ebook img

Functional Impact of the N-terminal Arm of Proline Dehydrogenase from Thermus thermophilus PDF

15 Pages·2017·5.09 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Functional Impact of the N-terminal Arm of Proline Dehydrogenase from Thermus thermophilus

molecules Article Functional Impact of the N-terminal Arm of Proline Dehydrogenase from Thermus thermophilus MiekeM.E.Huijbers1,IlonavanAlen1,JennyW.Wu1,ArjanBarendregt2,3, AlbertJ.R.Heck2,3 ID andWillemJ.H.vanBerkel1,* ID 1 LaboratoryofBiochemistry,WageningenUniversity&Research,Stippeneng4,6708WEWageningen, TheNetherlands;[email protected](M.M.E.H.);[email protected](I.v.A.); [email protected](J.W.W.) 2 BiomolecularMassSpectrometryandProteomics,BijvoetCenterforBiomolecularResearchandUtrecht InstituteofPharmaceuticalSciences,UtrechtUniversity,Padualaan8,3584Utrecht,TheNetherlands; [email protected](A.B.);[email protected](A.J.R.H.) 3 NetherlandsProteomicsCenter,Padualaan8,3584Utrecht,TheNetherlands * Correspondence:[email protected];Tel.:+31-6-120-77313 Received:8December2017;Accepted:14January2018;Published:16January2018 Abstract:Prolinedehydrogenase(ProDH)isaubiquitousflavoenzymethatcatalyzestheoxidationof prolineto∆1-pyrroline-5-carboxylate. ThermusthermophilusProDH(TtProDH)containsinadditionto itsflavin-bindingdomainanN-terminalarm,consistingofhelicesαA,αB,andαC.Here,wereport the biochemical properties of the helical arm truncated TtProDH variants ∆A, ∆AB, and ∆ABC, producedwithmaltose-bindingproteinassolubilitytag. Allthreetruncatedvariantsshowsimilar spectralpropertiesasTtProDH,indicativeofaconservedflavin-bindingpocket. ∆Aand∆ABare highlyactivetetramersthatrapidlyreactwiththesuicideinhibitorN-propargylglycine. Removal oftheentireN-terminalarm(∆ABC)resultsinbarelyactivedimersthatareincapableofforminga flavinadductwithN-propargylglycine. CharacterizationofV32D,Y35F,andV36Dvariantsof∆AB establishedthatahydrophobicpatchbetweenhelixαCandhelixα8iscriticalforTtProDHcatalysis andtetramerstabilization. Keywords: flavoprotein; proline dehydrogenase; protein engineering; protein oligomerization; solubilitytag;suicideinhibition;TIM-barrel 1. Introduction Prolinedehydrogenase(ProDH;EC1.5.5.2)isaubiquitousenzymeinvolvedinprolinecatabolism. ProDH catalyzes the flavin-dependent oxidation of L-proline to ∆1-pyrroline-5-carboxylate (P5C). AfterP5Chydrolysis,theresultingglutamicsemialdehyde(GSA)isoxidizedtoglutamatethroughthe actionof∆1-pyrroline-5-carboxylatedehydrogenase(P5CDH;EC1.2.1.88)(Scheme1). ProDHand P5CDHexistasseparatemonofunctionalenzymesineukaryotesandsomebacteria,butarefusedinto abifunctional[1,2]ortrifunctional[3]enzymeinotherbacteria. Inthesemulti-functionalenzymes, called proline utilization A (PutA), the C-terminus of ProDH is fused to P5CDH, allowing for the channelingoftheP5C/GSAintermediatebetweentheenzymes[4–9]. ProDHhasadistorted(βα) TIM-barrelfold(Figure1A),whichisconservedthroughoutthe 8 PutA/ProDHfamily[11,12]. OpposedtotheclassicTIM-barrelfold,theProDHbarrelbeginswith a helix (α0) rather than a strand (Figure 1). This extra helix occupies the location that is normally reservedforα8. Asaconsequence,α8isnotlocatedalongsideβ8,butontopofthebarrel[1,13,14]. Thedistortedlocationofα8iscrucialforcatalysis,sinceitcontributesthreestrictlyconservedresidues (Tyr-x-x-Arg-Arg)thatinteractwiththesubstrate[13,14]. Molecules2018,23,184;doi:10.3390/molecules23010184 www.mdpi.com/journal/molecules Molecules2018,23,184 2of15 Molecules 2018, 23, 184 2 of 15 Molecules 2018, 23, 184 2 of 15 SScchheemmee 11.. CoCnovnevresriosino nof oLf-pLr-oplrionlein teo tLo-gLlu-gtalumtaamte abtey bpyroplirnoel indeehdyedhroygdernogaseen a(sPero(DPrHo)D aHn)d aΔn1d- p∆y1-rproylrirnoel-i5n-ec-a5r-bcaorxbyolaxtyel adteehdyedhryodgreongaesnea (sPe5(CPD5CHD).H S)c.hSecmheem baesbeads eodn o[1n0[]1. 0]. The NS-tcehremmien a1.l Cseonqvueersniocne ooff LP-proroDlinHe itso pL-ogolurtlaym caoten bsye rpvreodli.n eM doenhoydfurongcetniaosne a(lP reouDkHa)r yaondti cΔ 1P-roDHs, TheNp-tyerrrmoliinnea-5l-csaerqbouxeynlactee doefhyPdrrooDgeHnasies (pPo5CoDrlHy).c Socnhesmerev beadse.dM ono [n10o]f. unctionaleukaryoticProDHs, including the human enzyme [15], have an elongated N-terminus when compared to monofunctional includingthehumanenzyme[15],haveanelongatedN-terminuswhencomparedtomonofunctional bacterial PrTohDeH Ns- t[e1r1m,1in2a]l. sPerqouDenHc ef roofm Pr ToDheHrm isu sp othoerlrym coopnhsielurvs e(dT. tMProonDoHfu)n cctoionntaali nesu kaanr yNo-titce rPmroiDnaHl sa, rm bacterialProDHs[11,12]. ProDHfromThermusthermophilus(TtProDH)containsanN-terminalarm consistiinncglu odfi nthgr tehee hheulmicaens :e αnzAy,m αeB [,1 5a]n, dha αvCe a (nF eiglounrgea 1te)d. HNe-tleirxm αin8 ufsit ws hinetno c tohmep calreefdt, two mhiocnho ifsu nfocrtimoneadl by consistingofthreehelices: αA,αB,andαC(Figure1). Helixα8fitsintothecleft,whichisformedby helices bαacAte,r iαalB P raonDdH αs C[1.1 ,T12h]i. sP rcolDefHt ifsr oams sTuhmermedu s ttoh ebrme opinhivluosl v(TetdP rionD Hch) acnonnetaliinnsg a nP 5NC-t/eGrmSAin abl eatrwme en helicesαA,αBandαC.ThiscleftisassumedtobeinvolvedinchannelingP5C/GSAbetweenTtProDH TtProDcHon asinsdtin Tgt Pof5 tChDreHe h [e1l,i1ce6s]:. αA, αB, and αC (Figure 1). Helix α8 fits into the cleft, which is formed by andTPtrPhe5evlCiiocDeusHs lαy[A1, ,,w1 α6e]B .s ahnodw αedC . thTahti sT ctlPefrto Dis Has sisu moveder ptor obdeu icnevdo livne dE sinch ecrhiacnhniae lcinolgi (PE5.C c/GolSi)A w bheetwn eietns N- PrTetvPiroouDsHly ,anwde TtsPh5oCwDeHd [1t,h16a]t. TtProDH is overproduced in Escherichia coli (E. coli) when its terminus is fused to maltose-binding protein (MBP) [17] and that the recombinant enzyme does not N-terminusPirsefvuiosuedslyt,o wmea slthooswe-ebdi nthdaitn gTtpPrrooDteHin i(sM oBvePr)p[r1o7d]uacnedd itnh aEtstchheerircehciao mcoblii n(Ea.n ctoelin) zwyhmene ditso eNs-not discriminate between FAD and FMN as cofactor [18]. Replacing Phe10 and Leu12 in helix αA with discrimtienrmatienbues tiws feuesnedF AtoD maanltdosFeM-bNindaisngco pfraoctteoirn [(1M8B].PR) e[1p7l]a cainndg tPhahte t1h0e arnecdomLebuin1a2nitn ehnezylimxeα Adowesi tnhotG lu Glu residues (further referred to as MBP-TtProDH variant EE) successfully released MBP-TtProDH discriminate between FAD and FMN as cofactor [18]. Replacing Phe10 and Leu12 in helix αA with residues(furtherreferredtoasMBP-TtProDHvariantEE)successfullyreleasedMBP-TtProDHfrom from non-native self-association, yielding homogeneous tetramers [19]. Although TtProDH Glu residues (further referred to as MBP-TtProDH variant EE) successfully released MBP-TtProDH non-nativeself-association,yieldinghomogeneoustetramers[19]. AlthoughTtProDHcrystallizesasa crystallfirzoems anso an -ndaimtiveer (sFelifg-ausrseo c1ia) ti[o1n],, ity iiesl dwinogr thhyom oof gnenoeteo utsh atte tirna msoerlus ti[o1n9],. thAel thenouzgyhm eT trPermoDaiHn s a dimer(Figure1)[1],itisworthyofnotethatinsolution,theenzymeremainsatetramerafterremoval tetramecrry asfttaellri zreesm aos vaa ld oimf tehr e( FMigBuPre s1o)l u[1b]i, liitt yi st awgo [r1th3y]. of note that in solution, the enzyme remains a oftheMBPsolubilitytag[13]. tetramer after removal of the MBP solubility tag [13]. Figure 1. Structural features of Thermus thermophilus proline dehydrogenase (TtProDH). (A) Three- Figure 1. Structural features of Thermus thermophilus proline dehydrogenase (TtProD H). dimensional model of the crystal structure of the TtProDH dimer (PDB entry 2G37). The N-terminal (A) Three-dimensional model of the crystal structure of the TtProDH dimer (PDB entry 2G37). Figure h1e. liSctersu αctAu r(aglr efeena)t,u αreBs ( roefd T), haenrmd uαsC t h(berlumeo) pahriel uins dpircoatleinde, ads ewhyeldl raosg heenliaxs eα 0(T (tpPurropDleH) a)n. d(A t)h eT hCr-ee- TdhimeeNn-sttieeorrnmmaiilnn amal lohhdeeleilxli coαef8s t(αhbeAr ocw(rgynrs)e;t ea(nBl ))s, tArαumBcit(nuroer dea c)o,idfa tnshedqe uαTeCtnPc(rebo loDufe HT)t aPdrrieomDienHrd .(i PcSaeDcteoBdn ed,naatrsryyw s t2erGlulc3at7su)rh.a eTl lheilxee mαN0e-nt(etpsr umornipn lael) and the C-terminal helix α8 (brown); (B) Amino acid sequence of TtProDH. Secondary structural helices tαopA o f( gthree esneq),u αenBc e( rheadv)e, tahne dsa αmCe c(obllourse )a sa irne Fiingduircea 1tAed. ,F iagsu rwe e1lAl iass b haseeldix o αn 0[1 (9p].u rple) and the C- elementsontopofthesequencehavethesamecolorsasinFigure1A.Figure1Aisbasedon[19]. terminal helix α8 (brown); (B) Amino acid sequence of TtProDH. Secondary structural elements on top of the sequence have the same colors as in Figure 1A. Figure 1A is based on [19]. Molecules 2018, 23, 184 3 of 15 To investigate the functional impact of the N-terminal arm of TtProDH in catalysis and oligomerization in closer detail, we constructed MBP-fused variants, lacking, respectively, one (ΔA), Mtwoloec u(ΔlesA2B01)8, ,o2r3 ,t1h8r4ee (ΔABC) N-terminal helices. ΔA and ΔAB turned out to be highly active tetram3oefr1s5, while ΔABC was an almost inactive dimer. To further probe the role of helix αC, we addressed the properties of site-specific variants V32D, Y35F, and V36D of ΔAB. This revealed that a hydrophobic To investigate the functional impact of the N-terminal arm of TtProDH in catalysis and oplaigtcohm beertiwzaeteinon hienlixcl αosCe randdet ahiell,iwx αe8c oisn sctrriuticctaeld foMr TBtPP-rfuoDseHd vcaatraialynstiss, alancdk itnegtr,armesepre scttaivbielliyz,aotinoen(. ∆A), two(∆AB),orthree(∆ABC)N-terminalhelices. ∆Aand∆ABturnedouttobehighlyactivetetramers, w2.h Rileesu∆lAtsB Cwasanalmostinactivedimer. TofurtherprobetheroleofhelixαC,weaddressedthe propertiesofsite-specificvariantsV32D,Y35F,andV36Dof∆AB.Thisrevealedthatahydrophobic 2.1. Protein Expression and Purification patchbetweenhelixαCandhelixα8iscriticalforTtProDHcatalysisandtetramerstabilization. MBP-TtProDH EE, ΔA, ΔAB and ΔABC were overproduced in E. coli TOP10 cells. From 1 L of 2. Results culture about 200–250 mg of each variant was purified, yields that we have described before for the heterologous production of MBP-TtProDH [17,19]. From SDS-PAGE analysis of the purified 2.1. ProteinExpressionandPurification enzymes, it can be appreciated that sequential removal of three helices results in a gradual decrease of suMbuBnPit- TmtPorleocDuHlarE mE,a∆ssA (,F∆igAuBrea 2n)d. ∆ABCwereoverproducedinE.coliTOP10cells. From1Lof cultuPrereavbioouutsl2y0, 0w–2e5 0dmemgoonfsetarachtevda rthiaantt rwemasopvuarl ifioef dt,hyei eMldsBPth afutwsioenh atvage dwesitchr ibtreydpbseinfo rdeofeosr tnhoet hsiegtnerifoilcoagnotulys apfrfoecdtu tchteio cnatoaflyMtiBcP p-TrotPpreorDtieHs a[1n7d,1 o9l]i.gFormomeriSzDatSio-PnA bGeEhaavniaolry osifs TotfPtrhoeDpHu r[i1fi7e]d. Henowzyemveers,, iatsc afonubneda wppitrhe cEiaEt e[d19t]h, attrysepqsuineonltyiasilsr eomf tohvea laormft-htrrueenchaetleicde svraersiaunlttss idnida gnroatd rueasludlte cinre ahsoemoofgseunbeuonuist mproelpeacuralatiromnsa. sTsh(eFriegfuorree,2 w).e used the MBP-fused variants for further studies. Figure 2. Purified MBP-TtProDH variants visualized on sodium dodecyl sulfate polyacrylamide gel Figure2.PurifiedMBP-TtProDHvariantsvisualizedonsodiumdodecylsulfatepolyacrylamidegel electrophoresis (SDS-PAGE). Molecular masses of marker proteins (M), from top to bottom: 100, 75, electrophoresis(SDS-PAGE).Molecularmassesofmarkerproteins(M),fromtoptobottom:100,75,50, 50, 37, 25 kDa. 37,25kDa. 2.2. Spectral Properties Previously, we demonstrated that removal of the MBP fusion tag with trypsin does not The far-UV CD spectra of EE and the N-terminal variants are very similar (Figure 3A) and significantlyaffectthecatalyticpropertiesandoligomerizationbehaviorofTtProDH[17]. However, comparable to that of MBP-TtProDH [17]. The visible flavin absorption spectra of EE and the arm- as found with EE [19], trypsinolysis of the arm-truncated variants did not result in homogeneous truncated variants (Figure 3B) are also nearly identical to that of MBP-TtProDH [17,19], except that preparations. Therefore,weusedtheMBP-fusedvariantsforfurtherstudies. the lowest energy absorption band of ΔABC has shifted about 2 nm to higher wavelengths. These 2d.a2t.aS spuecptpraolrPt rtohpaetr ttihesere are no major structural changes and that deletion of the N-terminal helices does not significantly alter the microenvironment of the flavin-binding site. A recent crystallographic The far-UV CD spectra of EE and the N-terminal variants are very similar (Figure 3A) and study confirmed that ΔABC (residues 38–279; PDB 5M42) has a similar overall structure as TtProDH comparable to that of MBP-TtProDH [17]. The visible flavin absorption spectra of EE and the (PDB 2G37) with an rmsd value of 0.338 Å (for 221 Cα atoms of A chains) [1,18]. arm-truncatedvariants(Figure3B)arealsonearlyidenticaltothatofMBP-TtProDH[17,19],except thatthelowestenergyabsorptionbandof∆ABChasshiftedabout2nmtohigherwavelengths. These datasupportthattherearenomajorstructuralchangesandthatdeletionoftheN-terminalhelices doesnotsignificantlyalterthemicroenvironmentoftheflavin-bindingsite. Arecentcrystallographic studyconfirmedthat∆ABC(residues38–279;PDB5M42)hasasimilaroverallstructureasTtProDH (PDB2G37)withanrmsdvalueof0.338Å(for221CαatomsofAchains)[1,18]. MolecuMleosl2ec0u1le8s, 22031,81, 8243, 184 4 of 154 of15 Molecules 2018, 23, 184 4 of 15 Figure 3. Spectral properties of EE, ΔA, ΔAB, and ΔABC. (A) Far-UV CD spectra; (B) Visible flavin absorption spectra. F2Fi.ig3g.u uHrreyed3 3r..o SdSpypenecactmtrraiacll Ppprrrooopppeerertrtiteiiese ss ooff EEEE,, ∆ΔAA,, ∆ΔAABB,, aanndd ∆ΔAABBCC.. ((AA)) FFaarr--UUVV CCDD ssppeeccttrraa;; ((BB)) VVisisibiblleefl falavvinin aabbssoorrppttioionns sppeeccttrraa.. EE purifies as a tetramer [17,19]. The truncated variants ΔA and ΔAB also form tetramers as indicated by size exclusion chromatography (Figure 4A). ΔABC elutes mainly as a dimer (Figure 4A), 22.3.3.. HHyyddrrooddyynnaammiicc PPrrooppeerrttieiess suggesting that αC plays a role in the tetramerization process. Previously, we showed that TtProDH EpEErEep ppauurreridifif fieresosm aas sM aaBt Pete-tTrtrataPmmroeeDrrH [1[ 17a7l,s1,1o99 ]f.]o.r TmThhse ete tttrrruaunmncceaartste,e dbdu vvt atahrriaiaatn nthttses ∆aΔdAAdi atainondnd o ∆Δf A1A BMB a GallsusooH fCfoolr rimnmd tuteectetrrsaa mtmheee rrss aass iinnddiiccafaotteremddab btyiyons si izozefe d eeixmxcclelurusss i[io1on7n]. c cThhhrroeo mcmrayatstotoagglr srataprpuhhcytyu( r(FeFi igaglusurore es4h 4AoAw)).s.∆ ΔaA AdBiBmCCer eeilcluu sttteresusc mmtuaarieinn (llcyyf. a aFssig aau ddreiim m1Aeer)r. ( (FFiigguurree 44AA)),, Mixing of EE and ΔABC followed by analytical gel filtration reveals two separate peaks, a peak ssuuggggeessttiinngg tthhaatt ααCC ppllaayyss aa rroollee iinn tthhee tteettrraammeerriizzaattiioonn pprroocceessss.. PPrreevviioouussllyy,,w wees shhoowweeddt thhaattT TttPPrrooDDHH for the tetrameric species of EE and a peak for the dimeric species of ΔABC (Figure 4B). This indicates pprreeppaarreeddf frroommM MBBPP--TTttPPrrooDDHHa alslsoof foorrmmsst teettrraammeerrss,,b buuttt thhaattt thheea addddiittiioonno off1 1M MG GuuHHCClli inndduucceess tthhee that mixing of the two enzyme forms does not lead to EE-ΔABC association. Moreover, SDS-PAGE ffoorrmmaattiioonno offd diimmeerrss[ [1177]].. TThhee ccrryyssttaall ssttrruuccttuurreea allssoos shhoowwssa ad dimimeerricics strtruucctuturree( c(cf.f.F Figiguurree1 1AA).). of the gel filtration fractions shows that no subunit exchange occurs (inset Figure 4B). Mixing of EE and ΔABC followed by analytical gel filtration reveals two separate peaks, a peak for the tetrameric species of EE and a peak for the dimeric species of ΔABC (Figure 4B). This indicates that mixing of the two enzyme forms does not lead to EE-ΔABC association. Moreover, SDS-PAGE of the gel filtration fractions shows that no subunit exchange occurs (inset Figure 4B). FigurFeig4u.reH 4y. Hdryoddroydnyanmamicicp prrooppeerrttiieess ooff EEEE, Δ,A∆,A Δ,A∆BA, aBn,da ΔnAdB∆C AasB mCoansitomreodn bityo SreudpebrdyexS u20p0e sridzee-x 200 size-eexxcclluussiioonn cchhrroommaattooggrarapphhy.y .(A(A) )EElultuiotino npapttaetrtne ronf otfheth MeBMPB-TPt-PTrtoPDrHoD vHarivaanrtisa; n(Bts); H(By)dHroyddyrnoadmyinc amic propeprrtoiepserotfieEs Eofa EnEd a∆ndA ΔBACB,Cm, imxeixdedin ine qequuaalla ammoouunnttss aanndd eqequuiliiblirbarteadte adt raotormoo tmemtpeemraptuerrea touvreernoivgehrt.n ight. SDS-PAGE of the gel filtration fractions is also shown. SDS-PAGEofthegelfiltrationfractionsisalsoshown. Additional information about the oligomeric state of the different variants was obtained by MnFaiigtxiuvinree g 4mo. afHsEsy Edsraponedcdytrn∆oamAmeBictCr py.rf ooTpllheorewt ieeessd toimbf yEaEtae,nd Δ aAlmy, atΔiscAsaeBls, g a(eTnladfib ΔllteAr aB1t)Ci o canosn rmefivormenai tlosthrteawdt obΔysA eS puaapnredartd eeΔxpA e2Ba0 0ke ssx,iizaset -peak forthpeerxtecedltuorsamimoinne arcnihctrlyosp maeasc tioteegstrraoapmfhEeyEr.s ,a( Anan)d dEa lΔuptAeioaBnkC p faoasrt tetdhrinme deorfi. m tWheeri tiMhc sBΔpPAe-TcBitCePs,r oomDfiHn∆o Arv BaarCmiao(nFutsing; tu(sB roe) fH 4tBeyt)dr.arTomhdeiysrnsi anamdreiic c ates thatmpprirxeosipneengrtt,oi eifnst ohafge ErteEwe amoneden nΔt zAwyBimtChe, tmfhoeirx maendsa ilndy oetiqecusalan lgo aetml lfeoilautdrnatttsio oannE dEr ee-s∆quuAlitlsBi bC(rFaiagtseusdro eac t4i raAotio)o.m nF o.terM mΔopAre eraoantvuder rΔe, AoSvDBe,S rsn-oPigmAheGt . Eof thegedSliDmfiSle-trPrsaA taGiroEen ooffbr atshecerti vgoeendls fwislthirtoahtw ionsnat tfhirvaaect tmniooanssss ui sbs apulesncoit trsoehmxocwehtnray.n , gaendo cfcourr sΔ(AinBsCe tmFoignuormee4rsB, ).although their abundance is rather low. Denaturing the different complexes enabled an accurate mass measurement Additionalinformationabouttheoligomericstateofthedifferentvariantswasobtainedbynative mass Aspdedcittrioomnaelt riyn.fTohrmeeastitoimn aatbedoumt athssee so(liTgaobmlee1r)icc osntafitrem oft htahte∆ dAifafenrden∆t AvBareixainsttsp wreadso mobitnaainnetldy absy tnetartaivmee rms,aasns ds∆pAecBtrComasetdriym. eTr.hWe iethsti∆mAaBteCd, mminasosreas m(oTuabnltes o1f) tectoranmfiremrs athreatp rΔesAe nat,nidn aΔgAreBe meexnistt wpirtehdothmeinananaltylyti caasl tgeetrlafimlterrast,i oanndre sΔuAltBsC(F aigsu dreim4eAr). .WFoitrh∆ ΔAAaBnCd, ∆mAinBo,rs oammeoudnimts eorsf aterteraombseerrsv aedre wpirtehsennatt,i vine amgaresesmspeenctt rwoimthe ttrhye, aanndalyfotirca∆l AgBelC fimltroantioomn erress,uallttsh (oFuigguhrteh 4eAir)a. bFuonr dΔaAn caenids ΔraAthBe, rsloomwe. dimers are observed with native mass spectrometry, and for ΔABC monomers, although their abundance is rather low. Denaturing the different complexes enabled an accurate mass measurement Molecules2018,23,184 5of15 Denaturingthedifferentcomplexesenabledanaccuratemassmeasurementoftheindividualsubunits (Table1). Thesemassesshowthatallofthevariantsexistofidenticalsubunits. Table1.MolecularmassesofEE,∆A,∆AB,and∆ABCasdeterminedbynativeanddenaturedESI-MS. Molecules 2018, 23, 184 5 of 15 Bothpredicted(Pred.)aswellasexperimental(Exp.)massesaregiveninkDawithexperimentalerrors loefs sththea inn0d.i0v1i%du.aFlo rsucbalucnuiltast i(oTnaobflet h1e).p Trehdeiscete mdansasteivse smhoawss etsh,aitt haalls obfe etnhet avkaerniainnttso aecxcisotu onft tihdaetnetiaccahl ssuubbuunniittsc.o ntainsanon-covalentlyboundFADcofactor(molecularmass786Da). The experimental masses of native and denatured ΔABC do not correspond with the predicted masses. The observed species appears to be C-terminaNllayt itvruencated [18]. Based on the estimateDde mnaatussr,e d cleavage occurs before Arg288T,e lteraamdienrg to the removaDl oimf ae rpart of the C-teMrmoninoaml etaril with sequence (288-RRIAERPENLLLVLRSLVSGLE-309). This truncated form has a predicted subunit mass of Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. 71884.9 Da, close to the measured mass of 71899.3 Da [18]. MBP-TtProDHEE* 317.8 319.6 158.9 158.9 79.5 - 78.7 78.7 MBP-TtProDH∆A 310.1 311.3 155.0 154.9–155.7 77.5 - 76.7 76.8 MBP-TTatPbrloe D1.H M∆oAleBcular ma3s0s5e.s1 of E3E0,7 Δ.6A–3, 0Δ7A.8B, and1 Δ52A.6BC as 1d5e2t.e6r–m1i5n3e.7d by 7n6a.t3ive and d-enatured7 E5S.5I- 75.5 MBP-TMtPSr.o BDoHth ∆prAeBdiCcted (Pr3e0d0..)7 as w2e9l0l .a0s– e2x9p0.e7rimen1ta5l0 (.E4xp.) m1a4s5s.0e–s 1a4r6e. 0given7 i5n.2 kDa 7w1i.t9h– e7x2p.7erime7n4t.4al 71.9 errors less than 0.01%. For calculation of the predicted native masses, it has been taken into account MBP-TtPtrhoaDt eHac∆hA sBubVu3n2itD conta3i0n5s. 2a no2n9-c6o.2v–a3le0n4.t4ly bou1n5d2 F.6AD co1fa4c6t.o5–r 1(m49o.0lecula7r6 .m3ass 77836.0 D–7a6).. 0 75.5 73.0 75.5 MBP-TtProDH∆ABY35F 305.1 307.4 152.5 152.3–152.9 76.3 - 75.5 75.5 Native Denatured MBP-TtProDH∆ABV36D 305.2 Te2t9ra6m.2er 152.6 Dim15e1r.1–151.9 7M6.3onomer - 75 .5 73.0 75.5 Pred. Exp. Pred. Exp. Pred. Exp. Pred. Exp. *Asdeterminedpreviously[19]. MBP-TtProDH EE * 317.8 319.6 158.9 158.9 79.5 - 78.7 78.7 MBP-TtProDH ΔA 310.1 311.3 155.0 154.9–155.7 77.5 - 76.7 76.8 MBP-TtProDH ΔAB 305.1 307.6–307.8 152.6 152.6–153.7 76.3 - 75.5 75.5 TheMexBpPe-TritmProeDntHa lΔmABaCss eso3f00n.a7 tiv2e90a.0n–d29d0.e7 na1t5u0r.e4 d∆14A5.B0–C14d6.o0 no7t5.c2o rre71s.p9–o7n2d.7 wi7t4h.4t he7p1.r9e dicted 73.0 massesM. BTPh-eTtoPrbosDeHrv ΔeAdBs Vp3e2cDie s3a0p5.p2 ear2s96t.2o–3b0e4.4C -t1e5r2m.6i na1l4l6y.5–tr1u49n.0c ate7d6.3[ 18]7.3.0B–a7s6e.0d o7n5.5t he estimated 75.5 mass, cleavage occurs before Arg288, leading to the removal of a part of the C-terminal tail with MBP-TtProDH ΔAB Y35F 305.1 307.4 152.5 152.3–152.9 76.3 - 75.5 75.5 sequence(288-RRIAERPENLLLVLRSLVSGLE-309). Thistruncatedformhasapredictedsub7u3.n0 itmass MBP-TtProDH ΔAB V36D 305.2 296.2 152.6 151.1–151.9 76.3 - 75.5 of71,884.9Da,closetothemeasuredmassof71,899.3Da[18]. 75.5 * As determined previously [19]. 2.4. CatalyticProperties 2.4. Catalytic Properties Figure5presentsanoverviewofthesteady-statekineticpropertiesoftheMBP-TtProDHvariants. Figure 5 presents an overview of the steady-state kinetic properties of the MBP-TtProDH ThekineticparametersderivedfromtheseexperimentsaresummarizedinTable2. TheprolineK m variants. The kinetic parameters derived from these experiments are summarized in Table 2. The valuesofEE,∆A,∆AB,and∆ABCarecomparable. However, ∆Aand∆ABhaveaslightlyhigher activiptyrotlhinaen KEm Evawluheisl eof∆ EAE,B ΔCAi,s ΔaAlmB,o asntdi nΔaAcBtiCv ea.reT choemsepadraatbales. uHgogweesvtetrh, aΔtAα aAnda nΔdABα Bhaavree an solitgrhetqlyu ired higher activity than EE while ΔABC is almost inactive. These data suggest that αA and αB are not foropretiqmuiarledac ftoirv oitpyt,iamnadl atchtaivtiftyu,r athnedr thdaetl efutirothneor fdheleeltiixonα oCf hiselcirxi tαicCa ilsf corritcicaatla floyrs icsa.talysis. FigurFeig5u.reS 5te. aStdeyad-syt-astteatek iknineetitcicss ooff EEEE, ,Δ∆AA, Δ,A∆BA, Ban,da nΔdAB∆CA. BThCe. fTithteed ficuttrevdes caurer vreetsriaevreedr efrtormie vneodn-from non-lliinneeaarr rreeggrreessssiioonn aannaalylysissi sapapplpylinygin tghet hMeiMchiacehliase-Mlise-nMteenn eteqnuaetqiouna. tEioacnh. Edaatcah pdoaintat wpoasin rtetwrieavserde tirni eved triplicate. intriplicate. Since TtProDH has a low but significant proline oxidase activity [1], it was of interest to address the oxygen reactivity of the N-terminal arm variants. For all of the variants described above, Molecules2018,23,184 6of15 Table2. KineticparametersoftheMBP-TtProDHvariantsat25◦C,pH7.4,asdeterminedwiththe Proline:DCPIPoxidoreductaseassay,usingprolineasthevariablesubstrate,andspecificactivities oftheMBP-TtProDHvariantsasdeterminedbytheproline:O assay,ataconcentrationof100mM 2 proline.EachdatapointfortheProline:DCPIPassaywasretrievedintriplicate;thedatapointsforthe Proline:O assaywereretrievedinduplicate.TherawkineticdataoftheProline:DCPIPassay,usedto 2 determinetheKmandkcat,isprovidedinTableS1. Proline:DCPIPAssay Proline:O2Assay Km(mM) kcat(s−1) kcat/Km(s−1M−1) SpecificActivity(mU/mg) MBP-TtProDHEE* 68±8 9.8±0.5 146 266±12 MBP-TtProDH∆A 116±5 12.6±0.3 109 405±15 MBP-TtProDH∆AB 60±3 13.6±0.3 229 228±8 MBP-TtProDH∆ABC 114±8 0.7±0.02 6 20±1 MBP-TtProDH∆ABV32D 309±25 3.2±0.2 10 265±4 MBP-TtProDH∆ABY35F 161±29 14.1±1.5 88 388±5 MBP-TtProDH∆ABV36D 189±27 0.3±0.03 1.6 21±1 *Asdeterminedpreviously[19]. SinceTtProDHhasalowbutsignificantprolineoxidaseactivity[1],itwasofinteresttoaddressthe oxygenreactivityoftheN-terminalarmvariants. Forallofthevariantsdescribedabove,micromolar concentrations of enzyme were needed to reliable measure consumption of oxygen, and very low specific activities were observed (Table 2). Nevertheless, these data confirm that removal of the completeN-terminalarm(∆ABC)alsoimpairstheprolineoxidaseactivityofMBP-TtProDH. 2.5. ReactionwithN-propargylglycine TtProDHisirreversiblyinactivatedbythesuicideinhibitorN-propargylglycine[10]. Inactivation involvestheinitialoxidationofN-propargylglycinetoN-propargyliminoglycineandthesubsequent formationofabicovalentlinkagebetweenflavinN(5)andtheε-aminogroupofLys99(Figure6C). Lys99islocatedintheloopbetweenβ2andα2andisinvolvedinbindingthecarboxylicmoietyof proline[1]. UponreactionwithN-propargylglycinetheabsorptionmaximumofTtProDHat450nm disappears,whilethemaximumaround380nmgraduallyincreases. Furthermore,thepeakat380nm shiftstolongerwavelengths. Thisbehaviorisindicativeoftheinitialreductionoftheflavinandthe subsequentformationofthecovalentLys99-FADadduct[8,10].AfterreactionwithN-propargylglycine, theenzymeislockedinthereducedstate. ToprobethecatalyticfeaturesoftheMBP-TtProDHvariantsinfurtherdetail,weinvestigated thereactivityofEEandthearm-truncatedvariantswithN-propargylglycine. Figure6Ashowsthat allofthevariantsexcept∆ABCformacovalentflavinadduct,andthatthereactionsresultinsimilar absorptionchanges,asobservedbeforewithTtProDH[10]. However,amorecarefulanalysisofthe kineticsofthereactionsrevealssignificantdifferences. ForEE,∆A,and∆AB,flavinreductionandadductformationareclearlyobserved(Figure6A). Reduction of EE by N-propargylglycine is relatively slow, as evidenced from the time-dependent decrease in absorption at 450 nm. Flavin reduction is immediately followed by covalent adduct formationasevidencedfromtheabsorbanceincreasearound380and405nm. Variants∆Aand∆AB revealanincreasedrateofreductioncomparedtoEE.Thiscorrespondswiththeincreasedk values cat forthesevariants(Table2). Thepeakat380nmshowsaredshiftto385nmforEEandto388nm for∆Aand∆AB.Furthermore,bothfor∆Aand∆AB,theincreaseinabsorbancearound388nmis morepronounced. ∆ABCshowsneitherflavinreductionnorformationofaflavinadduct(Figure6A).However, aslowriseinabsorptionwithamaximumat290nmisobservedinthenear-UVregion,pointingtothe conversionofN-propargylglycinetoN-propargyliminoglycine. ActivitymeasurementswithDCPIP suggestthatN-propargylglycineisindeedapoorsubstratefor∆ABC. Molecules2018,23,184 7of15 Activity of the different enzyme variants before and after incubation with 2.5 mM of N-propargylglycinewasmeasured(Figure6B).ForEE,residualactivityafter90minofincubation withtheinhibitorisabout13%. For∆Aand∆ABtheactivitylossisevenmorepronounced,ingood agreement with the spectral results. The residual activity of ∆ABC after 90 min incubation with N-propargylglycineisextremelylow(Figure6B). Molecules 2018, 23, 184 7 of 15 FigFuirgeu6re. R6.e Racetaicvtiitvieitsieos fotfh teheN N-te-tremrmininalala ramrmT TtPtPrrooDDHH vvaarriiaannttss wwiitthh NN--pprrooppaarrggyylglglylycicnine.e (.A()A L)eLfte: ft: absaobrspotriopntiosnp sepcetrcatrlacl hcahnanggeseso off tthhee vvaarriiaannttss uuppoonn inicnucbuabtiaotnio wnitwhi Nth-pNro-ppraorgpyalrgglyyclginlye.c Tinhee. bTlahcek lbinlaec k lineinidnidcaicteast etshet hsepescptreucmtr ubmefobree ftohree atdhdeitaiodnd oitfi oNn-porfopNar-pgyrolgplayrcginyel.g Slypceicntera. wSepree crtercaorwdeedre art e1c omrdine d at 1inmterinvailns tefrovr al9s0 fomri9n0. mRiignh.t: Raibgshotr:baanbcseo rbchaanncgeecsh aonf gtehse ofvatrhieanvtsa riuapnotsn uipnocunbianticounb awtiiothn wNi-th N-pprrooppaarrggyyllggllyycciinnee ffoolllloowweedd aatt 338800, ,440055, ,aanndd 445500 nnmm; ;((BB) )AAcctitvivitiyty oof fththee ddififfefererennt teennzyzmyme evavrairainatns ts befobereforaen danadf taefrterin icnucbuabtaitoionn wwiitthh NN--pprrooppaarrggyyllgglylyccinine.e .ErrEorrr obrarbs aarrse abraesebda soend thorneet hrerpeleicraetepsl.i c(aCt)e s. (C)CChheemmicicaal lsstrtuructcuturer eofo NfN-p-rporpoapragryglgyllygclyincein aenadn tdhet hcoevcaolvenatle LnytsL9y9-sF9A9-DFA adDdaudcdt. uct. 2.6. Interactions between Helix αC and Helix α8 2.6. InteractionsbetweenHelixαCandHelixα8 ∆AΔBACBiCs pisr opdroudcuedceads aas caa ctaatlayltyictiaclallylyi mimppaairireeddd diimmeerr.. IInn aaddddiittiioonn,, tthhiiss MMBBPP-T-TtPtProroDDHH vavraiarinatn its is truncated at its C-terminal helix α8. This suggests that helix αC is important for the stabilization of truncatedatitsC-terminalhelixα8. ThissuggeststhathelixαCisimportantforthestabilizationof helix α8. The three-dimensional model of the crystal structure of TtProDH suggests that there is a helixα8. Thethree-dimensionalmodelofthecrystalstructureofTtProDHsuggeststhatthereisa hydrogen bond between Tyr35 of αC and Glu295 of α8 (Figure 7). Glu295 is part of the sequence that hydrogenbondbetweenTyr35ofαCandGlu295ofα8(Figure7). Glu295ispartofthesequencethat is cleaved off in ΔABC. To investigate whether the Tyr-Glu interaction is important for the iscleavedoffin∆ABC.ToinvestigatewhethertheTyr-Gluinteractionisimportantforthestabilization stabilization of helix α8, we changed Tyr35 to Phe. In addition, there is a hydrophobic patch between ofhelixα8,wechangedTyr35toPhe. Inaddition,thereisahydrophobicpatchbetweenhelixαC helix αC and α8 (Figure 7). To examine the importance of this patch for the stabilization of helix α8, andα8(Figure7). Toexaminetheimportanceofthispatchforthestabilizationofhelixα8, Val32, Val32, and Val36 individually were changed into Asp. The single amino acid substitutions were andinVtarol3d6uicneddi vinid MuBalPly-TwtPerroeDcHha ΔnAgeBd, siinntcoeA thsips. vTahrieansitn igs lfeuallmy ainctoivaec iadndsu fbosrtmitsu stitoanblsew teetrreaminetrrso.d Iun ctehdisi n way, we only look at the interaction between helix αC and α8 without possible interference of helix αA and αB. Molecules2018,23,184 8of15 MBP-TtProDH∆AB,sincethisvariantisfullyactiveandformsstabletetramers. Inthisway,weonly lookattheinteractionbetweenhelixαCandα8withoutpossibleinterferenceofhelixαAandαB. Molecules 2018, 23, 184 8 of 15 FFiigguurree7 7..I Inntteerraaccttiioonnss bbeettwweeeenn hheelliixx ααCC aanndd hheelliixx αα88.. TThhee rreessiidduueess iinn hheelliicceess ααCC aanndd αα88a arreec coololorreedd iinna ah hyyddrroopphhoobbicic( (rreedd))t oton noonn-h-hyyddrroopphhoobbicic( (wwhhititee))g grraaddieienntt,, aaccccoorrddiinngg ttoot htheeh hyyddrroopphhoobbicicitityys sccaalele iinnttrroodduucceeddb byyE Eiisseennbbeerrgge etta all..[ [2200]].. TThhee rreemmaaiinniinngg ppaarrtt oofft thheec caattaallyyttiiccd doommaaiinn iisss shhoowwnni inng grreeyya anndd tthheeF FAADDc coofafacctotorri siss shhoowwnni niny yeellloloww..( (AA))I Ioonnp paaiirrT Tyyrr3355( α(αCC))a annddG Glulu229955( (αα88));;( (BB)) HHyyddrroopphhoobbiiccp paattcchh bbeettwweeeennα αCCa annddα α88 wwiitthh VVaal3l322( (ααCC))a annddV Vaal3l366( α(αCC))i ninddicicaatetedd..D Daattaaa accccoorrddiinnggt toot thheec crryyssttaalls sttrruuccttuurree ooffT TttPPrrooDDHH( (PPDDBBe enntrtryy2 2GG3377).). The far-UV CD spectra of V32D, Y35F, and V36D (Figure 8A) are identical to the far-UV CD- Thefar-UVCDspectraofV32D,Y35F,andV36D(Figure8A)areidenticaltothefar-UVCD-spectra osfptehcetrNa -otef rtmhei nNa-ltveramriainnatsl v(Fairgiaunrets3 (AFi)g.uTrhee 3vAis)i.b Tlehefl avvisinibaleb sfolarvpitnio anbpsorroppteiortnie psroofptehreti∆esA oBf vthaeri aΔnAtsB variants show that the low energy absorption bands of V32D and V36D have shifted about 2 nm to showthatthelowenergyabsorptionbandsofV32DandV36Dhaveshiftedabout2nmtohigher whaigvheelern wgtahv,ealsencgotmh,p aarse cdotmopthaoresde otof ∆thAoBsea nodf ΔYA35BF a(Fnidg uYr3e5sF3 B(Faingudr8eBs )3.BT haunsd, t8hBe)fl. aTvhiunsa, btshoer pfltaivoinn parbospoerrptiteiosno fpVro3p2eDrtaiensd oVf V363D2Dre asnemd Vbl3e6tDho rseeseomf∆blAe BthCo(sFei gouf rΔeA3BBC). (Figure 3B). Size exclusion chromatography of Y35F indicates that substitution of Tyr35 with Phe does not SizeexclusionchromatographyofY35FindicatesthatsubstitutionofTyr35withPhedoesnot aaffffeeccttt thheet teettrraammeerriiccn naattuurreeo off ∆ΔAABB ((FFiigguurree 88CC)).. TThheerreeffoorree,, tthhee iinntteerraaccttiioonn bbeettwweeeenn TTyyrr3355a annddG Glluu229955 does not seem critical for stabilization of helix α8. V32D and V36D elute much later from the gel does not seem critical for stabilization of helix α8. V32D and V36D elute much later from the gel filtration column than Y35F, suggesting that these variants mainly form dimers (Figure 8C). Native filtrationcolumnthanY35F,suggestingthatthesevariantsmainlyformdimers(Figure8C).NativeMS MS of Y35F confirms the presence of tetramers. Furthermore, V32D and V36D are present both as ofY35Fconfirmsthepresenceoftetramers.Furthermore,V32DandV36Darepresentbothastetramers tetramers and dimers (Table 1). The mass of denatured Y35F shows the presence of identical subunits, anddimers(Table1). ThemassofdenaturedY35Fshowsthepresenceofidenticalsubunits,while while V32D and V36D show two subunit masses, of which one corresponds with the predicted mass V32DandV36Dshowtwosubunitmasses,ofwhichonecorrespondswiththepredictedmass(Table1). (Table 1). The differences between the subunit masses suggest that both V32D and V36D are partially ThedifferencesbetweenthesubunitmassessuggestthatbothV32DandV36Darepartiallyintact intact and partially cleaved before R288 (predicted mass 73,001.2 Da), indicating flexibility and andpartiallycleavedbeforeR288(predictedmass73,001.2Da),indicatingflexibilityandinstabilityof instability of helix α8. helixα8. Analysis of the catalytic properties of Y35F confirms that the interaction between Tyr35 and Glu295 is not crucial for the functioning of TtProDH (Figure 8D). The minor decrease in catalytic efficiency when compared to ΔAB mainly results from a slight increase in Km for the proline substrate (Table 2). V32D and V36D, on the other hand, are poorly active (Figure 8D). With these variants, a considerable decrease in catalytic efficiency is observed (Table 2). Oxidase activity of especially V36D is very low (Table 2), as found with ΔABC. Molecules2018,23,184 9of15 Molecules 2018, 23, 184 9 of 15 FiFgiugurere8 .8.P Proroppeertriteiesso offh heelilxixα αCCv vaarriiaannttss ooff ∆ΔAABB.. ((AA)) FFaarr--UUVV CCDD ssppeeccttrraa;; ((BB)) VViissiibbllee ffllaavviinn aabbssoorrppttiioonn spsepcetcrtar;a(; C(C))H Hyyddroroddyynnaammicicp prrooppeerrttiieessa ass mmoonniittoorreedd bbyy SSuuppeerrddeexx 220000 ssiizzee--eexxcclluussiioonn cchhrroommaatotoggrraapphhyy; ; anadnd,(, D(D))S tSetaedadyy-s-tsatatetek kinineetitcicd daattaaa assd deetteerrmmiinneedd wwiitthh tthhee PPrroolliinnee::DDCCPPIIPP aassssaayy.. EEaacchh ddaattaa ppooiinntt wwaass rertertireiveevdedin int rtirpiplilciactaet.e.T Thheer raawwk kinineetticicd daattaao off tthhee PPrroolliinnee::DDCCPPIIPP aassssaayy,, uusseedd ttoo ddeetteerrmmiinnee tthhee KKmm aanndd kckactatv vaalluueess,, iiss pprroovviiddeedd iinn TTaabbllee SS11.. The catalytic features of the helix αC variants were investigated in more detail by probing their Analysis of the catalytic properties of Y35F confirms that the interaction between Tyr35 and reactivity with the suicide inhibitor N-propargylglycine (Figure 9). For Y35F (Figure 9A), the rates for Glu295 is not crucial for the functioning of TtProDH (Figure 8D). The minor decrease in catalytic flavin reduction and adduct formation are similar as found for ΔAB (Figure 6A). For V32D, flavin efficiencywhencomparedto∆ABmainlyresultsfromaslightincreaseinK fortheprolinesubstrate reduction and adduct formation are also observed (Figure 9A), but these pmrocesses are much slower (Table 2). V32D and V36D, on the other hand, are poorly active (Figure 8D). With these variants, than for ΔAB. The flavin prosthetic group of V36D is not reduced by N-propargylglycine, and the aconsiderabledecreaseincatalyticefficiencyisobserved(Table2). OxidaseactivityofespeciallyV36D typical absorption increase around 380 nm, indicative for adduct formation, is also not observed isverylow(Table2),asfoundwith∆ABC. (Figure 9A). However, as for ΔABC, a slow rise in absorption occurs in the region 300–350 nm, ThecatalyticfeaturesofthehelixαCvariantswereinvestigatedinmoredetailbyprobingtheir pointing to the conversion of N-propargylglycine to N-propargyliminoglycine. reactivitywiththesuicideinhibitorN-propargylglycine(Figure9). ForY35F(Figure9A),therates All the helix αC variants lose activity when treated with N-propargylglycine. After incubation for flavin reduction and adduct formation are similar as found for ∆AB (Figure 6A). For V32D, for 90 min, Y35F is almost completely inactivated, but V32D and V36D retain 30% and 63% of their flavinreductionandadductformationarealsoobserved(Figure9A),buttheseprocessesaremuch original (rather low) activity (Figure 9B). slowerthanfor∆AB.TheflavinprostheticgroupofV36DisnotreducedbyN-propargylglycine,and thetypicalabsorptionincreasearound380nm,indicativeforadductformation,isalsonotobserved (Figure9A).However,asfor∆ABC,aslowriseinabsorptionoccursintheregion300–350nm,pointing totheconversionofN-propargylglycinetoN-propargyliminoglycine. AllthehelixαCvariantsloseactivitywhentreatedwithN-propargylglycine. Afterincubation for90min,Y35Fisalmostcompletelyinactivated,butV32DandV36Dretain30%and63%oftheir original(ratherlow)activity(Figure9B). MolMecuolleecsu2l0es1 82,02138,, 12834, 184 10o1f01 o5f 15 FigFuirgeu9r.e R9.e aRcetiavcittiiveistioesf hoef lihxelαixC αvCar ivaanrtisanotfs ∆oAf BΔAwBit hwNith-p Nro-pparrogpyalrgglyylcginlyec.in(eA. )(LAe)f tL:eaftb: saobrpsotiropntion spescptreacltrcahla cnhgaensgoefs tohfe tvhaer viaanrtisanutps ounpionnc uinbcautiboantiwonit whiNth-p Nro-ppraorpgayrlggylylgcilnyec.inTeh. eThblea cbklalcikn eliinned iincadtiecsates thetshpee scptreucmtrubmef boreefotrhee tahded aidtidointioonf Nof- pNro-ppraorpgayrlggylylgcilnyec.inSep. eScptreactwrae wreerreec orercdoerddaedt1 amt 1i nmiinnt einrvtearlvsafolsr for 90m90i nm.iRni.g Rhitg:hatb: saobrsboarnbcaencchea cnhgaensgoefs tohfe thvea rviaanritasnutsp ounpoinnc iunbcautbioantiowni twhiNth- pNr-oppraorpgayrlggylylgcilnyecifnoel lfoowlloedwed at3a8t0 3,8400,5 4,0a5n,d an4d50 4n5m0 n;m(B;) (AB)c tAivcittiyviotyf tohfe thdeif fdeirfefenrteenntz eynmzyemvaer viaanritasnbtesf boerefoarned anafdt earftienrc uinbcautbioantiownit whith N-pNro-ppraorpgayrlggylylgcilnyec.inEer.r Eorrrboarr bsaarrse abraes bedasoend tohnr etherreeep lriecpaltiecsa.tes. 3. D3.i sDciusscsuisosnion ProPlirnoelidneeh dyedhryodgerongaseensacsoens tcaoinntaacino nas ecrovnesder(vβeαd) 8(βTαIM)8 -TbaIMrre-bldarormela dinoamnadina nanNd-t earnm Nin-atelramrmintahl aatrm difftehrast indilfefnegrsth inam leonnggthm oanmoofunngc tmioonnaolfbuancctetiroianlaaln bdaecutekraiaryl oatnicdP erouDkaHrsy.oItnict hPirsosDtuHdsy., wIne itnhvise ssttiugdatye,d we theinfuvnecsttiiognaateldim tphaec tfuofntchtieoNna-tle rimmpinaaclt aromf tohfeT hNer-mteurmstihnearlm oaprmhil uosfP TrohDerHm.uWs ethaenramlyozpehdiluvsa rPiarnotDsHth.a tWe lackanoanlyez(e∆dA v),atrwiaont(s∆ tAhBat) ,laocrkt horneee ((Δ∆AA)B, Ctw)No -(tΔeArmBi)n, aolrh tehlriecee s(ΔanAdBcCo)m Np-aterremditnhaels ehevlaicreiasn atnsdto ctohmepEaEred vartihaensteo vfaMriBanPt-sf utose tdheT tEPEro vDaHria.nTth oefl MattBePr-vfuarsieadn tTitsParohDigHh.l yThaec tliavtetesro vluabrilaenfto rism ao hfitghhelye nazcytimvee stohlautble excfloursmiv oelfy thfoe remnzsytmetrea tmhaetr sex[1cl9u].siSvpeelyc tfroarlmans atelytrsaismsehros w[1e9d]. tShpaetcttrruanl acantailoynsiosf sthhoewNe-dte trhmati ntraulnacramtioonf of TtPtrhoeD NH-tdeormesinnaeilt haerrma fofefc tTtthPerobDinHd indgoeosf tnheeitFhAeDr acofffeacctt otrhne obritnhdeinmgi corof etnhvei roFnAmDe nctoofafctthoer flnaovri nthe isomalliocrxoaezninveirroinnmg.ent of the flavin isoalloxazine ring. WeWaler eaalrdeyadshyo swhoewdethda tthnaot nn-onna-tnivaetivage gargeggraetgioantioonf MofB MP-BTPt-PTrtoPDroHDiHsd isu edutoe tthoe thhey dhryodprhoopbhiocbitiycity ofhofe lhixelαixA α.ARe. pRleapcliancginPgh eP1h0e1a0n danLde uL1e2u1o2f αofA αwAi twhigthlu gtalumtaamteasteelsi meliinmaitneasteths ethfoer fmoramtioantioonf loafr glaerrger aggargeggraetgesat[e1s9 ][.1H9]e. rHe,ewree, ewstea belsisthabedlisthheadtt htheacto tmhep lceotemrepmleotev arleomfohvealilx oαf Ahe(∆liAx )α,Aor r(ΔemAo),v oalr orfehmeolivceasl of αAhaenlidcesα BαA(∆ AanBd), hαaBs (tΔhAeBsa),m heaesf ftehcet :snaomaeg egfrfeegcat:t ensoa raeggorbesgearvteesd aarned o∆bsAeravnedd ∆aAndB ΔexAc luasnidv eΔlyAB foremxctleutsriavmeleyr sf.orTmh itsectroanmfierrms.s Tthhiast cαoAnfiirsmress tphoant sαibAl eisf orerstphoenisnibvliet rfoora tghger eing avtiitorno aogfgMreBgPa-tTiotnP roofD MHBP- andTttPhraotDbHo thanhde litcheast αbAothan dheαliBcesa reαAn oatnedss eαnBti aalrfeo rnotht eetsesternatmiael rifzoart itohne ptreotrcaemsse.riFzuartitohne rmproorcee,ss. estFimuratthioenrmoforkei,n eetsitcimpaartaiomne otefr skirneevteiac lepdartahmateαteArsa rnedveαaBleadr ethnaott eαsAse nantidal αfoBr tahree ennozty emssaetinctiaaclt ifvoirt ythe ofMenBzPym-TatPtirco aDcHtiv.iAtyc touf aMllyB,P∆-TAtBPriosDthHe. mAcotsutaalclyti,v ΔeAMBB iPs -tfhues emdoTstt ParcotiDvHe MvaBrPia-fnutsreedp TotrPterdoDthHu svafarira.nt Incruebpaotriotends wthiuths thfaer.m Iencchuabnaistimon-bsa sweidthin thhieb itmorecNh-apnriospma-rbgayslgedly ciinnheibyiiteoldr eNd-spurpoppoarrtgiynlggliyncfoinrme aytiieolnded abosuutppthoertcinatga liyntfiocrmcoamtiponet eanboceuta nthde tchaetasltyrtuicc tcuormalpientteengcreit aynodf t∆hAe satrnudct∆uAraBl .inTtheegrflitayv oinf ΔcoAfa acntodr ΔoAf B. The flavin cofactor of both arm-truncated variants is rapidly reduced, immediately followed by covalent adduct formation. This leads to irreversible suicide inactivation of the enzymes by N- propargylglycine (Figure 6).

Description:
suggesting that αC plays a role in the tetramerization process. Previously, we Mixing of EE and AABC followed by analytical gel filtration reveals two separate peaks, a peak for the tetrameric .. through the ERA-NET Industrial Biotechnology program (ERA-IB-2, project EIB.10.004) of the European.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.