ebook img

Functional Gradient Motion Planning in Reproducing Kernel Hilbert Spaces PDF

2 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Functional Gradient Motion Planning in Reproducing Kernel Hilbert Spaces

Functional Gradient Motion Planning in Reproducing Kernel Hilbert Spaces 6 Z.Marinho A.Dragan 1 0 RoboticsInstitute,CMU RoboticsInstitute,CMU 2 [email protected] [email protected] n A.Byravan B.Boots a J UniversityofWashington GeorgiaInstituteofTechnology 4 [email protected] [email protected] 1 G.Gordon S.Srinivasa ] O MachineLearningDep.,CMU RoboticsInstitute,CMU R [email protected] [email protected] . s January15,2016 c [ 1 v Abstract 8 Weintroduceafunctionalgradientdescenttrajectoryoptimizationalgorithm 4 forrobotmotionplanninginReproducingKernelHilbertSpaces(RKHSs).Func- 6 3 tional gradient algorithms are a popular choice for motion planning in complex 0 many-degree-of-freedomrobots,sincethey(intheory)workbydirectlyoptimiz- . ingwithinaspaceofcontinuoustrajectoriestoavoidobstacleswhilemaintaining 1 geometricpropertiessuchassmoothness. However,inpractice,functionalgradi- 0 entalgorithmstypicallycommittoafixed,finiteparameterizationoftrajectories, 6 1 oftenasalistofwaypoints. Suchaparameterizationcanlosemuchofthebenefit : ofreasoninginacontinuoustrajectoryspace: e.g.,itcanrequiretakinganincon- v venientlysmallstepsizeandlargenumberofiterationstomaintainsmoothness. i X Our work generalizes functional gradient trajectory optimization by formulating it as minimization of a cost functional in an RKHS. This generalization lets us r a representtrajectoriesaslinearcombinationsofkernelfunctions,withoutanyneed forwaypoints. Asaresult,weareabletotakelargerstepsandachievealocally optimaltrajectoryinjustafewiterations.Dependingontheselectionofkernel,we candirectlyoptimizeinspacesoftrajectoriesthatareinherentlysmoothinvelocity, jerk,curvature,etc.,andthathavealow-dimensional,adaptivelychosenparame- terization. Ourexperimentsillustratetheeffectivenessoftheplannerfordifferent kernels, includingGaussianRBFs, LaplacianRBFs, andB-splines, ascompared tothestandarddiscretizedwaypointrepresentation. 1 1 Introduction & Related Work Motion planning is an important component of robotics: it ensures that robots are able to safely move from a start to a goal configuration without colliding with obsta- cles.Trajectoryoptimizersformotionplanningfocusonfindingfeasibleconfiguration- spacetrajectoriesthatarealsoefficient—e.g.,approximatelylocallyoptimalforsome cost function. Recently, trajectory optimizers have demonstrated great success in a number of high-dimensional real-world problems. [16, 21–23] Often, they work by defining a cost functional over an infinite-dimensional Hilbert space of trajectories, thentakingstepsdownthefunctionalgradientofcosttosearchforsmooth,collision- freetrajectories.[17,28]Inthisworkweexploitthesamefunctionalgradientapproach, butwithanovelapproachtotrajectoryrepresentation. Whilepreviousalgorithmsare derivedfortrajectoriesinHilbertspacesintheory, inpracticetheycommittoafinite parameterization of trajectories in order to instantiate a gradient update [7, 14, 28]— typically a large but finite list of discretized waypoints. The number of waypoints is a parameter that trades off between computational complexity and trajectory expres- siveness. Our work frees the optimizer from a discrete parameterization, enabling it to perform gradient descent on a much more general trajectory parameterization: reproducing-kernelHilbertspaces(RKHSs),[2,8,20]ofwhichwaypointparameter- izations are merely one instance. RKHSs impose just enough structure on generic Hilbert spaces to enable a concrete and implementable gradient update rule, while leaving the choice of parameterization flexible: different kernels lead to different ge- ometries. Our contribution is two-fold. Our theoretical contribution is the formulation of functionalgradientdescentmotionplanninginRKHSs,astheminimizationofacost functionalregularizedbytheRKHSnorm. RegularizingbytheRKHSnormisacom- monwaytoensuresmoothnessinfunctionapproximation,[6]andweapplythesame ideatotrajectoryparametrization. BychoosingtheRKHSappropriately,thetrajectory norm can quantify different forms of smoothness or efficiency, such as any low n-th orderderivative.[25]So,RKHSnormregularizationcanbetunedtoprefertrajectories thataresmoothwith,forexample,lowvelocity,acceleration,orjerk. Our practical contribution is an algorithm for very efficient motion planning in inherently smooth trajectory space with low-dimensional parameterizations. Unlike discretized parameterizations, which require many waypoints to produce smooth tra- jectories, our algorithm can represent and search for smooth trajectories with only a fewpointevaluations. Theinherentsmoothnessofourtrajectoryspacealsoincreases efficiency; ourparametrization allowstheoptimizerto takelargesteps ateveryitera- tion without violating trajectory smoothness, therefore converging to a collision-free trajectoryfasterthancompetingapproaches. OurexperimentsdemonstratetheeffectivenessofplanningunderRKHS,andshow howdifferentchoicesofkernelsyielddifferentformsoftrajectoryefficiency.Section6 illustratestheseadvantagesofRKHSs,andcomparesdifferentchoicesofkernels. 2 2 Trajectories in an RKHS In this paper we perform trajectory optimization in a more restricted space of trajec- tories, we constrain the domain where trajectories are defined to Reproducing Kernel HilbertSpaces. Wetradeoffrepresentationalpowerforaninherentsmoothrepresen- tationoftrajectories,givenbyakernelmetric. A trajectory is a function ξ : [0,1] → C mapping time t ∈ [0,1] to robot con- figurations ξ(t) ∈ C ≡ RD. We can treat a set of trajectories as a Hilbert space by definingvector-spaceoperationssuchasadditionandscalarmultiplicationoftrajecto- ries.[9]And,wecanupgradeourHilbertspacetoanRKHSHbyassumingadditional structure: for any y ∈ C and t ∈ [0,1], the functional ξ (cid:55)→ (cid:104)y,ξ(t)(cid:105) must be contin- uous. [19, 20, 24] Note that, since configuration space is typically multidimensional (D > 1), our trajectories form an RKHS of vector-valued functions, [10] defined by the above property. The reproducing Kernel associated with a vector valued RKHS, becomesamatrixvaluedkernelK :[0,1]×[0,1]→C×C. Eq.1representsthekernel matrixofjointinteractionsfortwodifferenttimeinstances: k (t,t(cid:48)) k (t,t(cid:48)) ... k (t,t(cid:48)) 1,1 1,2 1,D k2,1(t,t(cid:48)) k2,2(t,t(cid:48)) ... k2,D(t,t(cid:48)) K(t,t(cid:48))= ... ... ...  (1) k (t,t(cid:48)) k (t,t(cid:48)) ... k (t,t(cid:48)) D,1 D,2 D,D Thismatrixhasaveryintuitivephysicalinterpretation. Itcanberegardedasaninertia tensorofarigidbodychangingovertime. Eachelementk (t,t(cid:48))tellsushowjoint d,d(cid:48) ξ (t)affectsthemotionofjointξ (t(cid:48)), i.e. itsdegreeofcorrelationorsimilaritybe- d d(cid:48) tween the two configurations. In practice, off-diagonal terms of (1) will not be zero, henceperturbationsofagivenjointdpropagatethroughtime,aswellas,throughthe restofthejoints. ThenormandinnerproductdefinedinacoupledRKHScanbewrit- ten in terms of the kernel matrix, via the reproducing property (trajectory evaluation canberepresentedasaninnerproductofthevectorvaluedfunctionsintheRKHS): y(cid:62)ξ(·)=(cid:104)ξ,K(t,·)y(cid:105) , ∀y ∈C (2) H A trajectory in the RKHS admits a representation in terms of the finite support {t }N ∈T. i i=1 (cid:88) y(cid:62)ξ∗(·)= a K(t,t )y (3) i i ti∈T If we consider the configuration vector y ≡ e to be the indicator of joint d, then d wecancaptureitsevolutionovertimeξ (t) = (cid:80)D (cid:80) a k (t,t ),takinginto d d(cid:48)=1 i i,d(cid:48) d,d(cid:48) i accounttheeffectofallotherjointsd(cid:48). The inner product in H of functions ξ1(·) = (cid:80) a k(t ,·)e and ξ2(·) = i,d i,d i d 3 (cid:80) b k(t ,·)e isdefinedas: j,d j,d j d (cid:88) (cid:88)(cid:88) (cid:104)ξ1,ξ2(cid:105) = (cid:104)ξ1,ξ2(cid:105) = a b k(t ,t ) (4) H d d H i,d j,d i j d d i,j (cid:88)(cid:88) (cid:107)ξ(cid:107)2 =(cid:104)ξ,ξ(cid:105)= a a k(t ,t ) (5) H i,d j,d i j d i,j Forexample,intheGaussianRBFRKHS(withkernelk (t,t(cid:48))=exp((cid:107)t−t(cid:48)(cid:107)2/2σ2)), d atrajectoryisaweightedsumofradialbasisfunctions: ξ(t)=(cid:88)a exp(cid:18)(cid:107)t−ti(cid:107)2(cid:19)e , a ∈R (6) i,d 2σ2 d i,d d,i Thecoefficientsa assesshowimportantaparticularjointdattimet istotheoverall i,d i trajectory. Theycanbeinterpretedasweightsoflocalperturbationstothemotionsof differentjointscenteredatdifferenttimes.Thetrajectorynormmeasuresthesizeofthe perturbations,andthecorrelationamongthem,quantifyinghowcomplexthetrajectory isintheRKHS. 3 Motion Planning in an RKHS Inthissectionwedescribehowtrajectoryoptimizationcanbeachievedbyfunctional gradientdescentinanRKHSoftrajectories. 3.1 CostFunctional WeintroduceacostfunctionalU : H → Rthatmapseachtrajectorytoascalarcost. Thisfunctionalquantifiesthequalityofagivenatrajectory(functionintheRKHS).U tradesoffbetweenaregularizationtermthatmeasurestheefficiencyofthetrajectory, andanobstacletermthatmeasuresitsproximitytoobstacles: β U[ξ]=U [ξ]+ (cid:107)ξ(cid:107)2 (7) obs 2 H AsdescribedinSection4,wechooseourRKHSsothattheregularizationtermencodes our desired notion of smoothness or trajectory efficiency (minimum length, velocity, acceleration,jerk). The obstacle cost functional is defined on trajectories in configuration space, but obstaclesaredefinedintherobot’sworkspaceW ≡R3. So,weconnectconfiguration spacetoworkspaceviaaforwardkinematicsmapx: ifB isthesetofbodypointsof the robot, then x : C ×B → W tells us the workspace coordinates of a given body pointwhentherobotisinagivenconfiguration. Wecanthendecomposetheobstacle costfunctionalas: U [ξ]=reducec(x(ξ(t),u)) (8) obs t,u 4 (cid:16) (cid:17) Algorithm1—TrajectoryoptimizationinRKHSs N,c,∇c,ξ(n)(0),ξ(n)(1) 1: foreachjointangled∈Ddo 2: Initializetoastraightlinetrajectoryξd0(t)=ξd(0)+(ξd(1)−ξd(0))t. 3: endfor 4: while(U[ξn]>(cid:15)andn<NMAX)do 5: ComputeUobs[ξn](12). 6: FindthesupportT(ξ)={ti,ui},i=1,...,N time/bodypoints(9). 7: for(ti,ui)Ni=1 ∈T(ξ)do 8: Evaluatethegradientcost∇c(ξ(ti),ui)andJ(ti,ui) 9: endfor 10: Updatetrajectory: 11: ξn+1 =(1− 1)ξn− 1 (cid:80) (cid:0)J(cid:62)(t,u)∇c(x(ξ(t),u))(cid:1)(cid:62)K(t,·) λ λ (t,u)∈T(ξ) 12: Ifconstraintsarepresent,projectontoconstraintset(Section20). 13: endwhile 14: Return: Finaltrajectoryξ∗andcosts(cid:107)ξ(cid:107)2H,Uobs. where reduce is an operator that aggregates costs over the entire trajectory and robot body—e.g., a supremum or an integral, see Section 5. We assume that the reduce operatortakes(atleastapproximately)theformofasumoversomefinitesetof(time, bodypoint)pairsT(ξ): (cid:88) U [ξ]= c(x(ξ(t),u)) (9) obs (t,u)∈T(ξ) Forexample, thesupremumoperatortakesthisformexceptonameasure-zerosetof trajectories:wheneverthereisauniquesupremum(t,u),thenT(ξ)isthesingletonset {(t,u)}. Integraloperatorsdonottakethisform,buttheycanbewellapproximatedin thisformusingquadraturerules,seeSection5.0.2. 3.2 Optimization Wecanderivethefunctionalgradientupdatebyminimizingalocalquadraticapproxi- mationofU : obs λ ξn+1 =argmin (cid:104)ξ−ξn,∇U[ξn](cid:105) + (cid:107)ξ−ξn(cid:107)2 (10) ξ H 2 H The quadratic term is based on the RKHS norm, meaning that we prefer “smooth” updates,analogoustoZuckeretal.[28]Thisminimizationadmitsasolutioninclosed form: (cid:18) (cid:19) 1 1 ξn+1(·)= 1− ξn(·)− ∇U [ξn](·) (11) λ λ obs SincewehaveassumedthatthecostfunctionalU [ξ]dependsonlyonafinitesetof obs points T(ξ) (9), it is straightforward to show that the functional gradient update has 5 a finite representation (so that the overall trajectory, which is a sum of such updates, alsohasafiniterepresentation).Inparticular,assumetheworkspacecostfieldcandthe forwardkinematicsfunctionxaredifferentiable;thenwecanobtainthecostfunctional gradientbythechainrule:[19,20] ∇U (·)= (cid:88) (cid:0)J(cid:62)(t,u)∇c(x(ξ(t),u))(cid:1)(cid:62)K(t,·) (12) obs (t,u)∈T(ξ) whereJ(t,u) = ∂ x(ξ(t),u) ∈ R3×D istheworkspaceJacobianmatrixattimet ∂ξ(t) forbodypointu,sothatthekernelfunctionK(t,·)isthegradientofξ(t)withrespect toξ. ThekernelmatrixisfullydefinedinEquation(1). Thissolutionisagenericformoffunctionalgradientoptimizationwithadirectly instantiable obstacle gradient that does not depend on a predetermined set of way- points, offeringamoreexpressiverepresentationwithfewerparameters. Wederivea constrained optimization update rule, by solving the KKT conditions for a vector of Lagrangemultipliers,seeSectionA.3. ThefullmethodissummarizedasAlgorithm1. 4 Trajectory Efficiency as Norm Encoding in RKHS Indifferentapplicationsitisusefultoconsiderdifferentnotionsoftrajectoryefficiency orsmoothness. WecandosobychoosingRKHSswithappropriatenorms. Forexam- ple,itisoftendesirabletopenalizethevelocity,acceleration,jerk,orotherderivatives of a trajectory instead of (or in addition to) its magnitude. To do so, we can take ad- vantageofaderivativereproducingproperty: letH beoneofthecoordinateRKHSs 1 from our trajectory representation, with kernel k. If k has sufficiently many continu- ous derivatives, then for each partial derivative operator Dα, there exist representers (Dαk) ∈ H suchthat, forallf ∈ H , (Dαf)(t) = (cid:104)(Dαk) ,f(cid:105)[27, Theorem1]. t 1 1 t (Here α is a multi-set of indices, indicating which partial derivative we are referring to.) WecanthereforedefineanewRKHSwithanormthatpenalizesthepartialderiva- tive Dα: the kernel is kα(t,t(cid:48)) = (cid:104)(Dαk) ,(Dαk) (cid:105). If we use this RKHS norm as t t(cid:48) thesmoothnesspenaltyforourtrajectories,thenouroptimizerwillautomaticallyseek outtrajectorieswithlowvelocity,acceleration,orjerk. Consider an RBF kernel with a reproducing first order derivative: D1k(t,t ) = i D1k [t] = (t−ti)k(t,t ) is the reproducing kernel for the velocity profile of a tra- ti 2σ2 i jectorydefinedinanRBFkernelspacek(t,ti) = √ 1 exp(−(cid:107)t−ti(cid:107)2/2σ2). The 2πσ2 velocityprofilecanbewrittenasD1ξ(t)=(cid:80) β D1k(t,t ),withendpointconditions i i i D1ξ(0)=q˙ , D1ξ(1)=q˙ . i f The trajectory can be found by integrating D1ξ(t) once and projecting onto the nullspaceoftheconstraintsξ(0)=q ,ξ(1)=q . i f 1 1 ξ(T)=(cid:90) D1ξ(t)dt=(cid:88)β (cid:90) (t−ti)k(t,t )dt=(cid:88)β [k(T,t )−k(0,t )]+q i 2σ2 i i i i i 0 i 0 i (13) 6 Theinitialconditionisverifiedautomaticallyandtheendpointconditioncanbewrit- (cid:80) tenasq = β [k(1,t )−k(0,t )]+q ,thisimposesadditionalinformationover f i i i i i the coefficients β ∈ C. Here we explicitly considered only a H1 space, but exten- i sionstohigherorderderivativescanbederivedsimilarlyintegratingptimestoobtain the trajectory profile. Constraints over higher derivatives can be computed using any constraintprojectionmethod. Theupdateruleinthissettingcanbederivedusingthe naturalgradientinthespace,wherethenewobstaclegradientbecomes: n ∇U [ξ](t)=(cid:88) (cid:88) (cid:0)J(cid:62)(t ,u )∇c(x(ξ(t ),u ))(cid:1)(cid:62)Djk(t ,t) (14) obs i i i i i j (ti,ui)∈T Regularization schemesin different RKHSs mayencode different formsof trajectory efficiency. We provide a form of penalizing trajectory complexity in different forms byminimizingthetrajectorynormintheRKHS.Thismaybedefinedintermsofthe reproducingkernel,bysums,products,tensorproductofkernels,oranyclosedkernel operation. 4.1 KernelMetricinRKHS Thenormprovidesaformofquantifyinghowcomplexatrajectoryisinthespaceasso- ciatedwiththeRKHSkernelmetricK. Thekernelmetricisdeterminedbythekernel functionswechoosefortheRKHS,aswehaveseenbefore(Section4). Likewise,the set of time points T that support the trajectory contribute to the design of the kernel metric: (cid:88) (cid:88) (cid:107)ξ(cid:107)2 = a k (t ,t )a (15) H d,i d,d(cid:48) i j d(cid:48),j d ti,tj∈T (cid:88) = a(cid:62)K(t ,t )a , a ,a ∈RD i i j j(cid:48) i j ti,tj∈T =a(cid:62)K(T,T)a,a∈RDN Here a is the concatenation of all coefficients a over T, |T| = N. K(T,T) ∈ i RDN×DN is the Gram matrix for all time points in the support of ξ, and all joint anglesoftherobot.Thismatrixexpressesthedegreeofcorrelationorsimilarityamong differentjointsthroughoutthetimepointsinT. Itcanbeinterpreted,alternatively,as a tensor metric in a Riemannian manifold. [1, 18] Its inverse is the key element that bridges the gradient of functional cost ∇U (gradient in the RKHS, Eq.12 ), and its conventionalgradient(Euclideangradient).1 ∇U =K−1(T,T)∇ U (16) E TheminimizerofthefullfunctionalcostU hasaclosedformsolutionin(11). Where the gradient ∇U, is the natural gradient in the RKHS. This can be seen as a warped versionoftheobstaclecostgradientaccordingtotheRKHSmetric. 1Thisiswhatmakestheoptimizationprocesscovariant(invarianttoreparametrization). 7 5 Cost Functional Analysis Next we analyze how the cost functional (different forms of the reduce operation in Section3.1),affectobstacleavoidanceperformance,andtheresultingtrajectory(Sec- tion5).Inthispaper,weadoptamaximumcostversion(Section5.0.1),andanapprox- imateintegralcostversionoftheobstaclecostfunctional(Section5.0.2). Othervari- antscouldbeconsidered,providingthetrajectorysupportremainsfinite,butweleave this as future work. Additionally, we compare the two forms (Section 5.1), against a more commonly used cost functional, the path integral cost, [17] and we show our formulations do not perform worse, while being faster to compute. Based on these experiments,intheremainingsectionsofthepaperweconsideronlythemaxcostfor- mulation,whichwebelieverepresentsagoodtradeoffbetweenspeedandperformance. 5.0.1 MaxCostFormulation The maximum obstacle cost penalizes points in the trajectory close to obstacles, i.e. high cost regions in workspace (regions inside/near obstacles). This maximum cost versionofthereduceoperation,consideredinEq.(8),canbedescribedaspickingtime points (sampling), deepest inside or closest to obstacles, see Figure 1. The sampling ξ(1) t 5 t 4 t 3 t t 2 1 ξ(0) Figure1: Ateveryiteration, theoptimizertakesthecurrenttrajectory(black)andidentifiesthepointof maximumobstaclecostti (orangepoints). Itthenupdatesthetrajectorybyapointevaluationfunction centered around ti. Grey regions depict isocontours of the obstacle cost field (darker means closest to obstacles,highercost). strategyforpickingtimepointstorepresentthetrajectorycostcanbechosenarbitrarily, andfurtherimprovedfortimeefficiency. Inthispaper, weconsiderasimpleversion, where we sample points along sections of the trajectory, and choose Nx maximum violatingpoints,onepersection. 8 Thismaxcoststrategyallowsustorepresenttrajectoriesintermsofafewpoints, rather then a set of finely discretized waypoints. This is a simplified version of the obstaclecostfunctional,thatyieldsamorecompactrepresentation.[7,14,17] 5.0.2 IntegralCostFormulation Instead of scoring a trajectory by the supremum of obstacle cost over time and body points,itiscommontointegratecostovertheentiretrajectoryandbody,withthetra- jectoryintegralweightedbyarclengthtoavoidvelocitydependence.[28]Whilethis pathintegraldependsonalltimeandbodypoints,wecanapproximateittohighaccu- racyfromafinitenumberofpointevaluationsusingnumericalquadrature.[15]T(ξ) then becomes the set of abscissas of the quadrature method, which can be adaptively chosenoneachtimestep(e.g.,tobracketthetopfewlocaloptimaofobstaclecost),see SectionA.1. Inourexperiments,wehaveobservedgoodresultswithGauss-Legendre quadrature. 5.1 Integralvs. MaxcostFormulation 600! Max Optimizer! 600! Max Optimizer! Integral Optimizer! Approx. Integral Optimizer! 500! 500! st! st! o o C C e 400! e 400! cl cl a a st st b 300! b 300! O O al al gr 200! gr 200! e e nt nt I I 100! 100! 0! 0! (a) Uobs,IntegralvsMaxcost (b) Uobs,ApproxintegralvsMaxcost Figure2: a)Theintegralcostsafter5largestepscomparingbetweenoptimizingusingourobstaclecost formulationwithGaussianRBGkernelsvs. theintegralformulation(usingwaypoints). b)Acomparison betweenGaussianRBFkernelintegralcostusingourmaxformulationvs.theapproximatequadraturecost (20points,10iterations). Weshowthatournewformulationdoesnothindertheoptimization–thatitleadsto practicallyequivalentresultsasanintegralovertimeandbodypoints.[28]Todoso,we manipulatethecostfunctionalformulation,andmeasuretheresultingtrajectories’cost in terms of the integral formulation. Figure 2(a) shows the comparison: the integral cost increased by only 5% when optimizing for the max. Additionally we tested the max cost formulation against the approximate integral cost using a Gauss-Legendre quadrature method. We performed tests over 100 randomly sampled scenarios and measuredthefinalobstaclecostafter10iterations. Weused20pointstorepresentthe 9 trajectoryinbothcases. Figure2(b)showstheapproximateintegralcostformulation isonly8%abovethemaxapproach. 6 Experimental Results Inwhatfollows,wecomparetheperformanceofRKHStrajectoryoptimizationvs. a discretizedversion(CHOMP)onasetofmotionplanningproblemsina2Dworldfor a3DOFlinkplanararmasinFigure4,andhowdifferentkernelswithdifferentnorms affect the performance of the algorithm (Section 6.1). We then, introduce a series of experimentsthatillustratewhyRKHSsimproveoptimization(Section6.2). 6.1 RKHSwithRadialBasisvs. Waypoints Forourmainexperiment,wesystematicallyevaluatethetwoparameterizationsacross aseriesofplanningproblems. Although, GaussianRBFsareadefaultchoiceofker- nel in many kernel methods, RKHSs can also easily represent other types of kernel functions,e.g. Forexample,B-splinesareapopularparameterizationofsmoothfunc- tions,[3,13,26]thatareabletoexpresssmoothtrajectorieswhileavoidingobstacles, even though they are finite dimensional kernels. The choice of kernel should be ap- plication driven, and any reproducing kernel can easily be considered under the the optimizationframeworkpresentedinthispaper. In the following experiment, we manipulate the parameterization (waypoints vs different kernels) as well as the number of iterations (which we use as a covariate in the analysis). To control for the cost functional as a confound, we use the max formulationforbothparameterizations.Weuseiterationsasafactorbecausetheyarea naturalunitinoptimization,andbecausetheamountoftimeperiterationissimilar:the computationalbottleneckiscomputingthemaximumpenetrationpoints. Wemeasure theobstacleandsmoothnesscostoftheresultingtrajectories. Forthesmoothnesscost, weusethenorminthewaypointparameterizationasopposedtothenormintheRKHS asthecommonmetric. TheRKHSparameterizationresultsincomparableobstaclecostandlowersmooth- ness cost for the same number of iterations. We use 100 different random obstacle placementsandkeepthestartandgoalconfigurationsfixedasourexperimentalsetup. The trajectory is represented with 4 maximum violation points over time and robot bodypoints. Intheanalysisweperformedat-testusingthelastiterationsamples,and showedthattheGaussianRBFRKHSrepresentationresultedinsignificantlylowerob- staclecost(t(99)=−2.63,p<.01)andsmoothnesscost(t(99)=−3.53,p<.001), supportingourhypothesis. WeexpectthistobetruebecausewiththeGaussianRBF parameterizationcantakelargerstepswithoutbreakingsmoothness,seeSection6.2. WeobservethatWaypointsandLaplacianRBFkernelswithlargewidthshavesim- ilarbehavior,whileGaussianRBFandB-splineskernelsprovideasmoothparameter- ization that allows the algorithm to take larger steps at each iteration. These kernels providetheadditionalbenefitofcontrollingthemotionamplitude,beingthemostsuit- ableintheimplementationofanadaptivemotionplanner.LaplacianRBFkernelsyield 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.