Functions and Change This page intentionally left blank Functions and Change A Modeling Approach to College Algebra and Trigonometry Bruce Crauder / Benny Evans / Alan Noell Oklahoma State University Thisprojectwassupported,inpart, bythe National Science Foundation Opinionsexpressedarethoseoftheauthors andnotnecessarilythoseoftheFoundation Houghton Mifflin Company Boston New York GratitudeandThanks Wearedeeplygratefulforourfamilies whosupportedusandbelievedinthisproject. ForDouglas,Robbie,and,mostofall,Anne—BCC ForCarla,Daniel,andAnna—BDE ForEvelyn,Philip,Laura,Stephen,andespeciallyLiz—AVN Publisher:RichardStratton SeniorSponsoringEditor:MollyTaylor SeniorMarketingManager:JenniferJones MarketingAssociate:MaryLegere AssistantEditor:CarlChudyk EditorialAssociate:AndrewLipsett AssociateProjectEditor:SarahDriver ArtandDesignManager:GaryCrespo CoverDesignManager:AnneS.Katzeff SeniorPhotoEditor:JenniferMeyerDare CompositionBuyer:ChuckDutton Coverimage:“HerdofBisonatWatertonLakes,”©Royalty-Free/CORBIS Photocredits:Ch.P:p.1,©Astrofoto/PeterArnold,Inc.;Ch.1:p.19,©Al Tielemans/SI/NewSport/CORBIS;Ch.2:p.95,©RobertoMelchiorre/Zefa/CORBIS;Ch.3:p.185, ©RobertBrenner/PhotoEdit,Inc.;Ch.4:p.269,©KevinWestenberg/Live8viaGettyImages;Ch.5: p.349,©ReinhardDirscherl/VisualsUnlimited,Inc.;Ch.6:p.437,©RogerTidman/CORBIS; Ch.7:p.473,©NASA/CORBISSYGMA;Ch.8:p.517,©BobDaemmrich/TheImageWorks; Ch.9:p.567,©PaulA.Souders/CORBIS;Ch.10:p.623,©ChlausLotscher/PeterArnold,Inc. Copyright©2008byHoughtonMifflinCompany.Allrightsreserved. Nopartofthisworkmaybereproducedortransmittedinanyformorbyanymeans,electronicor mechanical,includingphotocopyingandrecording,orbyanyinformationstorageorretrievalsystem withoutthepriorwrittenpermissionofHoughtonMifflinCompanyunlesssuchcopyingisexpressly permittedbyfederalcopyrightlaw.AddressinquiriestoCollegePermissions,HoughtonMifflin Company,222BerkeleyStreet,Boston,MA02116-3764. PrintedintheU.S.A. LibraryofCongressControlNumber:2006936631 ISBN-13:978-0-618-85804-0 ISBN-10:618-0-85804-0 123456789–DOW–1110090807 Contents Preface xi 1.4 Functionsgivenbywords 70 Comparingformulasandwords 70 Gettingformulasfromwords 73 Proportion 75 Prologue: Calculator Arithmetic 1 AnotherLook:Geometricconstructions 76 Chapter1Summary 89 Typingmathematicalexpressions 2 Chapter1ReviewExercises 91 Rounding 2 Parenthesesandgrouping 3 Minussigns 4 Specialnumbersπ ande 5 2 Graphical and Tabular Chaincalculations 5 Analysis 95 Scientificnotation 7 AnotherLook:Orderofoperations 8 ChapterPSummary 16 2.1 Tablesandtrends 96 ChapterPReviewExercises 17 Gettingtablesfromformulas 96 Optimizingwithtablesofvalues 99 AnotherLook:Limits 101 1 2.2 Graphs 112 Functions 19 Hand-drawngraphsfromformulas 112 Graphingwiththecalculator 112 1.1 Functionsgivenbyformulas 20 Tracingthegraph 113 Functionsofonevariable 20 Choosingaviewingwindowinpractical Functionsofseveralvariables 21 settings 113 AnotherLook:Definitionofafunction 23 Gettinglimitingvaluesfromgraphs 117 AnotherLook:Shiftingandstretching 119 1.2 Functionsgivenbytables 35 Readingtablesofvalues 35 2.3 Solvinglinearequations 132 Fillinggapsbyaveraging 35 Thebasicoperations 132 Averageratesofchange 36 Reversingtherolesofvariables 134 Spottingtrends 38 AnotherLook:Equationsthatarelinearinone AnotherLook:Moreonaverageratesof variable 137 change 41 2.4 Solvingnonlinearequations 148 1.3 Functionsgivenbygraphs 52 Thecrossing-graphsmethod 148 Readinggraphs 52 Thesingle-graphmethod 149 Concavityandratesofchange 54 AnotherLook:Solvingnonlinearequationsby Inflectionpoints 56 factoring 153 Drawingagraph 57 AnotherLook:Secantlines 60 vi Contents 2.5 Optimization 163 4 Exponential Functions 269 Optimizingatpeaksandvalleys 163 Optimizingatendpoints 166 4.1 Exponentialgrowthanddecay 270 AnotherLook:Optimizingwithparabolas 168 Exponentialgrowth 270 Chapter2Summary 179 Exponentialdecay 271 Chapter2ReviewExercises 181 Constantproportionalchange 273 Unitconversion 275 Exponentialfunctionsanddailyexperience 277 3 AnotherLook:Elementarypropertiesof Straight Lines and Linear exponents 277 Functions 185 4.2 Modelingexponentialdata 286 3.1 Thegeometryoflines 186 Recognizingexponentialdata 286 Characterizationsofstraightlines 186 Constructinganexponentialmodel 287 Theslopeofaline 187 Growthanddecayfactorunitsinexponential Gettingslopefrompoints 188 modeling 290 AnotherLook:Planegeometry:Paralleland AnotherLook:Testingunevenlyspaced perpendicularlines 190 data 293 3.2 Linearfunctions 201 4.3 Modelingnearlyexponentialdata 301 Constantratesofchange 201 Exponentialregression 301 Linearfunctionsandstraightlines 203 AnotherLook:Nonlinearmodels 304 Linearequationsfromdata 205 4.4 Logarithmicfunctions 314 AnotherLook:Formsofequations 208 TheRichterscale 314 3.3 Modelingdatawithlinearfunctions 217 Howthecommonlogarithmworks 315 Testingdataforlinearity 217 Thelogarithmastheinverseoftheexponential Linearmodels 218 function 316 Graphingdiscretedata 220 AnotherLook:Solvingexponential AnotherLook:Unevenlyspaceddata 223 equations 318 3.4 Linearregression 233 4.5 Connectingexponentialandlinear data 328 Theregressionline 233 Usesoftheregressionline:Slopeand Fromlineartoexponentialdata 328 trends 234 Fromexponentialtolineardata:The AnotherLook:Linearregressionformula,the logarithm 329 error 238 Exponentialregressionusingthenatural logarithm 330 3.5 Systemsofequations 250 AnotherLook:Applyingthelawsof Graphicalsolutionsofsystemsof logarithms 333 equations 250 Chapter4Summary 343 Algebraicsolutions 253 Chapter4ReviewExercises 345 AnotherLook:Solutionbyelimination, matrices 254 Chapter3Summary 263 Chapter3ReviewExercises 266 Contents vii 5 6 A Survey of Other Common The Geometry of Right Triangles Functions 349 437 5.1 Powerfunctions 350 6.1 Sidesofrighttriangles 438 Homogeneitypropertyofpowerfunctions 351 ThetheoremofPythagoras 438 Comparingexponentialandpower Areaofatriangle 439 functions 355 AnotherLook:Ademonstrationofthe AnotherLook:Homogeneity,moreonpower Pythagoreantheorem 441 andexponentialfunctions 357 6.2 Angles 447 5.2 Modelingdatawithpowerfunctions 364 Degreeandradianmeasure 447 Theconnectionbetweenpowerdataandlinear Slicesofpie 448 data 364 Similartriangles 450 Gettingapowermodelfromdata 364 AnotherLook:Moreonsimilartriangles 452 Almostpowerdata 367 Graphingonalogarithmicscale:Common 6.3 Righttriangletrigonometry 457 versusnaturallogarithms 369 Sine,cosine,andtangentfunctions 457 AnotherLook:Moreonpowerregression 370 Secant,cosecant,andcotangentfunctions 461 AnotherLook:Specialtriangles 461 5.3 Combininganddecomposingfunctions 382 Chapter6Summary 469 Sums,products,andlimitingvalues 382 Chapter6ReviewExercises 470 Compositionoffunctions 384 Piecewise-definedfunctions 386 AnotherLook:Chaoticbehavior 388 7 Periodic Functions 473 5.4 Quadraticfunctionsandparabolas 397 Linearratesofchangeandsecond-order 7.1 Trigonometricfunctionsasperiodic differences 399 functions 474 Quadraticregression 402 Extendingthetrigonometricfunctions 474 Almostquadraticdata 403 Quadrants 478 Thequadraticformula 404 Periodandamplitudeofsineandcosine AnotherLook:Completingthesquare,complex functions 479 numbers 405 Adjustingperiodandamplitude 479 5.5 Higher-degreepolynomialsandrational AnotherLook:Referenceangles 481 functions 414 7.2 Modelingwithperiodicfunctions 485 Higher-degreepolynomialsandtheirroots 414 Periodandamplitudeforperiodicphenomena Cubicandotherpolynomialmodels 415 485 Rationalfunctions 417 Soundwaves 487 AnotherLook:Factoringpolynomials,behavior Usingthesinefunctiontomodelperiodic atinfinity 420 phenomena 487 Chapter5Summary 432 AnotherLook:Otherperiodicfunctions 490 Chapter5ReviewExercises 434 viii Contents 7.3 Modelingperiodicdata 498 Constantvelocitymeanslineardirected Verticalandhorizontalshifting 498 distance 569 Sinemodelsbyestimation 501 Whendistanceisgivenbyaformula 575 Sineregression 505 9.2 Ratesofchangeforotherfunctions 579 AnotherLook:Howcalculatorshandle trigonometricfunctions 505 Examplesofratesofchange 579 Propertiesthatallratesofchangeshare 580 Chapter7Summary 513 Whentherateofchangeiszero 581 Chapter7ReviewExercises 514 Whentherateofchangeisconstant 583 9.3 Estimatingratesofchange 589 8 Ratesofchangefortabulateddata 589 Relationships Among Ratesofchangeforfunctionsgivenby Trigonometric Functions 517 formulas 591 8.1 Trigonometricidentities 518 9.4 Equationsofchange:Linearandexponential Basicidentities 518 functions 597 Areaandsumformulas 520 Equationofchangeforlinearfunctions 597 Double-andhalf-angleformulas 522 Instantaneousratesofchange 598 AnotherLook:Clevertriangles 524 Equationofchangeforexponential functions 599 8.2 Lawsofsinesandcosines 530 Whyequationsofchange? 602 Lawofsines 530 Lawofcosines 531 9.5 Equationsofchange:Graphical AnotherLook:Acuriousrelationship 533 solutions 606 Equilibriumsolutions 606 8.3 Inversetrigonometricfunctions 540 Sketchinggraphs 609 Defininginversetrigonometricfunctions 540 Chapter9Summary 618 Makingpicturestorepresentinverse Chapter9ReviewExercises 620 trigonometricfunctions 542 Theinversetangentfunction 543 AnotherLook:Machin’sformula 545 10 Mathematics of Population 8.4 ComplexnumbersandDeMoivre'stheorem Ecology 623 550 Complexnumbers 550 10.1 Populationdynamics:Exponential ThecomplexexponentialfunctionandtheEuler growth 624 formula 550 DeMoivre'stheorem 554 Exponentialgrowth 624 AnotherLook:Polarcoordinates 558 Doublingtimes 626 Empiricaldata 627 Chapter8Summary 563 Discretegenerations 628 Chapter8ReviewExercises 566 10.2 Populationdynamics:Logisticgrowth 633 Logisticgrowthmodel 633 9 Applicationtoharvestingrenewable Rates of Change 567 resources 634 Logisticequationofchange 635 9.1 Velocity 568 Integralformofthelogisticequation 637 Gettingvelocityfromdirecteddistance 568 Thevalueofthelogisticmodel 639 Contents ix 10.3 Populationstructure:Survivorship curves 644 Lifetablesandsurvivorshipcurves 644 Classifyingsurvivorshipcurves 645 Usefulnessofsurvivorshipcurves 648 Chapter10Summary 655 Chapter10ReviewExercises 656 BriefAnswerstoSelectedExercises A-1 Index A-45
Description: