooth.Weutilizea TABLEI:Parametersforthec-BNEOSandRamancalibration. super-LAPWformalismthatenforcescontinuityandsmooth- ness atthe muffin tin boundary. For efficiency, we represent theorbitalsas3DB-splinesintheintersticesandtheproduct Wecomputethefreeenergyforourc-BNsystemattwelve ofradialsplinesandsphericalharmonicsinthemuffintins. unit-cellvolumes, spanningvolumecompressionratiosfrom Since AE QMC simulations are computationally expen- 0.84 to 2.0, corresponding to pressures of about -50 GPa to sive,weperformthesesimulationsin8-atomcubicsupercells. 900GPa. Whileitisnotfullycertainthatthecubicphaseof Simulation cells this small would typically have significant BNisstableto900GPa,nootherstructurehasbeenobserved, finite-sizeerrors.Weeliminatetheseerrorsbycombiningdata andtheoreticalstudieshavenotidentifiedanytransitionsbe- fromAEsimulationswiththatfromPPsimulationsperformed low 1 TPa[22]. We use the Vinet form[23] for the isother- inboth8-atomand64-atomsupercells. Thus,weareableto malEOS,whichwefindrepresentsourfree-energydatavery simultaneouslyeliminatesystematicerrorsfrompseudpoten- well, yielding the bulk modulus, B0, its pressure derivative, tials and from finite-size effects. The corrected static-lattice B0′,andtheequilibirumvolume,V0 (TableI(a)). Thestatisti- energyisgivenateachvolumeas calerrorbarsforeachdatapointaredirectlydeterminedfrom ourQMCdata.Wecomputestatisticalconfidenceranges,tak- E =EPP+ EAE EPP +∆MPC+∆kinetic, (1) ing into account parameter cross-correlations with a simple 64 8 8 64 64 − MonteCarloprocedure. where the term in(cid:2)brackets re(cid:3)moves the psuedopotential Figure 1 shows the EOS of c-BN at 300 K, with experi- bias. ∆MPC and ∆kinetic are, respectively, potential[14] and mentaldatafromDatchietal.[24]andGoncharovetal.[7],as 64 64 kinetic[15] corrections for finite-size errors. We perform wellasthepresentworkfromsimulationswiththreedifferent this procedure with three different PP sets commonly used PPs. The residuals in (c) are derived from DMC simulation in QMC: HF PPs from Trail and Needs (TN)[16, 17]; HF with PPs alone, while those in (b) combine all-electron and PPs fromBurkatzki, Filippi, andDolg(BFD)[18]; andDFT- PP data. There is significant discrepancy between the theo- GGA[19] PPs generated with OPIUM (WC)[20]. Perform- reticalcurvesin(c),suggestingthatPPsimulationalonedoes ing the same procedure with 128-atom PP simulations and notprovidesufficientaccuracy.OncethePPdataiscombined 16-atomAE simulationsyieldsstatistically indistinguishable with AE data, as in (b), all the theoretical curves come into results, demonstratingthatfinite-size errorsare convergedat goodagreement. OurtheoreticalEOSagreesreasonablywith thissize. Additionalmethodologicaldetailsandthefinite-size thatinRefs. [24]and[7]withintheexperimentallymeasured datacanbefoundinEPAPSdocumentNo. #. pressurerange,buttheexperimentalextrapolationshowssig- To compute the phonon free energy, we use density nificantdeviationathighpressure. functional perturbation theory (DFPT) in the QUANTUM Wemaywritethethermalequationofstateintheform ESPRESSO package[21] with the Wu-Cohen functionaland P(V,T)=P300K(V)+Pth(V,T) Pth(V,T =300), (2) the OPIUM PPs. The phonon density of states, from which − wederivethermodynamicdata,isusuallyverywell-described whereP300K is the room-temperaturecontribution,fitto the withDFT. Vinet form. The phonon contribution is written in an aug- 3 (a)CorrectedEOS (b)Correctedpressureresiduals (c)Uncorrectedpressureresiduals FIG.1:Thec-BNEOSat300K,computedwithDMC,comparedtoexperiment.WeplotthefullEOSandthepressureresidualswithrespect toDMCwiththeBFDPP.(a)givesthecorrectedEOSresultingfromcombiningtheEOSandPPdata,while(b)givesthepressureresiduals for the same data. (c) gives the uncorrected pressure residuals from the PP simulations only. Shaded areas represent the one-σ statistical confidenceregionfromQMCdata. mentedDebyemodel, temperature. The matrix element for the transition from n ton 1isproportionalto√n andisthermallyweightedby ∂F (θ,T) ∂θ − P (V,T) = D (3) theBoltzmannoccupationofstaten,sotheintensity-averaged th − ∂θ ∂V frequency, ν ,canbegivenas 0 h i θ(V,T) = θ (V)+β(V)exp( α(V)T) (4) x(V) = x0+x1V+x2V2+x−3V3, x∈{θ0,α,β}(5) ν = ∞n=1I∞nEn−hEcn−1, where In =ne−kEBnT. (7) h i I P n=1 n in which the Debye temperature, θ, is a function of both V andT (TableI(b)). TheDebyefreeenergypertwo-atomcell, The excess thePrmal softening, i.e. beyondthat fromthermal excludingthezero-pointterm,isgivenby expansion alone, is accounted for by the thermal average of the anharmonic frequencies. Figure 2 shows the computed θ θ 3 Tθ x3 Raman frequenciescomparedwith the experimentaldata re- FD =6kBT "ln(cid:16)1−eT(cid:17)−(cid:18)T(cid:19) Z0 ex−1dx#. (6) poBrteodthinRRefesf.s.[[2255]–a2n7d].[26] give a ruby-like calibration for- c-BN can be used to calibrate pressure optically by mea- mula,whichcanbeexpressedas suring the frequencyshift of the TO Raman mode, allowing bench-topexperiments.Wecomputethepressureandtemper- P =(R/b) (ν/ν¯)b 1 , (8) − aturedependenceofthisfrequency.Withinthequasiharmonic (cid:2) (cid:3) approximation,phononfrequencieshaveexplicitdependence where R, ν¯, and b have quadratic T-dependence. This de- pendenceissufficientbelow2000K,butcannotrepresentour onvolumeonly.Atconstantpressure,however,thesefrequen- data at high temperature. We use a form which capturesthe cies have an implicit temperaturedependenceresulting from Boltzmannoccupationofphononexcitations, thermal expansion. The dependence due to thermal expan- sion accounts for only about half the total T-dependenceof ν2(P) theRaman mode,asobservedin [25] and[26]. Theremain- ν(P,T) = ν0(P)+ν1(P)exp (9) − T ingT-dependencecanbeattributedtosignificantanharmonic (cid:20) (cid:21) effectsinc-BN,andisincludedinourcalculations. bP 1/b ν (P) = c +1 , n=1,2,3 (10) Sincetheopticalbranchhassmalldispersion,we treatthe n n R anharmonicityasaone-dimensionalon-siteanharmonicoscil- (cid:20) n (cid:21) lator,inasimilarapproachtotheQMCcomputationoftheTO withparametersinTableI(c)andplottedinFigure2(a). Note Raman frequencyof diamond[9]. At each volume, we com- that this formula cannot be analytically inverted, but a very pute the effective Born-Oppenheimer potential well for the simple iterative solutioncan be used for calibratingpressure TO modewith DMC and the BFD PP at nine displacements fromν andT. alongthe modeeigenvectorin the 64-atomsupercell. We fit The main axis of Figure 2(b) gives the room-temperature thedatatoaquarticpolynomial,andnumericallysolvethe1D Raman frequencyversus pressure. There is good agreement Schro¨dingerequationinthisanalyticpotential.Thisresultsin intherelativelylow-pressureregioninwhichtheRamanfre- asetofsingle-phononenergylevels, E ,withnonuniform quency was measured. At very high pressure, the deviation n { } separation. From E , we compute an intensity-weighted withrespecttotheextrapolationin[25]increaseswithamax- n average Raman fre{quen}cy, ν¯, as a function of pressure and imum discrepancy of 38 cm−1 or, conversely, a deviation in 4 andcan be used to cross-calibratescales based on otherma- terials. Sincetheaccuracyofourmethodsshouldnotdepend oncompression,ourcalibrationcanbeusedupto900GPa. ThisworkwassupportedundertheNationalScienceFoun- dationGrantEAR-0530282. Thisresearchusedresourcesof theNationalCenterforComputationalSciencesandtheCen- ter for Nanophase Materials Sciences, which are sponsored by the U.S. Department of Energy. This work was partially supportedbytheNationalCenterforSupercomputingAppli- cationsunderMCA07S016andutilizedtheAbeandLincoln (a)FittopresenttheoryforRamanshift. clusters. We thank Alexander Goncharov, F. Mauri and M. Lazzeriforhelpfulsuggestionsanddiscussions. ∗ Electronicaddress:[email protected] [1] YingweiFeietal.,PNAS104,9182(2007). [2] H.K. Mao, J. Xu, and P.M. Bell, J. Geophys. Res. 91, 4573 (1986). [3] Chang-Sheng Zha, Ho-kwang Mao, and Russell J. Hemley, PNAS97,13494(2000). [4] J.R.Asayaetal.,Int.J.ofImpactEngineering23,27(1999). [5] J.RemoandM.Furnish,Int.J.ofImpactEngineering35,1516 (2008). [6] W.B.Holzapfel,HighPressureResearch25,87(2005). [7] AlexanderF.Goncharovetal,Phys.Rev.B75,224114(2007). [8] W.M.C.Foulkes,L.Mitas,R.J.Needs,andG.Rajagopal,Rev. (b)ComparisonofRamanexperimentandtheory. Mod.Phys.73,33(2001). [9] RyoMaezono,A.Ma,M.D.Towler,andR.J.Needs,Phys.Rev. FIG.2: TORamanfrequencyofc-BNasafunctionoftemperature Lett.98,025701(2007). and pressure. (a) gives compares our theoretical Raman frequency [10] J.KolorencˇandL.Mitas,Phys.Rev.Lett.101,185502(2008). withthefittedforminEqs.9and10. (b)comparesour calibration [11] R.J.Needs,M.D.Towler,N.D.Drummond,andP.L.Rios,J. at300Kwiththeexperimentalresultsfrom[25]and[26].Theblack Phys.:CondensedMatter22,023201(2010). dotswitherrorbarsaretheQMC frequencies, whilethebluesolid [12] JeongnimKim,K.Esler,J.McMinis, B.Clark, J.Gergely,S. line gives the fit. The lower inset gives an expanded view at low Chiesa,K.Delaney,J.Vincent,andD.Ceperley. pressure,inwhichtheshadedregiongivesthestatisticalconfidence [13] J. K. Dewhurst et al., The EXCITING FP-LAPW code, region.Theupperinsetgivesthevariationwithtemperature. http://exciting.sourceforge.net. [14] A.J.Williamsonetal.,Phys.Rev.B55,R4851(1997). [15] S. Chiesa, D.M. Ceperley, R.M. Martin, and M. Holzmann, the pressure calibration of 50 GPa at 900 GPa. The devia- Phys.Rev.Letts.97,076404(2006). tions with respect to [26] are 70 cm−1 and 120 GPa. The [16] J.R.TrailandR.J.Needs,J.Chem.Phys.122,174109(2005). experimentalparameterscapturethecorrectqualitativehigh- [17] J.R.TrailandR.J.Needs,J.Chem.Phys.122,014112(2005). pressurebehaviorupto900GPa,despitethefactthatdatawas [18] M. Burkatzki, C. Filippi, and M. Dolg, J. Chem. Phys. 126, availableonlyto 20 and64GPa, respectively. Thissuggests 234105(2007). [19] ZhigangWuandR.E.Cohen,Phys.Rev.B73,235116(2006). theformforthefitwaswell-chosen. [20] Opiumpseudopotentialgenerationproject, We have presented a fully ab initio pressure calibration http://opium.sourceforge.net. based on quantumMonte Carlo simulations, and have intro- [21] S.Baronietal.,J.Phys.:Condens.Matter21,395502(2009). ducedamethodforall-electronsimulationsofsolidstoelimi- [22] J. Furthmu¨ller, J. Hafner, and G. Kresse, Phys. Rev. B 50, natebiasfrompseudopotentials.Thismethodshouldbeappli- 15606(1994). cabletoatleastfirst-rowsolids, allowingincreasedaccuracy [23] PVinetetal.,J.Phys.:CondensedMatter1,1941(1989). inthestudyofothermaterialsandprovidinganewbenchmark [24] F. Datchi, A. Dewaele, Y. Le Godec, and P. Loubeyre, Phys. Rev.B75,214104(2007). forothermethods.Theonlyremainingsystematicerrorinthe [25] F.DatchiandB.Canny,Phys.Rev.B69,144106(2004). staticcontributiontotheEOSisfromthefixed-nodeapproxi- [26] Alexander F. Goncharov, Jonathan C. Crowhurst, J. K. De- mationusedinDMC.Forsimplematerialssuchasc-BNthis whurst,andS.Sharma,Phys.Rev.B72,100104(R)(2005). errorshouldbequitesmall, andtendstocancelbetweendif- [27] I. V. Alexandrov et al., High pressure study of diamond, ferentvolumes. ThuswebelievetheEOSisrobustenoughto graphite and related materials (Terrepub AGU, Washington- beuseddirectlyinexperimentasaprimarypressurecalibrant, Tokyo,1992),pp.409–416.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.