ebook img

Functional Biodegradable Nanocomposites PDF

184 Pages·2022·4.805 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Functional Biodegradable Nanocomposites

Functional Biodegradable Nanocomposites Edited by Daniel López, Coro Echeverría and Águeda Sonseca Printed Edition of the Special Issue Published in Nanomaterials www.mdpi.com/journal/nanomaterials Functional Biodegradable Nanocomposites Functional Biodegradable Nanocomposites Editors DanielLo´pez CoroEcheverr´ıa A´guedaSonseca MDPI•Basel•Beijing•Wuhan•Barcelona•Belgrade•Manchester•Tokyo•Cluj•Tianjin Editors DanielLo´pez CoroEcheverr´ıa A´guedaSonseca CSIC—InstitutodeCienciay InstitutodeCienciay UniversitatPolite`cnicade Tecnolog´ıadePol´ımeros Tecnolog´ıadePol´ımeros Vale`ncia (ICTP) (ICTP-CSIC)& Spain Spain InterdisciplinaryPlatformfor SustainablePlasticstowardsa CircularEconomy, SusPlast-CSIC Spain EditorialOffice MDPI St.Alban-Anlage66 4052Basel,Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Nanomaterials (ISSN 2079-4991) (available at: https://www.mdpi.com/journal/nanomaterials/ specialissues/funcbiodegnano). Forcitationpurposes,citeeacharticleindependentlyasindicatedonthearticlepageonlineandas indicatedbelow: LastName,A.A.;LastName,B.B.;LastName,C.C.ArticleTitle. JournalNameYear,VolumeNumber, PageRange. ISBN978-3-0365-5697-0(Hbk) ISBN978-3-0365-5698-7(PDF) ©2022bytheauthors. ArticlesinthisbookareOpenAccessanddistributedundertheCreative Commons Attribution (CC BY) license, which allows users to download, copy and build upon publishedarticles,aslongastheauthorandpublisherareproperlycredited,whichensuresmaximum disseminationandawiderimpactofourpublications. ThebookasawholeisdistributedbyMDPIunderthetermsandconditionsoftheCreativeCommons licenseCCBY-NC-ND. Contents Prefaceto”FunctionalBiodegradableNanocomposites”. . . . . . . . . . . . . . . . . . . . . . . vii AguedaSonseca,CoroEcheverrı´aandDanielLo´pez FunctionalBiodegradableNanocomposites Reprintedfrom:Nanomaterials2022,12,2500,doi:10.3390/nano12142500 . . . . . . . . . . . . . . 1 Tiphaine Messin, Nade`ge Follain, Quentin Lozay, Alain Guinault, Nicolas Delpouve, Je´re´mieSoulestin,CyrilleSollogoubandSte´phaneMarais BiodegradablePLA/PBSAMultinanolayerNanocomposites:EffectofNanoclaysIncorporation inMultinanolayeredStructureonMechanicalandWaterBarrierProperties Reprintedfrom:Nanomaterials2020,10,2561,doi:10.3390/nano10122561 . . . . . . . . . . . . . . 5 AguedaSonseca, SalimMadani, GemaRodrı´guez, V´ıctorHevilla, CoroEcheverr´ıa, Marta Ferna´ndez-Garc´ıa,AlexandraMun˜oz-Bonilla,NoureddineCharefandDanielLo´pez Multifunctional PLA Blends Containing Chitosan Mediated Silver Nanoparticles: Thermal, Mechanical,Antibacterial,andDegradationProperties Reprintedfrom:Nanomaterials2020,10,22,doi:10.3390/nano10010022 . . . . . . . . . . . . . . . 31 AguedaSonseca,SalimMadani,AlexandraMun˜oz-Bonilla,MartaFerna´ndez-Garc´ıa,Laura Peponi,Adria´nLeone´s,GemaRodr´ıguez,CoroEcheverr´ıaandDanielLo´pez Biodegradable and Antimicrobial PLA–OLA Blends Containing Chitosan-Mediated Silver NanoparticleswithShapeMemoryPropertiesforPotentialMedicalApplications Reprintedfrom:Nanomaterials2020,10,1065,doi:10.3390/nano10061065 . . . . . . . . . . . . . . 49 G.M.NazmulIslam,StewartCollie,MohammadQasimandM.AzamAli HighlyStretchableandFlexibleMeltSpunThermoplasticConductiveYarnsforSmartTextiles Reprintedfrom:Nanomaterials2020,10,2324,doi:10.3390/nano10122324 . . . . . . . . . . . . . . 65 CoroEcheverr´ıaandCarmenMijangos A Way to Predict Gold Nanoparticles/Polymer Hybrid Microgel Agglomeration Based on RheologicalStudies Reprintedfrom:Nanomaterials2019,9,1499,doi:10.3390/nano9101499 . . . . . . . . . . . . . . . 89 ShiSuandPeterM.Kang SystemicReviewofBiodegradableNanomaterialsinNanomedicine Reprintedfrom:Nanomaterials2020,10,656,doi:10.3390/nano10040656 . . . . . . . . . . . . . . . 103 Haichao Liu, Ranran Jian, Hongbo Chen, Xiaolong Tian, Changlong Sun, Jing Zhu, ZhaogangYang,JingyaoSunandChuanshengWang Application of Biodegradable and Biocompatible Nanocomposites in Electronics: Current StatusandFutureDirections Reprintedfrom:Nanomaterials2019,9,950,doi:10.3390/nano9070950 . . . . . . . . . . . . . . . . 125 MadisonBardotandMichaelD.Schulz BiodegradablePoly(LacticAcid)NanocompositesforFusedDepositionModeling3DPrinting Reprintedfrom:Nanomaterials2020,10,2567,doi:10.3390/nano10122567 . . . . . . . . . . . . . . 157 v Preface to ”Functional Biodegradable Nanocomposites” ThisSpecialIssuepresentsseveralexamplesofthelatestadvancesinfunctionalbiodegradable nanocompositesfordifferentpropertiesandapplications,namelypackaging,electronic,conductive, andbiomedicalapplications.Itisaimedatscientistsinallapplicationareasinterestedindeveloping environmentally friendly materials while improving their properties and functionalities. Authors contributingtothisSpecialIssueareacknowledged. Wetrustthatreaderswillfindthiscontentof interest. DanielLo´pez,CoroEcheverr´ıa,andA´guedaSonseca Editors vi nanomaterials Editorial Functional Biodegradable Nanocomposites AguedaSonseca1,*,†,CoroEcheverría1,2,*andDanielLópez1,2,* 1 MacroEngGroup,InstitutodeCienciayTecnologíadePolímeros(ICTP-CSIC),C/JuandelaCierva3, 28006Madrid,Spain 2 InterdisciplinaryPlataformfor“SustainablePlasticstowardsaCircularEconomy”(SUSPLAST-CSIC), Madrid,Spain * Correspondence:[email protected](A.S.);[email protected](C.E.);[email protected](D.L.) † Currentaddress:InstitutodeTecnologíadeMateriales,UniversitatPolitècnicadeValència(UPV), CaminodeVeras/n,46022Valencia,Spain. Over367milliontonsofplasticsareproducedannuallyworldwide,andthegrowth ofplasticpollutionhasbecomeaglobalconcern[1].Environmentalissuesrelatedtothe persistenceofplasticwastehaveurgedthedevelopmentofmoresustainablebiodegradable alternatives.Consequently,in2018,theEuropeanCommissionadoptedacirculareconomy planforthemanagementofplasticsbasedoninnovativeresearchonpolymersderived fromnaturalresources[2].Thus,biodegradablepolymershavebeeneffectivelydeveloped overthelastfewyearsaspromisingalternativestomostlynon-degradablecommodity polymers,meetingthedemandsofabroadrangeoffields,includingthemedical,packaging, agricultural,personalcare,andautomotiveindustries[3]. Individually,biodegradablepolymersdonotpossessphysicalpropertiesormechani- calstrengthscomparabletotheirnon-degradablecounterparts,limitingtheirapplication. Significantresearcheffortshavebeenmadeforthedevelopmentofbiodegradablepoly- mericformulationswithmechanicalandphysicalpropertiescomparabletothoseofnon- biodegradableones[4].Asaresult,biodegradablenanocompositesenteredtheresearch scene,offeringthepossibilityofnew,enhancedpropertiesandfieldsofapplication[5]. OneofthereviewsinthisSpecialIssuefocusesontheapplicationofbiodegradableand Citation:Sonseca,A.;Echeverría,C.; biocompatiblenanocompositesinelectronics,highlightingtheneedfordegradablefunc- López,D.FunctionalBiodegradable tionalsystemsbasedonnanocompositestodealwiththeproblemofelectronicwaste[6]. Nanocomposites.Nanomaterials2022, Nanoparticleshavealsofoundapplicationsinnanomedicine,providinguniqueproperties 12,2500. https://doi.org/10.3390/ andgreatadvantagesthankstotheirsmallsizethatisfavorablefromatherapeuticpointof nano12142500 view.However,theirsafetyhasbeenquestionedmanytimes.Inthiscontext,biodegrad- Received:29June2022 ablenanomaterials,degradableunderbiologicalconditions,holdgreatpromiseinthe Accepted:30June2022 biomedicalfield,andthelatestadvancesarereviewedinthisSpecialIssuebySuetal.[7]. Published:21July2022 Thepropertiesofnanocompositesdependnotonlyonthepropertiesofindividual Publisher’sNote:MDPIstaysneutral materials,butalsoontheirinterfacialinteractionsandmorphology,whicharesignificantly withregardtojurisdictionalclaimsin affectedbyprocessingmethods.Inthiscontext,Echeverríaetal.presentadetailedrheo- publishedmapsandinstitutionalaffil- logicalstudythatinvestigateshowgoldnanoparticles(AuNP)affectthepropertiesofa iations. hybridpoly(acrylamide-co-acrylicacid)P(AAm-co-AAc)microgelmatrix.Theknowledge presentedthroughthisworkfacilitatesthepredictionofsystembehavior,consequently allowingthepreparationofreproduciblesystems,forinstance,asinjectablesystems[8]. Bardotetal.reviewthedevelopmentofnanocompositesbasedonpolylacticacid(PLA),a Copyright: © 2022 by the authors. biodegradablebiopolymerobtainedfromagriculturalproducts,bymeansoffuseddepo- Licensee MDPI, Basel, Switzerland. sitionmodelling(3Dprinting).Theydemonstratethepossibilityofobtainingbiodegrad- Thisarticleisanopenaccessarticle ablesystemswithoutcompromisingmechanicalrobustness,whichiskeyinindustrial distributed under the terms and applications[9]. conditionsoftheCreativeCommons Asevidencedinthereviewdescribedabove,polylacticacid(PLA)representsapromis- Attribution(CCBY)license(https:// ingalternativetomostlynon-degradablecommoditypolymers;moreover,themodulation creativecommons.org/licenses/by/ 4.0/). Nanomaterials2022,12,2500.https://doi.org/10.3390/nano12142500 1 https://www.mdpi.com/journal/nanomaterials Nanomaterials2022,12,2500 ofitsmechanicalperformancecanbecontrolledwithnanocompositesformationandspe- cificprocessingmethods.Messinetal.developedmulti-nanolayerednanocompositesvia thecoextrusionofpolylacticacidandpoly(butylenesuccinate-co-butyleneadipate)filled withnanoclaysinordertoobtainenhancedwaterbarrierproperties[10].Sonsecaetal.de- velopedplasticizedPLAnanocompositeswithpotentialapplicationforuseasantibacterial foodpackagingdegradablematerials,incorporatingsilvernanoparticlesobtainedfroma greensynthesisprocedure.Thesamematerialsweredemonstratedtobeusefulasshape memorynanocompositesforpotentialmedicalapplication,thankstothesynergisticeffect oflacticacidoligomer(OLA)andsilvernanoparticles.TheincorporationofOLAasaplasti- cizerlocatedtheglasstransitionofthesystemneartothephysiologicalone,whilethesilver nanoparticlesfastenedtherecoveryprocessandimpartedantimicrobialactivity[11,12]. Nazmuletal. producedscalableenvironmentallyfriendlysmartinteractivetextilesby meansofmeltspunthermoplasticconductiveyarnsbasedonPLA,polypropylene(PP), andtheirmixtures(PLA/PP)[13]. Insummary,thisSpecialIssuepresentsseveralexamplesofthelatestadvancesin functionalbiodegradablenanocompositesfordifferentapplications. Wewouldliketo thankallauthorsforcontributingtothiscollection,andwehopereaderswillfindthe contentinteresting,enjoyable,anduseful. Funding:ThisresearchwasfundedbySpanishMinistryofScienceandInnovation(AEIMICINN/ FEDER);ProjectsMAT2016-78437-R,MAT2017-88123-PandPCIN-2017-036andbytheValencian AutonomousGovernment,GeneralitatValenciana,GVA(GV/2021/182). Acknowledgments:A.S.acknowledgesher“APOSTD/2018/228”and“PAID-10-19”postdoctoral contractsfromtheEducation,Research,CultureandSportCouncilfromtheGovernmentofValencia andfromthePolytechnicUniversityofValencia,respectively.C.E.acknowledgesIJCI-2015-26432 contractfromMICINN. ConflictsofInterest:Theauthorsdeclarenoconflictofinterest. References 1. PlasticsEuropeMarketResearchGroup(PEMRG)andConversionMarket&StrategyGmbH.PlasticsEuropePlasticstheFact 2021.2021.Availableonline:https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/(accessedon20June2022). 2. EuropeanCommission,Directorate-GeneralforResearchandInnovation.ACircularEconomyforPlastics:ResearchandInnovation forSystemicChange;PublicationsOfficeoftheEuropeanUnion:LuxembourgCity,Luxembourg,2020;Availableonline:https: //data.europa.eu/doi/10.2777/192216(accessedon20June2022). 3. Rai,P.;Mehrotra,S.;Priya,S.;Gnansounou,E.;Sharma,S.K.RecentAdvancesintheSustainableDesignandApplicationsof BiodegradablePolymers.Bioresour.Technol.2021,325,124739.[CrossRef][PubMed] 4. Abioye,A.A.;Fasanmi,O.O.;Rotimi,D.O.;Abioye,O.P.;Obuekwe,C.C.;Afolalu,S.A.;Okokpujie,I.P.ReviewoftheDevelopment ofBiodegradablePlasticfromSyntheticPolymersandSelectedSynthesizedNanoparticleStarches. J.Phys. Conf. Ser. 2019, 1378,42064.[CrossRef] 5. Hwang,S.Y.;Yoo,E.S.;Im,S.S.TheSynthesisofCopolymers,BlendsandCompositesBasedonPoly(ButyleneSuccinate).Polym. J.2012,44,1179–1190.[CrossRef] 6. Liu,H.;Jian,R.;Chen,H.;Tian,X.;Sun,C.;Zhu,J.;Yang,Z.;Sun,J.;Wang,C.ApplicationofBiodegradableandBiocompatible NanocompositesinElectronics:CurrentStatusandFutureDirections.Nanomaterials2019,9,950.[CrossRef][PubMed] 7. Su,S.;Kang,P.M.SystemicReviewofBiodegradableNanomaterialsinNanomedicine.Nanomaterials2020,10,656.[CrossRef] [PubMed] 8. Echeverría,C.;Mijangos,C.AWaytoPredictGoldNanoparticles/PolymerHybridMicrogelAgglomerationBasedonRheological Studies.Nanomaterials2019,9,1499.[CrossRef][PubMed] 9. Bardot,M.;Schulz,M.D.BiodegradablePoly(LacticAcid)NanocompositesforFusedDepositionModeling3dPrinting.Nanoma- terials2020,10,2567.[CrossRef][PubMed] 10. Messin,T.;Follain,N.;Lozay,Q.;Guinault,A.;Delpouve,N.;Soulestin,J.;Sollogoub,C.;Marais,S.BiodegradablePla/Pbsa MultinanolayerNanocomposites:EffectofNanoclaysIncorporationinMultinanolayeredStructureonMechanicalandWater BarrierProperties.Nanomaterials2020,10,2561.[CrossRef][PubMed] 11. Sonseca,A.;Madani,S.;Rodríguez,G.;Hevilla,V.;Echeverría,C.;Fernández-García,M.;Muñoz-Bonilla,A.;Charef,N.;López, D.MultifunctionalPLABlendsContainingChitosanMediatedSilverNanoparticles:Thermal,Mechanical,Antibacterial,and DegradationProperties.Nanomaterials2020,10,22.[CrossRef] 2 Nanomaterials2022,12,2500 12. Sonseca,A.;Madani,S.;Muñoz-Bonilla,A.;Fernández-García,M.;Peponi,L.;Leonés,A.;Rodríguez,G.;Echeverría,C.;López, D.BiodegradableandAntimicrobialPla–OlaBlendsContainingChitosan-MediatedSilverNanoparticleswithShapeMemory PropertiesforPotentialMedicalApplications.Nanomaterials2020,10,1065.[CrossRef] 13. NazmulIslam,G.M.;Collie,S.;Qasim,M.;AzamAli,M.HighlyStretchableandFlexibleMeltSpunThermoplasticConductive YarnsforSmartTextiles.Nanomaterials2020,10,2324.[CrossRef] 3

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.