ebook img

Functional equations with causal operators PDF

185 Pages·2002·0.855 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Functional equations with causal operators

Functional Equations with Causal Operators StabilityandControl:Theory,MethodsandApplications Aseriesofbooksandmonographsonthetheoryofstabilityandcontrol EditedbyA.A.Martynyuk InstituteofMechanics,Kiev,Ukraine V.Lakshmikantham FloridaInstituteofTechnology,USA Volume1 TheoryofIntegro-DifferentialEquations V.LakshmikanthamandM.RamaMohanaRao Volume2 StabilityAnalysis:NonlinearMechanicsEquations A.A.Martynyuk Volume3 StabilityofMotionofNonautonomousSystems(MethodofLimitingEquations) J.Kato,A.A.MartynyukandA.A.Shestakov Volume4 ControlTheoryanditsApplications E.O.Roxin Volume5 AdvancesinNonlinearDynamics EditedbyS.SivasundaramandA.A.Martynyuk Volume6 SolvingDifferentialProblemsbyMultistepInitialandBoundaryValueMethods L.BrugnanoandD.Trigiante Volume7 DynamicsofMachineswithVariableMass L.Cveticanin Volumes8 OptimizationofLinearControlSystems:AnalyticalMethodsandComputationalAlgorithms F.A.AlievandV.B.Larin Volume9 DynamicsandControl EditedbyG.Leitmann,F.E.UdwadiaandA.V.Kryazhimskii Volume10 VolterraEquationsandApplications EditedbyC.CorduneanuandI.W.Sandberg Volume11 NonlinearProblemsinAviationandAerospace EditedbyS.Sivasundaram Volume12 StabilizationofProgrammedMotion E.Ya.Smirnov PleaseseethebackofthisbookforothertitlesintheStabilityandControl: Theory, MethodsandApplicationsseries. Functional Equations with Causal Operators C. Corduneanu London and New York Firstpublished2002 byTaylor&Francis 11NewFetterLane,LondonEC4P4EE SimultaneouslypublishedintheUSAandCanada byTaylor&FrancisInc, 29West35thStreet,NewYork,NY10001 This edition published in the Taylor & Francis e-Library, 2005. “To purchase your own copy of this or any of Taylor & Francis or Routledge’s collection of thousands of eBooks please go to www.eBookstore.tandf.co.uk.” Taylor&FrancisisanimprintoftheTaylor&FrancisGroup ©2002Taylor&Francis Allrightsreserved.Nopartofthisbookmaybereprintedor reproducedorutilizedinanyformorbyanyelectronic, mechanical,orothermeans,nowknownorhereafter invented,includingphotocopyingandrecording,orinany informationstorageorretrievalsystem,withoutpermissionin writingfromthepublishers. Everyefforthasbeenmadetoensurethattheadviceandinformationinthis bookistrueandaccurateatthetimeofgoingtopress.However,neither thepublishernortheauthorscanacceptanylegalresponsibilityor liabilityforanyerrorsoromissionsthatmaybemade.Inthecaseof drugadministration,anymedicalprocedureortheuseoftechnicalequipment mentionedwithinthisbook,youarestronglyadvisedtoconsultthe manufacturer’sguidelines. BritishLibraryCataloguinginPublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary LibraryofCongressCataloginginPublicationData Acatalogrecordforthisbookhasbeenrequested ISBN 0-203-16637-X Master e-book ISBN ISBN 0-203-26105-4 (Adobe eReader Format) ISBN0-415-27186-X(Print Edition) Contents IntroductiontotheSeries vii Preface ix 1 Introduction 1 1.1 Classesoffunctionalequations 1 1.2 Equationswithcausaloperators 4 1.3 Causaloperatorsinapplications 7 2 Auxiliaryconcepts 10 2.1 Abstractspaces 10 2.2 Functionspaces 16 2.3 Operatorsonfunctionspaces 22 2.4 Fixedpointsandotherauxiliaryresults 28 3 Existencetheoryforfunctionalequationswith causaloperators 31 3.1 Theequationx(t)=(Vx)(t)inthespaceofcontinuousfunctions 31 3.2 Theequationx(t)=(Vx)(t)inspacesofmeasurablefunctions 37 3.3 Existenceandapproximationofsolutionsbymeansofthesingular perturbationtechnique 43 3.4 Globalexistenceresultsforfunctionalequationswithcausal operators 46 3.5 Someglobalresultsofexistenceanduniqueness 56 3.6 Functionalinequalities 65 3.7 Initialvalueproblemsofthesecondkindforfunctional differentialequations 71 4 Linearandquasilinearequationswithcausaloperators 79 4.1 Globalexistenceanduniquenessforlinearfunctional differentialequations 79 4.2 Globalexistenceanduniquenessforlinearfunctionalequations 81 4.3 Integralrepresentationofsolutionsoflinearfunctional differentialequations 84 vi Contents 4.4 Initialvalueproblemswithfunctionaldataforlinearfunctional differentialequations 89 4.5 Quasilinearfunctionalequations 92 4.6 Two-pointboundaryvalueproblems 98 4.7 Commentsandreferences 100 5 Stabilitytheory 101 5.1 Definitionandgeneralities 101 5.2 Stabilityoflinearsystems 103 5.3 Stabilityofquasilinearsystems 110 5.4 Comparisonmethodinstability 114 5.5 Admissibilityconcepts 119 6 Neutralfunctionalequations 123 6.1 Theconceptofneutralfunctionalequationwithcausaloperators 123 6.2 Existenceresultsinthecontinuouscase 124 6.3 Existenceresultsinspacesofmeasurablefunctions 129 6.4 Moreresultsonneutralfunctionaldifferentialequations 131 6.5 Thelinearandquasilinearcases 134 7 Miscellanea(applicationsandgeneralizations) 137 7.1 Alinear–quadraticoptimalcontrolproblemwithcausaloperators 137 7.2 Amaximumprincipleapproach 142 7.3 Asymptoticbehaviorinsecond-ordersystems 144 7.4 Globalexistencefortheequationx(t)=(Lx)(t)+(Nx)(t) 148 7.5 Reviewoffurtherresultsandtopics 150 Appendix 155 References 160 Index 167 Introduction to the Series Theproblemsofmodernsocietyarebothcomplexandinterdisciplinary.Despitetheapparent diversityofproblems,toolsdevelopedinonecontextareoftenadaptabletoanentirelydif- ferent situation. For example, consider the Lyapunov’s well known second method. This interestingandfruitfultechniquehasgainedincreasingsignificanceandhasgivenadecisive impetusformoderndevelopmentofthestabilitytheoryofdifferentialequations.Amanifest advantageofthismethodisthatitdoesnotdemandtheknowledgeofsolutionsandtherefore hasgreatpowerinapplication.ItisnowwellrecognizedthattheconceptofLyapunov-like functionsandthetheoryofdifferentialandintegralinequalitiescanbeutilizedtoinvestigate qualitativeandquantitativepropertiesofnonlineardynamicsystems. Lyapunov-likefunc- tionsserveasvehiclestotransformthegivencomplicateddynamicsystemsintoarelatively simplersystemandthereforeitissufficienttostudythepropertiesofthissimplerdynamic system.Itisalsobeingrealizedthatthesameversatiletoolscanbeadaptedtodiscussentirely differentnonlinearsystems,andthatothertools,suchasthevariationofparametersandthe methodofupperandlowersolutionsprovideequallyeffectivemethodstodealwithproblems ofasimilarnature.Moreover,interestingnewideashavebeenintroducedwhichwouldseem toholdgreatpotential. Control theory, on the other hand, is that branch of application-oriented mathematics thatdealswiththebasicprinciplesunderlyingtheanalysisanddesignofcontrolsystems. To control an object implies the influence of its behavior so as to accomplish a desired goal.Inordertoimplementthisinfluence,practitionersbuilddevicesthatincorporatevar- ious mathematical techniques. The study of these devices and their interaction with the object being controlled is the subject of control theory. There have been, roughly speak- ing, twomainlinesofworkincontroltheorywhicharecomplementary. Oneisbasedon the idea that a good model of the object to be controlled is available and that we wish tooptimizeitsbehavior, andtheotherisbasedontheconstraintsimposedbyuncertainty about the model in which the object operates. The control tool in the latter is the use of feedbackinordertocorrectfordeviationsfromthedesiredbehavior.Mathematically,sta- bilitytheory,dynamicsystemsandfunctionalanalysishavehadastronginfluenceonthis approach. Volume 1, Theory of Integro-Differential Equations, is a joint contribution by V.Lakshmikantham(USA)andM.RamaMohanaRao(India). Volume 2, Stability Analysis: Nonlinear Mechanics Equations, is by A.A. Martynyuk (Ukraine). viii IntroductiontotheSeries Volume 3, Stability of Motion of Nonautonomous Systems: The Method of Limiting Equations,isacollaborativeworkbyJ.Kato(Japan),A.A.Martynyuk(Ukraine)and A.A.Shestakov(Russia). Volume4,ControlTheoryanditsApplications,isbyE.O.Roxin(USA). Volume 5, Advances in Nonlinear Dynamics, is edited by S. Sivasundaram (USA) and A.A.Martynyuk(Ukraine)andisamultiauthorvolumededicatedtoProfessorS.Leela. Volume6,SolvingDifferentialProblemsbyMultistepInitialandBoundaryValueMethods, isajointcontributionbyL.Brugnano(Italy)andD.Trigiante(Italy). Volume7,DynamicsofMachineswithVariableMass,isbyL.Cveticanin(Yugoslavia). Volume8,OptimizationofLinearControlSystems:AnalyticalMethodsandComputational Algorithms,isajointworkbyF.A.Aliev(Azerbaijan)andV.B.Larin(Ukraine). Volume9,DynamicsandControl,iteditedbyG.Leitmann(USA),F.E.Udwadia(USA) andA.V.Kryazhimskii(Russian)andisamultiauthorvolume. Volume10,VolterraEquationsandApplications,iseditedbyC.Corduneanu(USA)and I.W.Sandberg(USA)andisamultiauthorvolume. Volume11,NonlinearProblemsinAviationandAerospace,iseditedbyS.Sivasundaram (USA)andisamultiauthorvolume. Volume12,StabilizationofProgrammedMotion,isbyE.Ya.Smirnov(Russia). Volume 13, Advances in Stability Theory at the end of the 20th Century, is edited by A.A.Martynyuk. Volume 14, Dichotomies and Stability in Nonautonomous Linear Systems, is by Yu.A. Mitropolskii,A.M.SamoilenkoandV.L.Kulik. Volume15, AlmostPeriodicSolutionsofDifferentialEquationsinBanachSpaces, isby YoshiyukiHino,ToshikiNaito,NguyenVanMinhandJongSonShin Volume16,FunctionalEquationswithCausalOperators,isbyC.Corduneanu. Due to the increased interdependency and cooperation among the mathematical sciences across the traditional boundaries, and the accomplishments thus far achieved in the areas ofstabilityandcontrol,thereiseveryreasontobelievethatmanybreakthroughsawaitus, offeringexistingprospectsfortheseversatiletechniquestoadvancefurther.Itisinthisspirit that we see the importance of the “Stability and Control” series, and we are immensely thankfultoTaylorandFrancisfortheirinterestandcooperationinpublishingthisseries. Preface Thisbookisdedicatedtotheinvestigationoffunctionalorfunctionaldifferentialequations involving causal operators. These operators are also called nonanticipative, or abstract Volterraoperators.Theterm“causal”isprevalentintheengineeringliterature. Thedefinitionofcausaloperatorsisverysimple:anoperatorV,actingonagivenfunction spaceE([0,T],Rn),iscalledcausal,ifforanypairoffunctionx,y ofE,suchthatx and y coincideonaninterval[0,t],t ≤ T,Vx andVy alsocoincideonthatinterval.Inother words,thevaluesofVxuptoagivenpointtaredeterminedonlybythevaluestakenbythe functionxontheinterval[0,t]. TheideaofconsideringsuchoperatorsappearsimplicitlyinVolterra’swork,butasharp definitionandfurtherconsiderationappearinthepaperofL.Tonelli[1].Inthispaper,the functionalequation x(t)=f(t)+A(t,xt(s)) 0 isconsidered,wherethesecondterminparanthesesmeanstherestrictionofthefunctionx totheinterval[0,t]. ThenotationisobviouslyinspiredbyVolterra’swork, andtheabove equationremindsusinstantlyoftheVolterraintegralequation (cid:1) t x(t)=f(t)+ k(t,s,x(s))ds. 0 Tonelli’spaperwasdedicatedtoprovingtheexistenceanduniquenessofthesolutionof thefunctionalequationhehasdevisedbymeansofcausaloperators.Theequationhasbeen investigatedinthespaceofcontinuousfunctionsandthehypothesesareformulatedinsuch awaythatthecompactnessoftheoperatorAisassured.ThisresultofTonelliis,verylikely, thefirstexistenceresultforequationswithgeneralcausaloperators. Thenextsignificantstepindevelopingthetheoryoffunctionalequationsinvolvingcauasal operatorswasmadein1938byA.N.Tychonoff[1]. ThedefinitiongivenbyTychonoffto causaloperatorsisasformulatedabove,andbesidestheexistenceofsolutionstheimportance ofthesetypesofoperatorsorequationsforotherfieldsisemphasized. Inretrospect, itmayappearsomewhatstrangethattheconceptofacausal(or, asboth TonelliandTychonoffcallit, Volterra)operatordidnotattracttheimmediateattentionof researchers. A possible explanation may be that at the time this concept was advanced, therelativelynewmethodsoffunctionalanalysisdidnotconstitutethemaintoolofmany investigators. Gradually,thetheoryoffunctionalequationswithcausaloperatorshascaughttheattention ofresearchers.Fromthe1960swementionthepapersbyR.Driver[1],C.Corduneanu[2],

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.