ebook img

Functional Co-substituted Poly[(amino acid ester)phosphazene] PDF

144 Pages·2017·9.72 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Functional Co-substituted Poly[(amino acid ester)phosphazene]

WWeesstteerrnn UUnniivveerrssiittyy SScchhoollaarrsshhiipp@@WWeesstteerrnn Electronic Thesis and Dissertation Repository 7-7-2014 12:00 AM FFuunnccttiioonnaall CCoo--ssuubbssttiittuutteedd PPoollyy[[((aammiinnoo aacciidd eesstteerr))pphhoosspphhaazzeennee]] BBiioommaatteerriiaallss Amanda L. Baillargeon, The University of Western Ontario Supervisor: Dr. Kibret Mequanint, The University of Western Ontario A thesis submitted in partial fulfillment of the requirements for the Master of Engineering Science degree in Biomedical Engineering © Amanda L. Baillargeon 2014 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Biomaterials Commons RReeccoommmmeennddeedd CCiittaattiioonn Baillargeon, Amanda L., "Functional Co-substituted Poly[(amino acid ester)phosphazene] Biomaterials" (2014). Electronic Thesis and Dissertation Repository. 2249. https://ir.lib.uwo.ca/etd/2249 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. FUNCTIONAL CO-SUBSTITUTED POLY[(AMINO ACID ESTER)PHOSPHAZENE] BIOMATERIALS (Thesis format: Monograph) by Amanda Lee Baillargeon Graduate Program in Biomedical Engineering A thesis submitted in partial fulfillment of the requirements for the degree of Master of Engineering Science The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Amanda Lee Baillargeon 2014 Abstract The development of new and improved biomaterials is essential for tissue engineering and regenerative medicine applications. Amino acid-based polyphosphazenes are being explored as scaffold materials for tissue engineering applications due to their non-toxic degradation products and tunable material properties. This work focuses on the synthesis of non- functional and novel functional poly[(amino acid ester)phosphazene]s using a facile method of thermal ring opening polymerization followed by one-pot room temperature substitution. The family of polyphosphazenes developed in this work is based on L-alanine (PP-A’s), L- phenylalanine (PP-F’s), and L-methionine (PP-M’s) with L-glutamic acid imparting the functionality. Characterization of these materials demonstrated that the one-pot substitution was successful in developing mono- and co-substituted poly[(amino acid ester)phosphazene]s. Cytotoxicity studies on two-dimensional films showed these materials to be compatible with NIH-3T3 fibroblasts over the five-day study. The PP-F’s also showed significantly enhanced cell viability over tissue culture polystyrene at day 1 (p<0.001) and day 3 (p<0.01). As a proof of concept, electrospinning of PP-A blended with 100 poly(caprolactone) (PCL) (50% PP-A /50% PCL) was conducted to fabricate three- 100 dimensional scaffolds. Overall, this study has shown that poly[(amino acid ester)phosphazene]s can be synthesized with good yields and better reaction conditions, leading to materials with promising cytocompatibility for use in biomedical applications. Keywords Polyphosphazenes, poly[(amino acid ester)phosphazene]s, biomaterials, biodegradable polymers, tissue engineering, scaffolds, electrospinning ii Acknowledgments I would like to acknowledge my supervisor, Dr. Kibret Mequanint, for his continued support and guidance throughout my Master’s degree. I really appreciated the amount of time he designated weekly to meet with his students and ensure that they were progressing well with their research; it definitely pushed me to always have new findings to share with him. I would also like to thank the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Strategic Training Program in Vascular Research supported by the Canadian Institutes for Health Research (CIHR) for the financial aid and skills training. I would like to thank Dr. Darryl Knight and Dr. Kalin Panev for their help in synthetic chemistry problems, experimental setup, and elucidation of NMR spectra. I also would like to acknowledge Dr. Shigang Lin for his help with the design and implementation of the cell culture experiments. I would like to thank Ryan Guterman of the Ragogna research group for his help in running TGA, DSC, and FTIR analyses. Lastly, I would like to thank Somiraa Said for her guidance with the electrospinning and planning of cell culture studies. All of the helpful feedback and discussions from other lab members (especially Tierney Deluzio) were greatly appreciated. Finally, I would like to thank my mother and grandparents for their continued love and support throughout my study. I would not have been able to push through these stressful two years without you by my side. Table of Contents Abstract ............................................................................................................................... ii  Acknowledgments.............................................................................................................. iii  Table of Contents ............................................................................................................... iv  List of Tables ................................................................................................................... viii  List of Figures ..................................................................................................................... x  List of Appendices ........................................................................................................... xvi  List of Abbreviations ...................................................................................................... xvii  Chapter 1 ............................................................................................................................. 1  1  Scope and Thesis Outline ............................................................................................... 1  1.1  Scope ....................................................................................................................... 1  1.2  Thesis Outline ......................................................................................................... 2  Chapter 2 ............................................................................................................................. 3  2  Literature Review, Objectives, and Rationale ................................................................ 3  2.1  Tissue Engineering Methodology ........................................................................... 3  2.2  Requirements of Tissue Engineering Scaffolds ...................................................... 5  2.2.1  Natural Polymers ........................................................................................ 7  2.2.2  Biodegradable Synthetic Polymers ............................................................. 8  2.2.3  Biomimetic Materials .................................................................................. 9  2.2.4  Scaffold Fabrication .................................................................................. 10  2.3  Synthesis of Polyphosphazenes ............................................................................ 11  2.3.1  Polymerization to Poly[(dichloro)phosphazene] ...................................... 13  2.3.2  Macromolecular Substitution of Poly[(dichloro)phosphazene] with Organic Nucleophiles................................................................................ 18  2.4  Suitability of Polyphosphazene Biomaterials ....................................................... 20  iv 2.4.1  In Vitro and In Vivo Biocompatibility ...................................................... 21  2.4.2  Biodegradability ........................................................................................ 23  2.4.3  Mechanical Properties ............................................................................... 28  2.5  Objectives and Rationale ...................................................................................... 29  Chapter 3 ........................................................................................................................... 32  3  Materials and Methods ................................................................................................. 32  3.1  Thermal Ring Opening Polymerization (TROP) .................................................. 32  3.1.1  Materials ................................................................................................... 32  3.1.2  Equipment ................................................................................................. 32  3.1.3  Method ...................................................................................................... 33  3.2  Macromolecular Substitution of Non-Functional Amino Acid Esters ................. 35  3.2.1  Materials ................................................................................................... 35  3.2.2  Sample Nomenclature ............................................................................... 35  3.2.3  Methods..................................................................................................... 35  3.3  Preparation of Glutamic Acid Ethyl Ester (E*) ..................................................... 40  3.3.1  Materials ................................................................................................... 40  3.3.2  Methods..................................................................................................... 41  3.4  Macromolecular Co-substitution of Non-Functional Amino Acids with Functional Glutamic Acid ....................................................................................................... 43  3.4.1  Materials ................................................................................................... 43  3.4.2  Methods..................................................................................................... 43  3.5  Conjugation of a Model Compound to the Functional Polyphosphazenes ........... 48  3.5.1  Materials ................................................................................................... 48  3.5.2  Methods..................................................................................................... 48  3.6  Material Characterization ...................................................................................... 49  3.6.1  Nuclear Magnetic Resonance Spectroscopy (NMR) ................................ 49  v 3.6.2  Fourier-Transform Infrared Spectroscopy (FTIR) .................................... 49  3.6.3  Thermogravimetric Analysis (TGA) ......................................................... 50  3.6.4  Differential Scanning Calorimetry (DSC) ................................................ 50  3.6.5  Gel Permeation Chromatography (GPC) .................................................. 50  3.7  Cytotoxicity Studies of Polymeric Films Using MTT Assays.............................. 51  3.7.1  Thin Film Preparation ............................................................................... 51  3.7.2  Fibroblast (NIH-3T3) Cell Study .............................................................. 51  3.7.3  MTT Assay Protocol ................................................................................. 51  3.8  Cell Morphology and Adhesion Studies on Polymer Films Using Confocal Microscopy ........................................................................................................... 52  3.8.1  Thin Film Preparation ............................................................................... 52  3.8.2  Cell Fixation, Staining, and Imaging ........................................................ 52  3.9  Electrospinning of Polyphosphazenes and Polyphosphazene/ Polycaprolactone Blends ................................................................................................................... 53  3.9.1  Electrospinning Parameters ...................................................................... 53  3.9.2  Scanning Electron Microscopy (SEM) Imaging of Electrospun Fibers ... 54  Chapter 4 ........................................................................................................................... 55  4  Results and Discussion ................................................................................................. 55  4.1  Optimization of Thermal Ring Opening Polymerization ...................................... 55  4.2  Comparison of the Three Macromolecular Substitution Methods Using Non- Functional Amino Acid Esters .............................................................................. 57  4.2.1  FTIR, 1H NMR, and 31P NMR Characterization ...................................... 58  4.2.2  TGA, DSC, and GPC Characterization ..................................................... 70  4.3  Esterification of Fmoc- and Boc-Glu(OBzl)-OH ................................................. 78  4.4  TFA Deprotection of Boc-Glu(OBzl)-OEt ........................................................... 81  4.5  Macromolecular Co-Substitution of Functional and Non-Functional Amino Acid Esters ..................................................................................................................... 82  4.5.1  FTIR, 1H NMR, and 31P NMR Characterization ...................................... 83  vi 4.5.2  TGA, DSC, and GPC Characterization ..................................................... 89  4.6  Hydrogenation of Glutamic Acid Co-Substituted Polyphosphazenes for Model Compound Conjugation ........................................................................................ 95  4.7  Cytotoxicity and Cell Proliferation on Non-Functional and Functional Two- Dimensional Polyphosphazene Films ................................................................... 96  4.8  Electrospinning of Poly[(amino acid ester)phosphazene]s and PCL Blend Materials ............................................................................................................. 100  4.9  Novelty of This Work ......................................................................................... 102  5  Conclusions and Future Directions ............................................................................ 103  5.1  Conclusions ......................................................................................................... 103  5.2  Future Directions ................................................................................................ 105  References ....................................................................................................................... 106  Appendices ...................................................................................................................... 117 Curriculum Vitae ............................................................................................................ 122  vii List of Tables Table 2.1: Summary of in vitro degradation studies of poly[(amino acid ester)phosphazene]s and their co-substituted polyphosphazenes. The ester refers to the chain attached to the carboxyl terminus of the amino acid. The detailed degradation profiles can be found in the cited references. .......................................................................................................... 25 Table 4.1: Summary of the time-varied polymerizations of hexachlorocyclotriphosphazene (trimer) to poly[(dichloro)phosphazene] (linear precursor) with their respective yields and extent of conversion. ......................................................................................................... 57 Table 4.2: Summary table of the yields, 1H NMR, 31P NMR, and FTIR analyses of PP-A , 100 PP-F , and PP-M synthesized by the three methods (LT 2S = low temperature two- 100 100 step reaction, 1P RT = one-pot room temperature reaction, and RT 2S = room temperature two-step reaction). Note: As described in the methods section, the mass of poly[(dichloro)phosphazene] (PDCP) is approximate since it cannot be dried fully and therefore the percentage yields shown are underestimated since yield calculations are based on PDCP as the limiting reagent. ........................................................................... 58 Table 4.3: Summary of thermal data from TGA and DSC analysis for PP-A , PP-F , and 100 100 PP-M materials synthesized via either the 1P RT or RT 2S method. The decomposition 100 temperatures are presented as the peak decomposition temperatures rather than onset, meaning they are the values of maximal rate of change in weight % for all phases of the decomposition (i.e. maxima of the derivative of weight % plot)...................................... 70 Table 4.4: GPC analysis of PP-A , PP-F , and PP-M materials using triple detection 100 100 100 and refractive index detection. A (-) indicates that analysis using that detection method was not possible and the relative molecular weights are calculated based on polystyrene standards. .......................................................................................................................... 75 Table 4.5: Summary of percent yields, 1H NMR, 31P NMR and FTIR characterization of the co-substituted poly[(amino acid ester)phosphazene]s. ..................................................... 84 Table 4.6: Summary of thermal data from TGA and DSC analysis for PP-A E* , PP-F E* , 90 10 90 10 and PP-M E* polymers. The decomposition temperatures are presented as the peak 90 10 viii decomposition temperatures rather than onset, meaning they are the values of maximal rate of change in weight % for all phases of the decomposition (i.e. maxima of the derivative of weight % plot). ............................................................................................ 90 Table 4.7: GPC analysis of PP-A E* , PP-F E* , and PP-M E* materials using triple 90 10 90 10 90 10 detection and refractive index detection. A (-) indicates that analysis using that detection method was not possible and the relative molecular weights are calculated based on polystyrene standards. ....................................................................................................... 94 ix

Description:
functional and novel functional poly[(amino acid ester)phosphazene]s using a facile method Canada and the Strategic Training Program in Vascular Research supported by the Canadian. Institutes for Health Said for her guidance with the electrospinning and planning of cell culture studies. All of th
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.