ebook img

Functional central limit theorems for Markov-modulated infinite-server systems PDF

0.55 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Functional central limit theorems for Markov-modulated infinite-server systems

Functional central limit theorems for Markov-modulated infinite-server systems J.Blom(cid:63),K.DeTurck ,M.Mandjes ,(cid:63) † • January13,2016 6 1 Abstract 0 2 In this paper we study the Markov-modulated M/M/∞ queue, with a focus on the correlation structure n ofthenumberofjobsinthesystem. Themainresultsdescribethesystem’sasymptoticbehaviorundera a particularscalingofthemodelparametersintermsofafunctionalcentrallimittheorem.Morespecifically, J relyingonthemartingalecentrallimittheorem,thisresultisestablished,coveringthesituationinwhich 2 thearrivalratesarespedupbyafactorN andthetransitionratesofthebackgroundprocessbyNα,for 1 someα>0. Theresultsrevealaninterestingdichotomy,withcruciallydifferentbehaviorforα>1and ] α<1,respectively.ThelimitingGaussianprocess,whichisoftheOrnstein-Uhlenbecktype,isexplicitly R identified,anditisshowntobeinaccordancewithexplicitresultsonthemean,variancesandcovariances P ofthenumberofjobsinthesystem. . h t KEYWORDS. Queues(cid:63)infinite-serversystems(cid:63)Markovmodulation(cid:63)centrallimittheorems a m • Korteweg-deVriesInstituteforMathematics,UniversityofAmsterdam,SciencePark904,1098XH [ Amsterdam,theNetherlands. 1 (cid:63) CWI,P.O.Box94079,1090GBAmsterdam,theNetherlands. v 1 † LaboratoireSignauxetSyste`mes(L2S,CNRSUMR8506),E´coleCentraleSupe´lec,Universite´Paris 9 Saclay,3RueJoliotCurie,PlateaudeMoulon,91190Gif-sur-Yvette,France. 7 2 M.MandjesisalsowithEURANDOM,EindhovenUniversityofTechnology,Eindhoven,theNetherlands, 0 and IBIS, Faculty of Economics and Business, University of Amsterdam, Amsterdam, the Netherlands. . 1 M. Mandjes’ research is partly funded by the NWO Gravitation project NETWORKS, grant number 0 024.002.003. 6 1 : v i X r a 1 1 Introduction Thispaperstudiestheinfinite-serverqueuemodulatedbyafinite-stateirreduciblecontinuous-timeMarkov chain J; when the so-called background process J is in state i, jobs arrive according to a Poisson process withrateλ ,whilethedeparturerateisgivenbyµ . TheresultingMarkov-modulatedinfinite-serverqueue i i has attracted some attention during the past decades; see e.g. the early contributions [8, 12, 13]. In these papersthemainresultswereintermsofsystemsof(partial)differentialequationscharacterizingprobability generatingfunctionsrelatedtothesystem’stransientbehavior,andrecursionsenablingtheevaluationofthe correspondingmoments. Inaseriesofrecentpapers[1,2,3,4,5,6,7],substantialattentionhasbeenpaidtotheasymptoticbehavior of Markov-modulated infinite-server queues in specific scaling regimes. In these parameter scalings the arrivalratesaretypicallyinflatedbyafactorN,whilethetransitionratesofthebackgroundprocessaresped upbyafactorNα forsomeα ≥ 0. Theobjectiveistoanalyzethetransientdistributionofthenumberof jobsinthesystemattimet,tobedenotedbyM(N)(t),inthelimitingregimethatN growslarge. The asymptotic results derived come in three flavors: (i) large deviations (LD) results, describing the tail probabilities P(M(N)(t)/N ≥ a) for N large; (ii) central-limit-theorem (CLT) type of results, describing theconvergenceofM(N)(t)(aftercenteringandnormalization)toaNormallydistributedrandomvariable; and(iii)functionalcentrallimittheorems(FCLTs),describingtheconvergenceoftheprocessM(N)(·)toan appropriateGaussianprocess. Importantly,twomodelvariantscanbedistinguished,withtheirownspecificdepartureprocesses. ◦ Inthefirst,tobereferredtoasModel I,eachjobpresentisexperiencingadeparturerateµi whenJ is in state i; as a consequence, this hazard rate may change during the job’s sojourn time (when the backgroundprocessmakesatransition). ◦ Inthesecond,ModelII,thejob’ssojourntimeissampleduponarrival: whenthebackgroundprocess istheninstatei,ithasanexponentialdistributionwithmean1/µ ,andhencethecorrespondinghazard i rateisconstantoveritslifetime. Fig.1summarizestheresultsthathavebeenestablishedsofar. IntheLDdomain,thepapers[3,6,7]cover, forbothmodels,theregimeinwhichthebackgroundprocessisrelativelyslow(morespecifically,α=0)as wellastheregimeinwhichitisessentiallyfasterthanthearrivalprocess(α>1).AlsointheCLTregimethe pictureiscomplete,withresultsforModelsIandII,andwithbothslow(α<1)andfast(α>1)switching of the background process. In terms of FCLTs, however, not all cases are covered: the only result derived sofar[1]concernsthecasethatµi = µforalli, i.e., thecaseinwhichModels I and II actuallycoincide; wemayrefertothismodelasto‘Model0’. Themaincontributionofthepresentpaperisthederivationof FCLTs for Models I and II; this is done in Sections 5 and 6, respectively. These findings, with a limiting Gaussian process of the Ornstein-Uhlenbeck type, turn out to be in accordance with explicit expressions formeans, variances, andcovariancesinthesemodels, aswepresentinSections3and4. Weconcludein Section7withsomenumericalexperiments. 2 Notation, preliminaries Let J(t) denote an irreducible continuous-time Markov chain on the (finite) state space {1,...,d}, with transition rate matrix Q = (q )d and (unique) invariant probability measure π. In addition, we let ij i,j=1 p (t):=P(J(t)=j|J(0)=i).ItisassumedthatJ(0)isdistributedaccordingtoπππ. ij 2 [3] [4,5] ModelI [3] [2,4,5] ‘Model0’:[1] [7] [5] ModelII [6] [5] LD CLT F-CLT Figure1: GraphicalillustrationofliteratureonMarkov-modulatedinfinite-serverqueues. Upper-lefttrian- gle: fast regime; lower-right triangle: slow regime. White area: regimes covered by earlier work; shaded areas: regimesnotcoveredyet. TheprocessJ(t)isreferredtoasthebackgroundprocess,andregulatesaninfinite-serverqueue. WhenJ(t) is in state i, jobs arrive at the queueing resource according to a Poisson process of rate λ . Regarding the i wayinwhichthesejobsarehandled,twovariantsaredistinguished: ◦ InModelIthehazardrateofjobsleavingisµiwhenthebackgroundprocessisinstatei. Observethat thishazardratemaychangeduringthelifetimeofthejob,whenthebackgroundprocessjumps. ◦ InModel II jobdurationsaresampleduponarrival: theyaredrawnfromanexponentialdistribution withmean1/µ ifthebackgroundprocessisinstateiwhenthejobentersthesystem. i Throughoutthispaperwewriteλλλ := (λ ,...,λ )T andΛ := diag{λλλ}, andlikewiseµµµ := (µ ,...,µ )T 1 d 1 d andM:=diag{µµµ}. Wealsodefineλ :=πππTλλλandµ :=πππTµµµ. ∞ ∞ InSections3and4weconsiderexplicitexpressionsforthemeans,variancesandcovariancesintheunscaled system.TherewedenotebyM(t)thenumberofjobspresentattimet,fort≥0.Forsimplicity,itisassumed thatthesystemstartsemptyattime0,i.e.,M(0)=0. In Sections 3 and 4 we also analyze the obtained expressions for the mean, variance and covariance in a specificparameterscaling,viz.wereplacethearrivalratesλλλbyNλλλ,andthegeneratormatrixQbyNαQ, forsomeα > 0, andletN growlarge. Itisinthisasymptoticregimethatwealsoestablishour FCLTsin Sections5and6. ForthesescaledmodelswewriteM(N)(t)forthenumberofjobsattimet,toemphasize thedependenceonthescalingparameter. In the sequel, we use the concept of deviation matrices. Define the (i,j)-th element of the exponentially weighteddeviationmatrixD(γ),asafunctionofthevectorγγγ ∈Rd,by + (cid:90) ∞ D(γ) := e−γit(p (t)−π )dt. ij ij j 0 ThematrixD := D(0) isthecanonicaldeviationmatrix. Inthesequel, alsothematrixΠ := 111πππT playsa role, aswellasthefundamentalmatrixF := D+Π.Anumberofidentitieshold: QF = FQ = Π−I, ΠF =FΠ=Π,andF111=Π111=111. 3 3 Mean, variance, and covariance for model I Thefirstpartofthissectionpresentsexplicitformulaeforthemean,variance,andcovarianceinModelI. In thesecondparttheseturnouttoallowforamoreexplicitcharacterizationinparticularasymptoticregimes. 3.1 Explicitformulae OurgoalistodeviseamethodtocomputeCov(M(t),M(t+u)). Tothisend,theobjectthatwestudyfirst is,foru≥0fixed,thebivariateprobabilitygeneratingfunction (cid:16) (cid:17) Ξ (z,w,t,u):=E zM(t)wM(t+u)1{J(t)=i,J(t+u)=j} , ij which implicitly contains all information about the joint distribution of M(t) and M(t + u). In matrix notation,weobtaininAppendixA,suppressingtheargumentsforeaseofnotation, ∂Ξ ∂Ξ ∂Ξ =(z−1)ΛΞ+(w−1)ΞΛ−(z−1)M −(w−1) M+QTΞ+ΞQ. (1) ∂t ∂z ∂w WenowpointouthowtocomputethecovariancebetweenM(t)andM(t+u)fromthissystemofpartial differentialequations. Tothisend,wefirstdefinethethreematrices E(t,u)≡(E (t,u))d , whereE (t,u):=EM(t)1{J(t)=i,J(t+u)=j} ij i,j=1 ij G(t,u)≡(G (t,u))d , whereG (t,u):=EM(t+u)1{J(t)=i,J(t+u)=j} ij i,j=1 ij C(t,u)≡(C (t,u))d , whereC (t,u):=EM(t)M(t+u)1{J(t)=i,J(t+u)=j} ij i,j=1 ij (2) Itfollowsfromthemoment-generatingpropertyofgeneratingfunctionsthat ∂Ξ ∂Ξ ∂2Ξ E (t,u)= lim ij, G (t,u)= lim ij, C (t,u)= lim ij. (3) ij z,w↑1 ∂z ij z,w↑1 ∂w ij z,w↑1∂z∂w From the partial differential equation (1) that defines Ξ, we can find the following systems of ordinary differentialequationsforthematricesE(t,u),G(t,u)andC(t,u). Wedemonstratehowthisisdoneforthe equationinvolvingE(t,u).Differentiate(1)withrespecttoz,andtakethelimitofw,z ↑ 1. Recallingthat J(0)isdistributedaccordingtoπππ,itisstraightforwardtoobtain,withK (u):=π p (u), ij i ij E(cid:48)(t,u)=ΛK(u)−ME(t,u)+QTE(t,u)+E(t,u)Q, wherethederivativeintheleft-handsideisagainwithrespecttot. Wecanderivethe ODEsforG(t,u)in thesamemanner, G(cid:48)(t,u)=K(u)Λ−G(t,u)M+QTG(t,u)+G(t,u)Q. Similarly,forC(t,u)wehave: C(cid:48)(t,u)=ΛG(t,u)+E(t,u)Λ−MC(t,u)−C(t,u)M+QTC(t,u)+C(t,u)Q, The above differential equations are matrix-valued systems of linear differential equations, which can be converted into vector-valued systems of linear differential equations, relying on the concept of ‘vectoriza- tion’. WeshowthisideaforthematrixE(t,u).WetakethecolumnsofE(t,u),andputthemintoavector 4 eee(t,u)ofdimensiond2,suchthatthefirstdentriesareE (t,u)uptoE (t,u),entriesd+1upto2dcorre- 11 d1 spondtoE (t,u)uptoE (t,u),etc.;wewriteeee(t,u):=vec(E(t,u)).Likewise,ggg(t,u):=vec(G(t,u)), 12 d2 ccc(t,u):=vec(C(t,u))andkkk(u):=vec(K(u)). Ford×dmatricesA,B,andC,andwithasusualA⊗B denotingtheKroneckerproductandA⊕B := A⊗I+I⊗BtheKroneckersumofthematricesAandB,recall vec(AB)=(I⊗A)vec(B)=(BT⊗I)vec(A) and vec(ABC)=(CT⊗A)vec(B), with I the d×d identity matrix. We thus obtain the following equations in terms of Kronecker sums and products: eee(cid:48)(t,u)=(I⊗Λ)kkk(u)−(I⊗M)eee(t,u)+(QT⊕QT)eee(t,u). Anequationforggg(t,u)canbefoundanalogously: ggg(cid:48)(t,u)=(Λ⊗I)kkk(u)−(M⊗I)ggg(t,u)+(QT⊕QT)ggg(t,u). Alongthesamelinesweobtain ccc(cid:48)(t,u)=(I⊗Λ)ggg(t,u)+(Λ⊗I)eee(t,u)−(M⊕M)ccc(t,u)+(QT⊕QT)ccc(t,u), thederivativesintheleft-handsidesbeingagainwithrespecttot. ObservethatQ⊕Qisagainatransition ratematrix,andM⊕Madiagonalmatrixwithnon-negativeentries. Thesystemsdescribingeee(t,u)andggg(t,u)arestandardsystemsofnon-homogeneouslineardifferentialequa- tions,whichcanbesolvedwithstandardtechniques. Thenthesolutioncanbepluggedintothedifferential equation describingccc(t,u), which is then also a system of non-homogeneous linear differential equations. Wesummarizetheresultsinthefollowingproposition. Proposition1. Thematrix-valuedfunctionsE(t,u),G(t,u)andC(t,u)satisfythefollowingODEs: E(cid:48)(t,u)=ΛK(u)−ME(t,u)+QTE(t,u)+E(t,u)Q, G(cid:48)(t,u)=K(u)Λ−G(t,u)M+QTG(t,u)+G(t,u)Q. C(cid:48)(t,u)=ΛG(t,u)+E(t,u)Λ−MC(t,u)−C(t,u)M+QTC(t,u)+C(t,u)Q, Moreover, the vectorized versionseee(t,u),ggg(t,u) andccc(t,u), of the matrices E(t,u), G(t,u) and C(t,u) satisfythefollowinglineardifferentialequations. eee(cid:48)(t,u)=(I⊗Λ)kkk(u)−(I⊗M)eee(t,u)+(QT⊕QT)eee(t,u). ggg(cid:48)(t,u)=(Λ⊗I)kkk(u)−(M⊗I)ggg(t,u)+(QT⊕QT)ggg(t,u). ccc(cid:48)(t,u)=(I⊗Λ)ggg(t,u)+(Λ⊗I)eee(t,u)−(M⊕M)ccc(t,u)+(QT⊕QT)ccc(t,u). Alloccurringderivativesarewithrespecttot. WehavenowdevisedaproceduretocomputethecovarianceCov(M(t),M(t+u)).Tothisend,firstrealize that,withe(t):=EM(t)and111denotingheread2-dimensionalall-onesvector, e(t)=111Teee(t,u), e(t+u)=111Tggg(t,u). Asaconsequence, Cov(M(t),M(t+u))=111Tccc(t,u)−e(t)e(t+u). 5 3.2 Twospecificlimitingregimes Inthissubsection,weconsidertwoparticularlimitingregimes,inwhichtheexpressionssimplifyconsider- ably. (cid:66) Letusfirstconsiderthebehaviorfort→∞. Itisreadilyverifiedthat eee(∞,u):= lim eee(t,u)=(cid:0)(I⊗M)−(QT⊕QT)(cid:1)−1(I⊗Λ)kkk(u), t→∞ andhence e(∞)=111Teee(∞,u)=111T(cid:0)(I⊗M)−(QT⊕QT)(cid:1)−1(I⊗Λ)kkk(u)=111Tggg(∞,u). Foru=0weobtainthesolutionfromO’CinneideandPurdue[13,Thm.3.1]. Alongthesamelines, ccc(∞,u):= lim ccc(t,u)=(cid:0)(M⊕M)−(QT⊕QT)(cid:1)−1((I⊗Λ)ggg(∞,u)+(Λ⊗I)eee(∞,u)). t→∞ WehavethusderivedanexpressionforthelimitofCov(M(t),M(t+u))ast→∞: lim Cov(M(t),M(t+u))=111Tccc(∞,u)−(e(∞))2. t→∞ (cid:66) Next,weconsiderthefollowingscaling:wereplaceλ(cid:55)→NλandQ(cid:55)→NαQ,forα>0. Inthisregime, thepacewithwhichthearrivalprocessisspedup,differsfromthatcorrespondingtothebackgroundprocess. As we will see below, the situation α > 1 crucially differs from α < 1; this was already observed earlier ine.g.[1,5]. Asmentionedbefore,tostressthedependenceonN,wewriteM(N)(t)ratherthanM(t).It is this scaling that is imposed in Section 5, and under which an FCLT is established. We now identify the associatedmeanand(co-)variance,relyingonelementarytechniques. Letmmm(N)(t) ≡ mmm(t) the d-dimensional row-vector, with EM(N)(t)1{J(t)=i} on the i-th position. Ac- cordingto[13,Thm.3.2],mmm(t)satisfiesthefollowingnon-homogeneouslineardifferentialequation: πππTNΛ−mmm(t)(M−NαQ)=mmm(cid:48)(t). (4) In[5]weprovedthat,with(cid:37)(I) :=λ /µ , ∞ ∞ EM(N)(t)=N(cid:37)(I)(1−e−µ∞t)+o(N). (5) Nowdefine(cid:37)(I)(t):=(cid:37)(I)(1−e−µ∞t)and (cid:90) t (cid:16) (cid:17) (cid:16) (cid:17) ς(I)(t):=2 e−2µ∞(t−s)πππT Λ−M(cid:37)(I)(s) D Λ−M(cid:37)(I)(s) 111ds. (6) 0 InAppendixBitisshownthat Cov(M(N)(t),M(N)(t+u)) (cid:16) (cid:17) lim =v(I)(t,u):=e−µ∞u ς(I)(t)1 +(cid:37)(I)(t)1 . (7) N→∞ Nmax{1,2−α} {α≤1} {α≥1} We conclude that under this parameter scaling the covariance exhibits the same dichotomy as the one ob- servedin[5]forthevariance,i.e.,behavingcruciallydifferentforα<1andα>1. Inthelatterregime,the systemessentiallybehavesasa(non-modulated)M/M/∞queue,witharrivalrateλ andservicerateµ , ∞ ∞ whereasforα<1thefulltransitionratematrixQplaysarole(asς(I)(t)involvesthedeviationmatrixD). 6 4 Mean, variance, and covariance for model II As we saw above, for Model I the mean, variance and covariance can be determined by solving specific non-homogeneous linear differential equations; for Model II, however, the analysis is simpler, and can be performed by relying on the law of total (co-)variance, as shown in Section 4.1. Focusing on the same limitingregimesaswehavestudiedforModelI,theexpressionsbecomemoreexplicit;seeSection4.2. 4.1 Explicitformulae ThemeanofM(t)forModel II wasalreadydeterminedin[2]; recallingfrome.g.[8]theobservationthat M(t)obeysaPoissondistributionwiththerandomparameterE(M(t)|J),weconcludethat EM(t)=E(E(M(t)|J))=E(cid:18)(cid:90) tλJ(s)e−µJ(s)(t−s)ds(cid:19)=(cid:88)d πiµλi (cid:0)1−e−µit(cid:1)=:(cid:37)(II)(t), 0 i=1 i withJ ≡(J(s))t . s=0 NowconcentrateontheevaluationofthecovariancebetweenM(t)andM(t+u);assume,withoutlossof generality,thatu≥0. The‘lawoftotalcovariance’entailsthat Cov(M(t),M(t+u))=E(Cov(M(t),M(t+u)|J))+Cov(E(M(t)|J),E(M(t+u)|J)). (8) InAppendixD,weevaluatebothterms,soastoobtain d Cov(M(t),M(t+u))=(cid:88)π λi (cid:0)1−e−µit(cid:1)e−µiu+λλλTK (t,u)λλλ+λλλTL(t,u)λλλ; (9) iµ i i=1 thepreciseformofthematricesK (t,u)andL(t,u)isgiveninAppendixDaswell. 4.2 Twospecificlimitingregimes Inthissubsection,weconsiderthetwoparticularlimitingregimesthatwestudiedearlier,inSection3.2,for ModelI. Asitturnsout,intheseregimestheexpressionssimplifyconsiderably. (cid:66) Inthefirstregime,weconsiderCov(M(t),M(t+u))fort→∞.Goingthroughthecalculations,relying ontheexplicitexpressionsforK (t,u)andL(t,u)asgiveninAppendixD,weobtain d d d lim Cov(M(t),M(t+u)) = (cid:88)π λie−µiu+(cid:88)(cid:88)π λiλj e−µjuD(µ) t→∞ iµi iµi+µj ij i=1 i=1j=1 + (cid:88)d (cid:88)d π λiλj (cid:90) ue−µju+µiw(p (w)−π )dw jµ +µ ji i i=1j=1 i j 0 + (cid:88)d (cid:88)d π λiλj (cid:90) ∞eµiu−µjw(p (w)−π )dw, jµ +µ ji i i=1j=1 i j u alsoentailingthat d d d lim VarM(t)=(cid:88)π λi +2(cid:88)(cid:88)π λiλj D(µ). t→∞ iµi iµi+µj ij i=1 i=1j=1 7 (cid:66) In the second limit, we replace λ (cid:55)→ Nλ and Q (cid:55)→ NαQ, for α > 0. The FCLT under this scaling is proveninSection6;weherefindthecorrespondingmeanand(co-)variance. Itturnsoutthat,forN large, d d Cov(cid:16)M(N)(t),M(N)(t+u)(cid:17)∼N(cid:88)e−µiu(cid:37)(II)(t)+N2−α(cid:88)e−µiuς(II)(t), i i i=1 i=1 with(cid:37)i(II) :=πiλi/µiand(cid:37)i(II)(t):=(cid:37)(iII)·(1−e−µit)and d ς(II)(t):=(cid:88) λiλj (cid:16)1−e−(µi+µj)t(cid:17)(π D +π D ). i µ +µ j ji i ij i j j=1 Weconcludethat lim Cov(M(N)(t),M(N)(t+u)) =v(II)(t,u):=(cid:88)d e−µiu(cid:16)ς(II)(t)1 +(cid:37)(II)(t)1 (cid:17). (10) N→∞ Nmax{1,2−α} i {α≤1} i {α≥1} i=1 WeobservethatthesamedichotomyappliesastheonewehaveobservedforModelI:forα>1thenumber ofjobsinthesystembehaves‘Poissonian’,withmeanandvariancescalingessentiallylinearlywithN,both withproportionalityconstant(cid:37)(II)(t). Forα<1,asseenearlierine.g.[5],thevariancegrowssuperlinearly withN,withaproportionalityconstantthatinvolvesthedeviationmatrixD. 5 Functional central limit theorem for Model I In Section 3.2 we considered the covariance of the number of jobs in the system under a specific scaling: λ (cid:55)→ Nλ and Q (cid:55)→ NαQ, for α > 0. In this section, we prove that for a given t the random variable M(N)(t) obeys a central limit theorem; moreover, we prove the stronger property that after centering and normalizingtheprocessM(N)(t),thereisweakconvergencetoaspecificGaussianprocess. Weessentially adopt the methodology used in [10]; some steps that are fully analogous to those in [10] are described concisely. Inthesequel,weletZ(N)(t)betheindicatorfunctionoftheevent{J(N)(t)=i},whereJ(N)(t) i isaMarkovchainwithtransitionratematrixNαQ. Firstobservethat,withP (·)andP (·)twoindependentunit-ratePoissonprocesses,itisstraightforwardto 1 2 seethatM(N)(t)canbewrittenas (cid:32) (cid:90) t d (cid:33) (cid:32)(cid:90) t d (cid:33) M(N)(t)=P N (cid:88)λ Z(N)(s)ds −P (cid:88)µ M(N)(s)Z(N)(s)ds . (11) 1 i i 2 i i 0 i=1 0 i=1 Nowimposethefollowingcenteringandnormalization,withβ :=max{1,2−α}/2, (cid:16) (cid:17) M˜(N)(t):=N−β M(N)(t)−N(cid:37)(I)(t) , where(cid:37)(I)(t):=(cid:37)(I)(1−e−µ∞t);theobjectiveofthissectionistoestablishtheconvergenceofM˜(N)(·)to aspecificGaussianprocess,essentiallyrelyingonthemartingalecentrallimittheorem;seeforbackground onthemartingalecentrallimittheoreme.g.[11,14]. Itisfirstrealizedthat,asadirectimplicationof(11),forsomemartingaleκ(N)(·), dM(N)(t)=NλTZ(N)(t)dt−µTZ(N)(t)M(N)(t)dt+dκ(N)(t). ThenwerewritethisequationintermsofoneforM˜(N)(t): (cid:16) (cid:17)(cid:48) dM˜(N)(t) = N1−βλTZ(N)(t)dt−N−βµTZ(N)(t)M(N)(t)dt+N−βdκ(N)(t)−N1−β (cid:37)(I) (t)dt = N1−βλTZ(N)(t)dt−µTZ(N)(t)M˜(N)(t)dt−N1−βµTZ(N)(t)(cid:37)(I)(t)dt (cid:16) (cid:17)(cid:48) +N−βdκ(N)(t)−N1−β (cid:37)(I) (t)dt. 8 Followingtheideasof[10],wenowintroduce (cid:16) (cid:17) (cid:90) t Y(N)(t):=exp µTζ(N)(t) M˜(N)(t), where ζ(N)(t):= Z(N)(s)ds. 0 Itthusfollowsthat,usingstandardstochasticdifferentiationrules, (cid:16) (cid:17)(cid:18) (cid:16) (cid:17)T (cid:16) (cid:17)(cid:48) (cid:19) dY(N)(t)=exp µTζ(N)(t) N1−β λ−µ(cid:37)(I)(t) Z(N)(t)dt+N−βdκ(N)(t)−N1−β (cid:37)(I) (t)dt . Nowobservethat,fromthedefinitionofthefunction(cid:37)(I)(t),wefindthat (cid:16) (cid:17)T (cid:16) (cid:17)(cid:48) λ−µ(cid:37)(I)(t) π =λ e−µ∞t = (cid:37)(I) (t), ∞ andhenceitisobtainedthat (cid:16) (cid:17)(cid:18) (cid:16) (cid:17)T(cid:16) (cid:17) (cid:19) dY(N)(t)=exp µTζ(N)(t) N1−β λ−µ(cid:37)(I)(t) Z(N)(t)−π dt+N−βdκ(N)(t) . Wenowanalyzethetwotermsinthepreviousdisplayseparately. ◦ We first concentrate on the first term. In [10], relying on the methodology developed in [11], it was shownthatthefollowingweakconvergenceholds: (cid:90) · (cid:16) (cid:17)(cid:16) (cid:17)T(cid:16) (cid:17) (cid:90) · Nα/2exp µTζ(N)(s) λ−µ(cid:37)(I)(s) Z(N)(s)−π ds→ eµ∞sdG(s), 0 0 wherethestochasticprocessG(·)issuchthat (cid:104)G(cid:105) =V(t) := (cid:90) t(cid:16)λ−µ(cid:37)(I)(s)(cid:17)T(cid:0)diag{π}D+DTdiag{π}(cid:1)(cid:16)λ−µ(cid:37)(I)(s)(cid:17)ds t 0 (cid:90) t (cid:16) (cid:17) (cid:16) (cid:17) = 2 πT Λ−M(cid:37)(I)(s) D Λ−M(cid:37)(I)(s) 1ds; 0 cf. Eqn. (6). (It is noted that in [10] the background process was sped up by a factor N rather than √ Nα;thisexplainsthattherethegrowthrate N wasfound,whileinoursetupwehaveNα/2.) Importantly,fromtheaboveweconcludethatthefullfirsttermindY(N)(t)behavesessentiallypro- portionaltoN1−β−α/2,whichconvergestoaconstantifα≤1,andvanishesotherwise. ◦ Wenowconsiderthesecondterm.Wenotethat,recallingthefactthatP (·)andP (·)areindependent 1 2 unit-ratePoissonprocessesincombinationwithstandardpropertiesforpurejumpprocesses, d (cid:104)κ(N)(cid:105) =NλTZ(N)(t)+µTZ(N)(t)M(N)(t), dt t andconsequently 1 (cid:90) t (cid:90) t M(N)(s) (cid:104)κ(N)(cid:105) = λTZ(N)(s)ds+ µTZ(N)(s) ds. N t N 0 0 Usingtheergodictheorem,thefirstintegralintheright-handsideofthepreviousdisplayconvergesto λTπ·t=λ t. Likewise,thesecondintegralconvergesto ∞ 1 (cid:90) t(cid:88)d (cid:16) (cid:17) lim µ E M(N)(s)1{J(s)=i} ds, N→∞N 0 i=1 i 9 which,duetoargumentssimilartothoseunderlying(5),turnsouttoequal (cid:90) t d (cid:88) µ π (cid:37)(I)(1−e−µ∞s)ds. i i 0 i=1 HenceN−1(cid:104)κ(N)(cid:105) converges,asN →∞,to t (cid:90) t W(t):=λ t+ µ (cid:37)(I)(1−e−µ∞s)ds. ∞ ∞ 0 √ Weconcludefromtheabovethatκ(N)(·)/ N convergestoanappropriatelyscaledBrownianmotion. Inaddition,thissecondtermindY(N)(t)isessentiallyproportionaltoN1/2−β,i.e.,convergingtoa constantifα≥1,andvanishesotherwise. Summarizing,wehavethatY(N)(t)convergesweaklytoaprocessY(t)whichisthesolutiontothefollow- ingstochasticdifferentialequation: (cid:113) dY(t)= V(cid:48)(t)1 +W(cid:48)(t)1 dB(t), {α≤1} {α≥1} whereweusedthepropertythatforastandardBrownianmotionB andadifferentiablefunctionf,wehave thatB(f(t))isequalindistributionto(cid:112)f(cid:48)(t)Bˆ(t),whereBˆdenotesanotherBrownianmotion,butwiththe samedistribution. Also,duetotheergodictheoremwehavethatexp(cid:0)µTζ(N)(t)(cid:1)convergestoexp(µ t). ∞ From the definition of Y(N)(t), we thus conclude the following weak convergence: M˜(N)(·) → M˜(·), whereM˜(·)solvesthestochasticdifferentialequation (cid:113) dM˜(t)=−µ M˜(t)dt+ V(cid:48)(t)1 +W(cid:48)(t)1 dB(t), ∞ {α≤1} {α≥1} for a standard Brownian motion B(·). Its solution is that the limiting process M˜(·) is a centered Gaussian processoftheOrnstein-Uhlenbecktype,characterizedbyitscovariancev(I)(t,u),asgivenin(7). Theorem5.1. ConsiderModelI.AsN →∞,theprocessM˜(N)(·)convergesweaklytoacenteredGaussian process,withcovariancestructurev(I)(·,·)givenin(7). 6 Functional central limit theorem for Model II WenowshiftourattentionfromModel I toModel II. Essentiallythesameapproachcanbefollowed,with animportantdifferencebeingthatnowonehastokeeptrackofthenumberofjobspresentofeachtype,tobe denotedbyM(N)(t)fortypei,where‘type’referstothestatethebackgroundprocesswasinuponarrival i ofthejob. Weuseanapproachsimilartotheoneusedintheprevioussection, butitisnotedthataviable alternativeistoadapttheapproachfollowedin[1]forthecasethatthedepartureratesarestate-independent, tothatofModelII. Asintheprevioussection, westartbywritingtheM(N)(t), fori = 1,...,dintermsofunit-ratePoisson i processes;inself-evidentnotation,wenowhave (cid:18) (cid:90) t (cid:19) (cid:18)(cid:90) t (cid:19) M(N)(t)=P N λ Z(N)(s)ds −P µ M(N)(s)ds . i 1,i i i 2,i i i 0 0 Asbefore,weapplycenteringandnormalization,inthatwewillstudy,recallingthat(cid:37)(II) := π λ /µ and i i i i (cid:37)(II)(t):=(cid:37)(II)·(1−e−µit), i i (cid:16) (cid:17) M˜(N)(t):=N−β M(N)(t)−N(cid:37)(II)(t) , i i i 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.