Fundamental highpressure calibrationfrom all-electronquantum MonteCarlo calculations K. P. Esler,1,2 R. E. Cohen,1 B. Militzer,3 Jeongnim Kim,2 R.J. Needs,4 and M.D. Towler4 1Carnegie Institution of Washington, Geophysical Laboratory 2University of Illinois at Urbana-Champaign, NCSA∗ 3Universityof California, Berkeley, Dept. of Earthand PlanetaryScience and of Astronomy 4TheoryofCondensed MatterGroup, CavendishLaboratory, Cambridge CB30HE,UnitedKingdom (Dated:January13,2010) Wedevelopanall-electronquantumMonteCarlo(QMC)methodforsolidsthatdoesnotrelyonpseudopo- 0 tentials, and use it toconstruct a primaryultra-high pressure calibration based theequation of stateof cubic 1 boronnitride(c-BN).WecomputethestaticcontributiontothefreeenergywithQMC,andobtainthephonon 0 contributionfromdensityfunctionaltheory,yieldingahigh-accuracycalibrationupto900GPausabledirectly 2 inexperiment. Furthermore, wecompute theanharmonic Ramanfrequency shiftwithQMCasafunctionof n pressureandtemperature,allowingopticalpressurecalibrationintable-topexperiments. Incontrasttopresent a experimentalapproaches,smallsystematicerrorsinthetheoreticalEOSdonotincreasewithpressure,andno J extrapolationisneeded. Thisall-electronmethodology isgenerallyapplicabletofirst-rowsolids, andcanbe 3 usedtoprovideanewreferenceforabinitiocalculationsofsolidsandtobenchmarkpseudopotentialaccuracy. 1 PACSnumbers:64.30.Jk,81.05.Je,02.70.Ss,63.20.dk ] i c s Althoughthe numberofstudiesofmaterialsusingdensity ulus, in conjunctionwith X-ray diffraction measurementsof - functional theory (DFT) continues to grow explosively, the volume, can be integrated to provide an EOS, but a correc- l r accuracyoftheirpredictionsisvariable,sometimesexcellent tionmustbemadetotransferfromanadiabatictoanisother- t m and sometimes poor, limiting the confidence one may place malpath[3]. Newapproachessuchasquasi-adiabaticZ-pinch . in DFT results as a quantitative calibration for experimen- based experiments[4, 5] also hold future promise for a pri- t a tal studies. Quantum Monte Carlo (QMC), particularly dif- mary scale. There have been attempts to refine the ruby m fusion Monte Carlo (DMC), is the highest-accuracy method scale[6], and new calibrations have also been suggested[3]. - forfindingthe groundstate ofa many-electronHamiltonian. Cubicboronnitride(c-BN)hasbeenidentifiedasapromising d ForsolidswithatomsheavierthanHe,however,theHamilto- materialfora newscale[7]. InthisLetter, we providea new n nianitselfisapproximatedusingpseudopotentials(PPs)based pressurescalebasedonDMCcalculationsoftheEOSandRa- o c onalower-accuracytheory,limitingitsreliability,andaswe manfrequencyofc-BN.Thistheoreticalapproachhasthead- [ show,commonlyusedPPsgivedisparateresults. InthisLet- vantagethat, in contrastto presentexperimentalapproaches, ter, we pushthe state ofthe artin accuracyby introducinga the methodworksequallywellunderhighcompression,and 1 v method for an all-electron DMC simulation of solids, elimi- uncertaintydoesnotgrowwithpressure. 9 natingthebiasfrompseudopotentials,andapplyittocreatea PressureisthenegativevolumederivativeoftheHelmholtz 7 high-accuracypressurecalibrationscale. 0 free energy. In a wide-gap insulator such as c-BN, the free 2 The combination of ultra-high pressure mineralogy with energycanbewrittenasasumofthefrozenlatticeenthalpy, . seismology has yielded a wealth of insight into the internal dependentonlyonvolume,andaphononthermalfreeenergy, 1 0 structure of our planet. Pressure is the key that links these which depends on both volume and temperature. Since the 0 disciplines,mappingphasetransitionsandmineralproperties static enthalpy is the dominantcontributionat ordinarytem- 1 to planetary depth. Establishing an absolute pressure cali- peratures, errors in a theoretical EOS can most often be at- : v bration at multi-megabarpressures, however, poses a funda- tributed to the static part. Previous calculations of the EOS i mentalandcontinuingproblemforhigh-pressureexperiment. ofc-BNhavebeenbasedonDFT[7],whichuseapproximate X Current primary calibrations are based on data from shock- functionalstotreatelectronexchangeandcorrelation.Several r a waveexperiments,whichinferpressurefromconservationof functionalsareincommonuse,eachgivingrisetoadifferent momentumandenergyastheshocktraversesthesample.Ex- EOS,andthereis noa prioriway to predictwhichwillgive perimentaluncertainty,combinedwitherrorsinmodelextrap- themostreliableresult. olation,yieldscaleswhichdifferfromeachotherbyasmuch QuantumMonte Carlo simulationmethodsexplicitly treat to7%atroomtemperature,withevengreaterdiscrepanciesat electron exchangeand correlationinstead of resorting to ap- hightemperature[1]. Suchdisparityremainsaseriousobsta- proximatefunctionals. VariationalMonteCarlo(VMC)com- cletoaquantitativeunderstandingofEarth’sinterior. putespropertiesbyaMetropolissamplingofatrialwavefunc- Apressurecalibrantisamaterialwithaknownequationof tion. DiffusionMonteCarlo samplesthe many-bodyground state(EOS),asmallsampleofwhichmaybeincludedinhy- state of the Hamiltonian through a stochastic projection of drostaticequilibriumwith the test subject(e.g. ruby[2]). As the trial function. In practice, a fixed node approximationis an alternative to shock experiments, high-pressure Brillouin usedforfermions,suchaselectrons,whichtestshaveshown scattering, which provides a measurement of the bulk mod- giverelativelysmallerrorwhenthe nodesare obtainedfrom 2 high-qualityDFT orbitalsfor electronicallysimple materials (a)Parametersfor300KEOS suchasc-BN.DMCforsolidshasbeendemonstratedtogive Source PP/AEatoms V0(A˚3) B0(GPa) B0′ (nondim.) significantly more accurate cohesive energies[8], equations Trail-NeedsPP+AE 64/8 11.792(18) 381(6) 3.87(6) ofstateandRamanfrequencies[9], andphasetransitions[10] OPIUMGGAPP+AE 64/8 11.769(17) 385(6) 3.86(6) than DFT. We have used both the CASINO QMC software BFDHFPP+AE 64/8 11.781(20) 382(7) 3.87(7) suite[11]andQMCPACK[12]. BFDHFPP+AE 128/16 11.812(8) 378(3) 3.87(3) QMCsimulationsofsolidsarecurrentlyperformedwithin Datchietal.[24] 11.8124 395(2) 3.62(5) the pseudopotential (PP) approximation, in which the core Goncharovetal. 11.817(32) 387(4) 3.06(15) electronsareeliminatedandtheireffectreplacedbyanonlo- calpotentialoperator[8]. SincePPsarepresentlyconstructed (b)Parametersforthermalpressure with a lower-accuracy theory, such as Hartree-Fock (HF) or DFT,thisreplacementrepresentsanuncontrolledapproxima- θn0(KA˚−3n) αn(K−1A˚−3n) βn(KA˚−3n) n=0 4.836656×103 2.598608×10−3 -4.869563×103 tion. To eliminate this error, we develop a method for all- n=1 -6.929704×101 -1.200504×10−4 1.763443×102 electron(AE)QMCsimulationsofsolidsinQMCPACKusing n=2 4.634278×10−1 2.789128×10−6 -2.186053×100 trialwavefunctionsderivedfromfull-potentiallinearizedaug- n=3 -1.273468×10−3 -2.008994×10−8 9.303181×10−3 mented plane wave (FP-LAPW) calculations using the EX- CITING code[13]. Space is divided into spherical muffin (c)ParametersforRamancalibration tin regions around the nuclei, and an interstitial region. Or- bitalsarerepresentedinsidethemuffintinsasaproductofra- c0(cm−1) c1(cm−1) c2(K) b R0(GPa) R1(GPa) R2(GPa) dialfunctionsandsphericalharmonics,andoutsideasplane- 1055.9 -144.24 1497.8 3.0155 349.87 1849.4 112.33 waves. Toensurethatawavefunctionsatisfiesthevariational principle,itmustbebothcontinuousandsmooth.Weutilizea TABLEI:Parametersforthec-BNEOSandRamancalibration. super-LAPWformalismthatenforcescontinuityandsmooth- ness atthe muffin tin boundary. For efficiency, we represent theorbitalsas3DB-splinesintheintersticesandtheproduct Wecomputethefreeenergyforourc-BNsystemattwelve ofradialsplinesandsphericalharmonicsinthemuffintins. unit-cellvolumes, spanningvolumecompressionratiosfrom Since AE QMC simulations are computationally expen- 0.84 to 2.0, corresponding to pressures of about -50 GPa to sive,weperformthesesimulationsin8-atomcubicsupercells. 900GPa. Whileitisnotfullycertainthatthecubicphaseof Simulation cells this small would typically have significant BNisstableto900GPa,nootherstructurehasbeenobserved, finite-sizeerrors.Weeliminatetheseerrorsbycombiningdata andtheoreticalstudieshavenotidentifiedanytransitionsbe- fromAEsimulationswiththatfromPPsimulationsperformed low 1 TPa[22]. We use the Vinet form[23] for the isother- inboth8-atomand64-atomsupercells. Thus,weareableto malEOS,whichwefindrepresentsourfree-energydatavery simultaneouslyeliminatesystematicerrorsfrompseudpoten- well, yielding the bulk modulus, B0, its pressure derivative, tials and from finite-size effects. The corrected static-lattice B0′,andtheequilibirumvolume,V0 (TableI(a)). Thestatisti- energyisgivenateachvolumeas calerrorbarsforeachdatapointaredirectlydeterminedfrom ourQMCdata.Wecomputestatisticalconfidenceranges,tak- E =EPP+ EAE EPP +∆MPC+∆kinetic, (1) ing into account parameter cross-correlations with a simple 64 8 8 64 64 − MonteCarloprocedure. where the term in(cid:2)brackets re(cid:3)moves the psuedopotential Figure 1 shows the EOS of c-BN at 300 K, with experi- bias. ∆MPC and ∆kinetic are, respectively, potential[14] and mentaldatafromDatchietal.[24]andGoncharovetal.[7],as 64 64 kinetic[15] corrections for finite-size errors. We perform wellasthepresentworkfromsimulationswiththreedifferent this procedure with three different PP sets commonly used PPs. The residuals in (c) are derived from DMC simulation in QMC: HF PPs from Trail and Needs (TN)[16, 17]; HF with PPs alone, while those in (b) combine all-electron and PPs fromBurkatzki, Filippi, andDolg(BFD)[18]; andDFT- PP data. There is significant discrepancy between the theo- GGA[19] PPs generated with OPIUM (WC)[20]. Perform- reticalcurvesin(c),suggestingthatPPsimulationalonedoes ing the same procedure with 128-atom PP simulations and notprovidesufficientaccuracy.OncethePPdataiscombined 16-atomAE simulationsyieldsstatistically indistinguishable with AE data, as in (b), all the theoretical curves come into results, demonstratingthatfinite-size errorsare convergedat goodagreement. OurtheoreticalEOSagreesreasonablywith thissize. Additionalmethodologicaldetailsandthefinite-size thatinRefs. [24]and[7]withintheexperimentallymeasured datacanbefoundinEPAPSdocumentNo. #. pressurerange,buttheexperimentalextrapolationshowssig- To compute the phonon free energy, we use density nificantdeviationathighpressure. functional perturbation theory (DFPT) in the QUANTUM Wemaywritethethermalequationofstateintheform ESPRESSO package[21] with the Wu-Cohen functionaland P(V,T)=P300K(V)+Pth(V,T) Pth(V,T =300), (2) the OPIUM PPs. The phonon density of states, from which − wederivethermodynamicdata,isusuallyverywell-described whereP300K is the room-temperaturecontribution,fitto the withDFT. Vinet form. The phonon contribution is written in an aug- 3 (a)CorrectedEOS (b)Correctedpressureresiduals (c)Uncorrectedpressureresiduals FIG.1:Thec-BNEOSat300K,computedwithDMC,comparedtoexperiment.WeplotthefullEOSandthepressureresidualswithrespect toDMCwiththeBFDPP.(a)givesthecorrectedEOSresultingfromcombiningtheEOSandPPdata,while(b)givesthepressureresiduals for the same data. (c) gives the uncorrected pressure residuals from the PP simulations only. Shaded areas represent the one-σ statistical confidenceregionfromQMCdata. mentedDebyemodel, temperature. The matrix element for the transition from n ton 1isproportionalto√n andisthermallyweightedby ∂F (θ,T) ∂θ − P (V,T) = D (3) theBoltzmannoccupationofstaten,sotheintensity-averaged th − ∂θ ∂V frequency, ν ,canbegivenas 0 h i θ(V,T) = θ (V)+β(V)exp( α(V)T) (4) x(V) = x0+x1V+x2V2+x−3V3, x∈{θ0,α,β}(5) ν = ∞n=1I∞nEn−hEcn−1, where In =ne−kEBnT. (7) h i I P n=1 n in which the Debye temperature, θ, is a function of both V andT (TableI(b)). TheDebyefreeenergypertwo-atomcell, The excess thePrmal softening, i.e. beyondthat fromthermal excludingthezero-pointterm,isgivenby expansion alone, is accounted for by the thermal average of the anharmonic frequencies. Figure 2 shows the computed θ θ 3 Tθ x3 Raman frequenciescomparedwith the experimentaldata re- FD =6kBT "ln(cid:16)1−eT(cid:17)−(cid:18)T(cid:19) Z0 ex−1dx#. (6) poBrteodthinRRefesf.s.[[2255]–a2n7d].[26] give a ruby-like calibration for- c-BN can be used to calibrate pressure optically by mea- mula,whichcanbeexpressedas suring the frequencyshift of the TO Raman mode, allowing bench-topexperiments.Wecomputethepressureandtemper- P =(R/b) (ν/ν¯)b 1 , (8) − aturedependenceofthisfrequency.Withinthequasiharmonic (cid:2) (cid:3) approximation,phononfrequencieshaveexplicitdependence where R, ν¯, and b have quadratic T-dependence. This de- pendenceissufficientbelow2000K,butcannotrepresentour onvolumeonly.Atconstantpressure,however,thesefrequen- data at high temperature. We use a form which capturesthe cies have an implicit temperaturedependenceresulting from Boltzmannoccupationofphononexcitations, thermal expansion. The dependence due to thermal expan- sion accounts for only about half the total T-dependenceof ν2(P) theRaman mode,asobservedin [25] and[26]. Theremain- ν(P,T) = ν0(P)+ν1(P)exp (9) − T ingT-dependencecanbeattributedtosignificantanharmonic (cid:20) (cid:21) effectsinc-BN,andisincludedinourcalculations. bP 1/b ν (P) = c +1 , n=1,2,3 (10) Sincetheopticalbranchhassmalldispersion,we treatthe n n R anharmonicityasaone-dimensionalon-siteanharmonicoscil- (cid:20) n (cid:21) lator,inasimilarapproachtotheQMCcomputationoftheTO withparametersinTableI(c)andplottedinFigure2(a). Note Raman frequencyof diamond[9]. At each volume, we com- that this formula cannot be analytically inverted, but a very pute the effective Born-Oppenheimer potential well for the simple iterative solutioncan be used for calibratingpressure TO modewith DMC and the BFD PP at nine displacements fromν andT. alongthe modeeigenvectorin the 64-atomsupercell. We fit The main axis of Figure 2(b) gives the room-temperature thedatatoaquarticpolynomial,andnumericallysolvethe1D Raman frequencyversus pressure. There is good agreement Schro¨dingerequationinthisanalyticpotential.Thisresultsin intherelativelylow-pressureregioninwhichtheRamanfre- asetofsingle-phononenergylevels, E ,withnonuniform quency was measured. At very high pressure, the deviation n { } separation. From E , we compute an intensity-weighted withrespecttotheextrapolationin[25]increaseswithamax- n average Raman fre{quen}cy, ν¯, as a function of pressure and imum discrepancy of 38 cm−1 or, conversely, a deviation in 4 andcan be used to cross-calibratescales based on otherma- terials. Sincetheaccuracyofourmethodsshouldnotdepend oncompression,ourcalibrationcanbeusedupto900GPa. ThisworkwassupportedundertheNationalScienceFoun- dationGrantEAR-0530282. Thisresearchusedresourcesof theNationalCenterforComputationalSciencesandtheCen- ter for Nanophase Materials Sciences, which are sponsored by the U.S. Department of Energy. This work was partially supportedbytheNationalCenterforSupercomputingAppli- cationsunderMCA07S016andutilizedtheAbeandLincoln (a)FittopresenttheoryforRamanshift. clusters. We thank Alexander Goncharov, F. Mauri and M. Lazzeriforhelpfulsuggestionsanddiscussions. ∗ Electronicaddress:[email protected] [1] YingweiFeietal.,PNAS104,9182(2007). [2] H.K. Mao, J. Xu, and P.M. Bell, J. Geophys. Res. 91, 4573 (1986). [3] Chang-Sheng Zha, Ho-kwang Mao, and Russell J. Hemley, PNAS97,13494(2000). [4] J.R.Asayaetal.,Int.J.ofImpactEngineering23,27(1999). [5] J.RemoandM.Furnish,Int.J.ofImpactEngineering35,1516 (2008). [6] W.B.Holzapfel,HighPressureResearch25,87(2005). [7] AlexanderF.Goncharovetal,Phys.Rev.B75,224114(2007). [8] W.M.C.Foulkes,L.Mitas,R.J.Needs,andG.Rajagopal,Rev. (b)ComparisonofRamanexperimentandtheory. Mod.Phys.73,33(2001). [9] RyoMaezono,A.Ma,M.D.Towler,andR.J.Needs,Phys.Rev. FIG.2: TORamanfrequencyofc-BNasafunctionoftemperature Lett.98,025701(2007). and pressure. (a) gives compares our theoretical Raman frequency [10] J.KolorencˇandL.Mitas,Phys.Rev.Lett.101,185502(2008). withthefittedforminEqs.9and10. (b)comparesour calibration [11] R.J.Needs,M.D.Towler,N.D.Drummond,andP.L.Rios,J. at300Kwiththeexperimentalresultsfrom[25]and[26].Theblack Phys.:CondensedMatter22,023201(2010). dotswitherrorbarsaretheQMC frequencies, whilethebluesolid [12] JeongnimKim,K.Esler,J.McMinis, B.Clark, J.Gergely,S. line gives the fit. The lower inset gives an expanded view at low Chiesa,K.Delaney,J.Vincent,andD.Ceperley. pressure,inwhichtheshadedregiongivesthestatisticalconfidence [13] J. K. Dewhurst et al., The EXCITING FP-LAPW code, region.Theupperinsetgivesthevariationwithtemperature. http://exciting.sourceforge.net. [14] A.J.Williamsonetal.,Phys.Rev.B55,R4851(1997). [15] S. Chiesa, D.M. Ceperley, R.M. Martin, and M. Holzmann, the pressure calibration of 50 GPa at 900 GPa. The devia- Phys.Rev.Letts.97,076404(2006). tions with respect to [26] are 70 cm−1 and 120 GPa. The [16] J.R.TrailandR.J.Needs,J.Chem.Phys.122,174109(2005). experimentalparameterscapturethecorrectqualitativehigh- [17] J.R.TrailandR.J.Needs,J.Chem.Phys.122,014112(2005). pressurebehaviorupto900GPa,despitethefactthatdatawas [18] M. Burkatzki, C. Filippi, and M. Dolg, J. Chem. Phys. 126, availableonlyto 20 and64GPa, respectively. Thissuggests 234105(2007). [19] ZhigangWuandR.E.Cohen,Phys.Rev.B73,235116(2006). theformforthefitwaswell-chosen. [20] Opiumpseudopotentialgenerationproject, We have presented a fully ab initio pressure calibration http://opium.sourceforge.net. based on quantumMonte Carlo simulations, and have intro- [21] S.Baronietal.,J.Phys.:Condens.Matter21,395502(2009). ducedamethodforall-electronsimulationsofsolidstoelimi- [22] J. Furthmu¨ller, J. Hafner, and G. Kresse, Phys. Rev. B 50, natebiasfrompseudopotentials.Thismethodshouldbeappli- 15606(1994). cabletoatleastfirst-rowsolids, allowingincreasedaccuracy [23] PVinetetal.,J.Phys.:CondensedMatter1,1941(1989). inthestudyofothermaterialsandprovidinganewbenchmark [24] F. Datchi, A. Dewaele, Y. Le Godec, and P. Loubeyre, Phys. Rev.B75,214104(2007). forothermethods.Theonlyremainingsystematicerrorinthe [25] F.DatchiandB.Canny,Phys.Rev.B69,144106(2004). staticcontributiontotheEOSisfromthefixed-nodeapproxi- [26] Alexander F. Goncharov, Jonathan C. Crowhurst, J. K. De- mationusedinDMC.Forsimplematerialssuchasc-BNthis whurst,andS.Sharma,Phys.Rev.B72,100104(R)(2005). errorshouldbequitesmall, andtendstocancelbetweendif- [27] I. V. Alexandrov et al., High pressure study of diamond, ferentvolumes. ThuswebelievetheEOSisrobustenoughto graphite and related materials (Terrepub AGU, Washington- beuseddirectlyinexperimentasaprimarypressurecalibrant, Tokyo,1992),pp.409–416.