polymers Review Functional Aromatic Polyamides JoséA.RegleroRuiz ID,MiriamTrigo-López,FélixC.GarcíaandJoséM.García* ID DepartamentodeQuímica,FacultaddeCiencias,UniversidaddeBurgos,PlazadeMisaelBañueloss/n, 09001Burgos,Spain;[email protected](J.A.R.R.);[email protected](M.T.-L.);[email protected](F.C.G.) * Correspondence:[email protected];Tel.:+34-947-258-085;Fax:+34-947-258-831 Received:13August2017;Accepted:1September2017;Published:5September2017 Abstract: Wedescribehereinthestateoftheartfollowingthelast8yearsofresearchintoaromatic polyamides,whollyaromaticpolyamidesoraramids. Thesepolymersbelongtothefamilyofhigh performancematerialsbecauseoftheirexceptionalthermalandmechanicalbehavior. Commercially, theyhavebeentransformedintofibersmainlyforproductionofadvancedcomposites,paper,andcut and fire protective garments. Huge research efforts have been carried out to take advantage of thementionedcharacteristicsinadvancedfieldsrelatedtotransportapplications,opticallyactive materials, electroactive materials, smart materials, or materials with even better mechanical and thermalbehavior. Keywords: aromatic polyamides; aramids; high-performance polymers; functional polymers; advancedmaterials 1. Introduction Aromatic polyamides, wholly aromatic polyamides, or the shorter form aramids, stand for synthetic polyamides comprised >85% by amide groups (–CO–NH–) bound directly to two aromaticrings[1]. Thesepolymersarecategorizedashigh-performancematerialsbecauseoftheir outstanding mechanical strength and superior high thermal resistance. They are spun into fibers foradvancedfabricssuchasadvancedsportandworkprotectiveclothing,bullet-proofbodyarmor, advancedcompositesinarmamentandaerospaceindustries,incompositesasasbestossubstitutes, high-temperatureinsulationpaper,tonamebutafew[2]. Thestructureofthearamidsisbasedontherigidaromaticamidelinkage,whichisresponsible fortheoutstandingpropertiesofthesematerials. Highlydirectionalandefficientinterchainhydrogen bondsareestablished,givingrisetomaterialswithhighcrystallizationtendencyandextremelyhigh cohesiveenergydensity. Atthesametime,theyarealsoresponsibleoftheinsolubilityofthewholly aromaticpolyamides,adrawbackthatimpairtheexpansionoftheapplicationfieldofthesematerials, wheretheimprovementofthesolubilityisatopicofresearchinterest. From a historical viewpoint, poly(p-benzamide) was commercialized about 50 years ago, forashortperiod of time, under the tradename ‘Fiber B®’. It was an all-para oriented aramid, anextremelyrigidrod-likemacromolecule, withimportanttransformationimpairments, thatwas replacedonthemarketinthe1970decadebypoly(p-phenyleneterephthalamide)(PPTA),theunique all-para oriented aramid commercialized nowadays. On the other hand, in 1967 was marketed poly(m-phenylene isophthalamide) (MPIA), a less rigid and easily-transformable aramid with impressive thermal resistance, only slightly underperforming the mechanical behavior of PPTA. PPTAandMPIAwerediscoveredandinitiallycommercializedunderthetradenamesof‘Kevlar®’ and‘Nomex®’byDupont. Theyear1987sawthecommercializationofthethirdaramidmarketed today, a copolymer with enhanced solubility prepared with terephthaloyl dichloride (TPC) and p-phenylenediamine (PPD), like PPTA, and also with a diamine based on diaminodiphenyl ether havingm-andp-orientedaminegroups(3,4(cid:48)-diaminodiphenylether(ODA)),givingrisetoanaramid Polymers2017,9,414;doi:10.3390/polym9090414 www.mdpi.com/journal/polymers Polymers2017,9,414 2of44 Polymers 2017, 9, 414 2 of 42 wwithithb obtohthm m--a anndd pp--oorriieenntteedd aarroommaattiicc rrininggs s(O(ODDAA/P/PPTPAT)A. I)t. wItaws paustp ount tohne tmhaermkeat rbkye tTebiyjinT ewijiitnh wthiet h thteratdraedneanmaem “eT“ecThenchonrao®r”a.® T”h.eT shteruscttruurcetsu raensda snodmseo omf ethoef athraemaridam pridodpurcoedrus caerres sahroewsnh oinw TnaibnleT a1b. le1. TTabablele1 .1.S Strturucctuturree,,a arraammididt tyyppee,, bbrraanndd nnaammeess aanndd ccoommppaannyy ooff ccoommmmeerrcciiaall aarraammididss. . AArarmamididty tpyepe BraBnrdannda mnaemses CComompapnayny PPPPTTAA MMPPIAIA ODOAD/PAP/TPAPTA X Kevlar® X Kevlar® DuPont, Wilmington, DE, United States XX NoNmoemx®ex® DuPont,Wilmington,DE,UnitedStates XX TwTarwoanr®on® XX TeiTjineicjoinnceoxn®ex® TeTiejiinji,nA, Arnrhnehmem,t,h teheN Netehtehrelarlnadnsds X X TecThencohrnao®ra® XX HeHraecrraocnr®on® KKoloolnonIn Idnudsutsrtireise,sS, eSoeuolu,lK, Koroeraea XX AlkAelxk®ex® HHyoysousnugn,gS, eSoeuolu,lK, Koroeraea XX MeMtaeAtar aAmraidmYida rYna&rnT &h rTeharde®ad® SRSROOG Groruoupp,H, Heaetahtehrebrrbarea,eN, NewewS oSuotuhthW Walaelse,sA, Ausutsratrlaialia XX TapTaarpaanr®anP®a rPaa-arar-aamraidmid YYanantatiaiT aTyahyohoA AdvdavnacnecdedM MataetreirailaslsC Co.o,.L, tLdt,dY, aYnatnatia,i, XX NeNwestwars®taMr® eMtae-Atar-Aamraimdid ShSahnadnodnogn,gC, Chihniana XX AraAwrainw®in® ToTroaryayC ChehmemiciaclaKl KoroeraeaIn Icn.,c.S, eSoeuolu,lK, Koroeraea X Metaone Huvis,Seoul,Korea X Metaone Huvis, Seoul, Korea ThTehee xepxploloitiatatitoionno offt htheea abboovvee--mmeennttiioonneedd cchhaarraacctteerriissttiiccss ooff aarraammididss isis aa totoppici cofo fcucrurrernetn itnitnetreerset.s t. ThTuhsu,sa, raormomataitcicp poolylyaammidideessa arreec cuurrrreennttllyy bbeeiinngg ssttuuddiieedd aass ffuunnccttiioonnaall aanndd ccuuttttiningg-e-eddggee mmaatetreirailasl sfofro r eveevnenb ebtettetrert htheremrmaalllylya annddm meecchhaanniiccaallllyy rreessiissttaanntt ppoollyymmeerrss,, sseennssiinngg aanndd eexxttrraacctitoionn aapppplilciacatitoionns,s f,ifilmlms s anadndm emmbermanbreasnfeosr trfaonrs potrratnaspppolircta tiaopnps,liocpattiiocanlsl,y aoctpitviecamllya teraiactlsiv,em atmeraitaelrsiawlsit, hemleactterroimalse chwaniticha l oreleelcetcrotrmocehchroamnicicalp oror peelretciterso,chanrodmfiuc npcrtioopnearltieasr,a manidd sfuwnicthtiosnealel cateradmcihdesm wicitahl gsreoleucptesda nchdemlaitcearla l stgrurocutuprse sa.nAd clcaoterrdailn sgtlryu,ctthuirserse. vAieccworfdoicnugsleys, othnisr erceevnietwa dfvocaunsceess ,ofnro rmece2n0t0 9a,divnandceessig, nfr,opmre 2p0a0r9a,t iionn , anddespigonte, nptrieaplaarpaptliiocna,t iaonnds poofttehnetsiaelm apaptelriciaaltsio.nPsr eovf itohuessed mevaetleorpiamlse. nPtrseivniotuhse dfieevldelwopemreesnutsm inm tahreiz feiedldb y were summarized by Marchildon and by us in previously published reviews [2,3]. Marchildonandbyusinpreviouslypublishedreviews[2,3]. 2.2S. ySnynththeseissisa annddP Prorocceessssiningg 2.21..1L. oLwowa nanddH HigighhT TemempepreartauturereS SoolulutitoionnS Syynntthheettiicc MMeetthhooddss AArarmamididss aarree ssyynntthheessiizzeedd ata ta laabl asbcalsec ablye twbyo ptwroocedpurorcees:d luorwes a:ndlo hwigha ntedmhpiegrhatutreem spoeluratitounr e somluettihoondsm. eTthheo dcosm. mTehreciaclo marmameirdcisa PlPaTraAm aindds MPPPTIAA aarned pMrepPaIAreda rfeollporwepinagr etdhef olollwo wteimngpetrhaetulroew tesmolpuetrioantu mreestohloudt ifornomm ePtPhDod afnrdo mTPPCP,D ora nmd-pThPeCn,yolernmed-piahmeninyel e(nMePdDia)m ainnde (iMsoPphDt)haanlodyli sdoipchhltohraildoey l di(cIPhClo)r, iduesi(nIgP C)a, upsoilnagr aapprootliacr saoplrvoetnict, sosulvcehn t,as suNch-maesthyNl--2m-peythrryoll-i2d-opnyer ro(lNidMonPe) (oNr MNP,)N-or Nd,Nim-deitmhyeltahcyetlaamceitdaem (iDdMe A(D),M anAd), saanltds assa sltosluabsilistoyl upbroilmityoteprrso, msuocthe rass, LsiuCclh anads/oLri CClaaCnl2d. /AorromCaatCicl . 2 Adroiamciadtsic cadnia bceid ussceadn, inbseteuasde do,f itnhset emaodisotufrteh esemnsoitiisvtuityre dsieancisdit civhiltoyriddieasc, iudsicnhgl othried hesig,hu steinmgptehreatuhrige h solution method, described by Yamazaki et al. [4]. These methods and the procedures followed for temperaturesolutionmethod,describedbyYamazakietal.[4]. Thesemethodsandtheprocedures the commercial preparation of aramid fibers are reported in our previous reviews and book chapters followedforthecommercialpreparationofaramidfibersarereportedinourpreviousreviewsand [2,5,6]. bookchapters[2,5,6]. 2.22..2A. AltletrenrnataitvieveS SyynnththeteitcicM Meetthhooddss From the organic chemistry viewpoint, the aromatic amide group can be prepared by a number Fromtheorganicchemistryviewpoint,thearomaticamidegroupcanbepreparedbyanumber of alternative reactions to prepare wholly aromatic polyamides [2,7–10]. However, only the ofalternativereactionstopreparewhollyaromaticpolyamides[2,7–10]. However,onlythepreviously previously described low and high temperature solutions methods have both demonstrated described low and high temperature solutions methods have both demonstrated commercial and commercial and laboratory viability in relation with the absence of side reaction and the quantitative laboratoryviabilityinrelationwiththeabsenceofsidereactionandthequantitativeyieldrequiredfor yield required for obtaining high molecular mass polymers. Nevertheless, among the time span Polymers2017,9,414 3of44 obtaininghighmolecularmasspolymers. Nevertheless,amongthetimespancoveredbythisreview andatlabscale,alternativeprocedurestotheconventionalcondensationofdiacidordiaciddichloride and diamines have been reported. From the green chemistry viewpoint, Ueda et al. reported on thesolid-statepreparationofaramids[11,12],andKobashietal. discussedthedirectcondensationof aromaticdiacidsanddiaminesathightemperaturewithoutcondensationpromoters[13]. 2.3. Processing Commercialaromaticpolyamidesareprocessedintostaplefibers,continuousmultifilamentyarn, staplefibersandpulpfromsolutionbywetspinning(MPIA,ODA/PPTAandPPTA),dryspinning (MPIAandODA/PPTA)anddry-jetwetspinning(MPIAandODA/PPTA)[6]. 3. SynthesisofFunctionalAromaticPolyamideswithControlledStructure Forthesakeofsimplicity,itisgenerallyassumedthatallthefunctionalgroupsofthemonomers andgrowingpolymerchainspresentsameorsimilarreactivity. Underthisassumption,conventional polycondensation reactions occur on a step-growth manner according to Carother’s equation and Flory’sstatisticaldescription[14]. Thecontroloverthemolecularmassandthepolymerendgroups is difficult, and thus the molecular mass distribution approaches a value of 2 at high conversion. However, when monomers with evident unequal reactivity are employed, or when a change of reactivityisinducedinonefunctionalgroupbyreactionandbondformationduringpolymerizationof otherfunctionalgroup,thepolymergrowthdonotobeytheseconventionalrules.Inordertosynthesize a polymer with controlled molecular mass, a narrow molecular mass distribution and defined chain-end functional groups, the condensation should proceed in a chain-growth polymerization mannerinsteadofstep-growthpolycondensation. Thisisthecaseforso-calledlivingpolymerization. 3.1. Chain-GrowthPolycondensation Someexperimentalresultsshowedthatitispossibletoobtainhighmolecularmasscondensation polymers even at low conversions, contrary to Flory’s and Carother’s predictions. This opened thewaytochain-growthpolycondensation. YokoyamaandYokozawapublishedadetailedreview ofchain-growthpolycondensation[15,16],andamorerecentreviewaboutthelatestdevelopments in the field [17]. Polyethers and aromatic polyamides are prepared using the unequal reactivity inducedbyactivationoftheendgroupsofthepolymerchains. Theyfoundthatthepolycondensation ofphenyl4-(octylamino)benzoate1a(Scheme1A,P1)andtheinitiatorphenyl4-nitrobenzoate2in thepresenceofabaseyieldedwelldefinedaramidswithlowpolydispersity(M /M ≤1.1,where w n M and M are number-average and weight-average molecular masses, respectively). The fact n w that the M values increase with the monomer proportion can be attributed to the difference in n substituenteffectbetweenthemonomerandthepolymer,indicatingachain-growthpolycondensation reaction. Theamideanion1a(cid:48),whichisformallyanABcondensationmonomer,donotpolymerize becauseofthestrongelectron-donatingability(electron-donatinggroup—EDG)oftheamideanion. Onthecontrary,theelectron-withdrawinggroup(EWG)nitrogroupactivatesthephenylestermoiety in the initiator 2 through resonance effects. The reaction of 1a(cid:48) with 2 yields an amide, which is aweakEDG,andsothemonomer1a(cid:48) reactsonlywiththemorereactivephenylesteroftheamideof thegrowingpolymerchain,andnotwithitself. Therefore,thepolymerizationfollowsachain-growth pattern. Goodresultswereobtainedbyusingastrongbase,suchaslithiumhexamethyldisilazide (LiHMDS),andphenyl4-methylbenzoateastheinitiator[18]. However,whenthemonomerbears atri(ethyleneglycol)monomethylether(TEG)sidechaininsteadofanalkylgroup,thepolymerization isveryslowasaresultofthecoordinationoftheLicationtothenucleophilicnitrogenatomoftheside chainandtheconcomitantreductionofthereactivityoftheamide. Thepolymerizationofthemethyl estermonomergaveapolymerwithlowmolecularmassandbroadpolydispersity. Ontheotherhand, themorereactivephenylestermonomeryieldedat−20◦Capolymerwithcontrolledstructure,i.e., controlledmolecularmassandlowpolydispersity(Scheme1B,P2)[19]. Polymers2017,9,414 4of44 Polymers 2017, 9, 414 4 of 42 Scheme 1. Aromatic polyamides with controlled polydispersity and mass obtained by chain-growth Scheme1. Aromaticpolyamideswithcontrolledpolydispersityandmassobtainedbychain-growth polycondensation. (A) polycondensation of phenyl 4-(octylamino)benzoate and the initiator phenyl polycondensation.(A)polycondensationofphenyl4-(octylamino)benzoateandtheinitiatorphenyl 4-nitrobenzoate; (B) polycondensation of a monomer that bears a TEG sidechain; (C) 4-nitrobenzoate;(B)polycondensationofamonomerthatbearsaTEGsidechain;(C)polycondensation polycondensation o 2,6-positions substituted naphthalenes. o2,6-positionssubstitutednaphthalenes. The resonance effects also work in the 1,5- or 2,6-positions of naphthalene, so Mikami et al. The resonance effects also work in the 1,5- or 2,6-positions of naphthalene, so Mikami et al. extended their work using this type of monomers (Scheme 1C, P3–P4) [20]. Well defined polymers extendedtheirworkusingthistypeofmonomers(Scheme1C,P3–P4)[20]. Welldefinedpolymers were obtained using the monomer with a 3,7-dimethyloctyl pendant group, whereas the monomer wereobtainedusingthemonomerwitha3,7-dimethyloctylpendantgroup,whereasthemonomer with the TEG moiety gave both chain-growth and step-growth polyamides, with self-condensation, withtheTEGmoietygavebothchain-growthandstep-growthpolyamides,withself-condensation, because an insufficient deactivation of the electrophilic ester moiety, rendering polymers with Mn becauseaninsufficientdeactivationoftheelectrophilicestermoiety, renderingpolymerswithM lower than the expected theoretical value. n lowerthantheexpectedtheoreticalvalue. Following this methodology, block copolymers were obtained exploiting the living-like Following this methodology, block copolymers were obtained exploiting the living-like polycondensation. Yokoyama et al. [21] reported a controlled synthesis of a diblock copolymer polycondensation. Yokoyama et al. [21] reported a controlled synthesis of a diblock copolymer composed of an aromatic polyamide and an aromatic polyether, consisting of N-alkylated poly(m- composed of an aromatic polyamide and an aromatic polyether, consisting of N-alkylated benzamide) and cyano and propyl substituted poly(1,4-phenylene oxide), by two successive chain- poly(m-benzamide)andcyanoandpropylsubstitutedpoly(1,4-phenyleneoxide),bytwosuccessive growth condensation polymerizations (Scheme 2, P5–P7). The synthetic route started with the chain-growth condensation polymerizations (Scheme 2, P5–P7). The synthetic route started polymerization of 3 from a monofunctional initiator, followed with the introduction of a with the polymerization of 3 from a monofunctional initiator, followed with the introduction fluorobenzophenone unit at the polymer terminal, and finished with the polymerization of the of a fluorobenzophenone unit at the polymer terminal, and finished with the polymerization of polyether monomer. thepolyethermonomer. Polymers2017,9,414 5of44 Polymers 2017, 9, 414 5 of 42 Polymers 2017, 9, 414 5 of 42 SScchheemmee 22.. BBlloocckk ppoollyymmeerrss oobbttaaiinneedd bbyy cchhaaiinn--ggrroowwtthh ppoollyyccoonnddeennssaattiioonn.. Scheme 2. Block polymers obtained by chain-growth polycondensation. Regarding graft copolymers, Sugi et al. described a well-defined aramid grafted with RReeggaarrddiinngg ggrraafftt ccooppoollyymmeerrss,, SSuuggii eett aall.. ddeessccrribibeedd aa wweellll--ddeeffiinneedd aarraammiidd ggrraafftteedd wwiitthh poly(tetrahydrofuran) by chain growth polymerization of 4-aminobenzoic acid ester having a ppoollyy((tteettrraahhyyddrrooffuurraann)) bbyy cchhaaiinn ggrroowwthth ppoolylymmeerirzizaatitoionn ofo f4-4a-maminionboebneznozioci cacaidci desetesrt erhahvainvgin ga poly(tetrahydrofuran) residue 5a on the amino group [22]. The polymerization of monomer 5a at apoployl(yte(ttreatrhayhdyrdorfuofruanra) nr)esriedsuideu 5ea5 oano nthteh aemaminoin ogrgoruopu p[22[2].2 ]T.hTe hpeoplyomlyemriezraitzioatni oonf omfomnoomnoemr e5ra 5aat −10 °C was accompanied with self-polycondensation. However, polymerization of the methyl ester a−t10− °1C0 ◦wCaws aacscaocmcopmanpiaendi ewdiwthi tshelsfe-lpf-oplyoclyocnodnednesnastaiotino.n H. Howoweveevre, rp,poolylymmeerirzizaatitoionn ooff tthhee mmeetthhyyll eesstteerr monomer 5b at 10 °C occurred only in a chain growth manner to render a well-defined graft mmoonnoommeerr 55bb aatt 1100 ◦°CC ooccccuurrrreedd oonnllyy iinn aa cchhaaiinn ggrroowwtthh mmaannnneerr ttoo rreennddeerr aa wweellll--ddeefifinneedd ggrraafftt copolymer P8 with a narrow molecular mass distribution (Scheme 3, P8). ccooppoollyymmeerr PP88 wwiitthh aa nnaarrrrooww mmoolleeccuullaarr mmaassss ddiissttrriibbuuttiioonn ((SScchheemmee 33,, PP88)).. Scheme 3. Well-defined aramid grafted with poly(tetrahydrofuran). SScchheemmee 33.. WWeellll--ddeeffiinneedd aarraammiidd ggrraafftteedd wwiitthh ppoollyy((tteettrraahhyyddrrooffuurraann)).. Self-assembly of star polymers would also be a useful starting point to prepare nanoarchitecture Self-assembly of star polymers would also be a useful starting point to prepare nanoarchitecture of araSmelfi-dass,s demueb ltyo othfestiar rcpomolypmacetr sstwruocutuldrea, lgsolobbeualaur ssehfauples,t aarntidn glaprgoein stutorfapcree paarreea n[a2n3]o.a Orchhiistie cettu arle. of aramids, due to their compact structure, globular shape, and large surface area [23]. Ohisi et al. osyfnatrhaemsiizdesd, da usteatro ptohlyeimrecro mwipthac ctosnttrruocltluedre m, golloebcuullaarr mshaasps ea,nadn ldowla rpgoelysduirsfpaceersaitrye afo[l2lo3w].iOngh ias ichetaainl. synthesized a star polymer with controlled molecular mass and low polydispersity following a chain sgyronwthtehs iczoenddeanssatatironp osltyramteegryw uistihngc o3n-(tarloklyleldamminool)e-cbuelnazromic aascsida ensdtelros w(copnodlyendsisaptieorns imtyonfoolmloewr)i ning growth condensation strategy using 3-(alkylamino)-benzoic acid esters (condensation monomer) in athec hparinesegnrcoew othf pchonendyeln s4a-tviionnylbsternazteogayte u(scionngde3n-s(aaltkioynla miniintioa)to-bre, nvzioniyclica ccido-mesotnerosm(ecro) nadnedn sNat,iNon′- the presence of phenyl 4-vinylbenzoate (condensation initiator, vinylic co-monomer) and N,N′- mmoetnhoymleenre)binistahceryplraemseidncee (dofivpihneynl ycol4-m-voinnyolmbeenrz) o(Sactehe(cmone d4e, nPs9a–tPio1n5)i n[2it4ia].t or,vinylicco-monomer)and Nm,eNth(cid:48)-ymleenthebyilseancerbyilsaamcriydlea m(diidvein(ydli vcion-ymlocnoo-mmoenr)o (mScehr)e(mSceh 4e,m Pe9–4P,1P59)– [P2145].) [24]. Polymers2017,9,414 6of44 Polymers 2017, 9, 414 6 of 42 SchSecmheem4e. 4S.t aSrtapr oploylmymeresrsp prerpeparaereddb byyc chhaaiinn--ggrroowwtthh ppoollyyccoonnddeennssaattiioonn//rardaidciacla clocpooplyomlyemriezraitziaotnio. n. 3.2. Constitutional Isomerism 3.2. ConstitutionalIsomerism The different reactivity of condensation monomers arises from asymmetry (asymmetry of The different reactivity of condensation monomers arises from asymmetry (asymmetry of monomers or induced by reaction of one functional group). Asymmetry is due to chemically monomers or induced by reaction of one functional group). Asymmetry is due to chemically inequivalent functional groups on the monomer that exhibit different reaction rates or kinetics. inequivalentfunctionalgroupsonthemonomerthatexhibitdifferentreactionratesorkinetics. The study of the polyamides obtained from asymmetric diamines or diacid monomers (XabX) Thestudyofthepolyamidesobtainedfromasymmetricdiaminesordiacidmonomers(XabX)has has not been analyzed deeply. Polyamides based on asymmetrically substituted diamine monomers notbeenanalyzeddeeply.Polyamidesbasedonasymmetricallysubstituteddiaminemonomerspresent present unequal reactivity of functional groups, affecting thermal and mechanical properties, as undeqesucarlibreedac tbiyv itHysoiafof uentc tailo. n[a2l5g].r oAulpsos,, aaf fgeoctoidn gdtehsecrrmipatiloann dofm theceh raenliactaiolnp rboeptewretieens ,caosndsteistucrtiibonedal by Hsiisaoomeetrails.m[2 a5n].dA plshoy,saicgaol opdrodpeesrctireips tciaonn boef tfhoeunredl ainti othneb wetowreke onf cPoinnsot iettu atilo. n[2a6l]i.s Tohmise rwisomrka innddpichaytesdic al prothpaetr ttihees cqaunanbteifficoautniodn ionf ththeew storrukctoufreP irneogueltaarlit.y[2 i6s] .dTefhinisedw ourskinign dthicea pterdobtahbaitlitthye oqf ufianndtiinfigca ttwioon-of theadstjraucecntut rneorne-gsuymlarmiteytriisc duenfiitnse idn uas icnhgaitnh epopirnotbinagb iilnit ythoef sfianmdei ndgirtewctoio-and (jparcoebnatbniloitny- spyamrammeettreirc, us)n. its inaThcehna,i na ppooliynctoinngdeinnstahteiosna mreeacdtiiorenc otifo tnw(op mroobnaobmilietrys,p sayrmammeetterric, sa)n.dT hneonn,-saypmomlyectorincd, ceanns aptrioodnurceea catnio n ofitnwfionimte onnuommbeerr so,fs dyimsomrdeetrreidc paonldymnoerns-,s iynm wmhiecthr isc v,acraiens pbreotwdueecne 0a nanidn fi1.n Tithee nauutmhobresr aolsfod diessocrrdibeere d poltywmo elrims,iitnedw ohridcehresdv astrriuesctbuertews eheenad0 taon tdai1l .(HTh-Te, as u=t h1)o arsndal hsoeadde tsoc rhibeaedtw/taoill itmo tiateild (Hor-dHe/rTe-dT,s str =u 0ct)u. res headtoTthaeil r(eHac-Tti,osn= be1t)waenedn hXeaabdXt aonhde aYdcc/Yta pilrotodutaciels( Hsh-oHrt/ sTu-bT-,sstr=uc0t)u.res –acca–, –accb–, –bcca– and –bccb– (–accb– and –bcca– are indistinguishable). Equation 1 describes the calculation of the probability parameter s, of –accb– sub-structures, related to the other three possible structures. Polymers2017,9,414 7of44 The reaction between XabX and YccY produces short sub-structures –acca–, –accb–, –bcca– and –bccb– (–accb– and –bcca– are indistinguishable). Equation (1) describes the calculation of Polymers 2017, 9, 414 7 of 42 theprobabilityparameters,of–accb–sub-structures,relatedtotheotherthreepossiblestructures. [ ] accb ss==(([[aaccccaa]]++[[[aaaccccccbbb]]]++[[bbccccbb]])) (1)( 1) RReecceennttlyly,,P Paalle etta al.l.[ [2277]]s sttuuddiieedd tthhee ccoonnssttiittuuttiioonnaall iissoommeerriissmm ooff aarroommaattiicc ppoollyyaammidideess ccoonntatainininingg ppeennddaannttg grroouuppssb baasseedd oonn aassyymmmmeettrriiccaallllyy ssuubbssttiittuutteedd mm--pphheennyylleennee ddiiaammiinneess ((SScchheemmee 55, ,PP1166),) ,wwhheerere ththee sseeqquueennccee ddiissttrriibbuuttiioonn ccaann bbee ananalaylzyezde danadn dprpedreicdtiecdte. dT.heT phoelypaomlyidames iwdeesrew seyrnethseysnizthedes bizye ldowby lotewmtpeemrapteurraet uirnetienrtfearcfiaacl iaploplyoclyocnodnednesnastiaotnio noof f44--[[44--((11--mmeetthhyyll--11--pphheennyyleletthhyyl)lp)phheennooxxyy]-]1-1,3,3-d-diaiammininoo bbeennzzeennee aanndd 44-{-4{4-[-([4(4--mmeetthhyyllpphheennyyll))ssuullpphhoonnyyll]]pphheennooxxyy}}--11,3,3--ddiaiammininoo bbeennzzeenne ewwitihth twtwoo aarroommaatitci c ddiaiaccididc chhlolorridideess,,i issoopphhtthhaallooyyll cchhlloorriiddee aanndd tteerreepphhtthhaallooyyll cchhlloorriiddee.. TThheeyy oobbttaainineedd mmeeddiuiumm mmoolelecuculalar r mmaassss,,e esssseennttiiaallllyy aammoorrpphhoouuss ppoollyymmeerrss,, wwiitthh ggllaassss--ttrraannssiittiioonn tteemmppeerraatuturreess inin ththee rraannggee 223377––22545 4°C◦C, , ggooooddt htheerrmmaall ssttaabbiilliittyy,, aanndd iimmpprroovveedd ssoolluubbiilliittyy.. TThhee ccoonnssttiittuuttiioonnaall iissoommeerriissmm wwaass ininvveesstitgigaatetded bbyy 1H1H aanndd 1133CC nnuucclleeaarr mmaaggnneettiicc rreessoonnaannccee ssppeeccttrroossccooppyy,, ffiinnddiinngg aa ccoonnssttitiututitoionnaal loordrdeer rs sinin ththee rraannggee 00.3.355––00.3.377.. SScchheemmee 55.. AArraammiidd ssuubb--ssttrruuccttuurreess oobbttaaiinneedd uussiinngg aann aassyymmmmeettrriicc AABB mmoonnoommeerr. . The improvement of the solubility of the polyamides is still one of the main key points to The improvement of the solubility of the polyamides is still one of the main key points to overcome. In this sense, the main strategy consists of decreasing the rigidity of the polymer backbone, overcome. Inthissense,themainstrategyconsistsofdecreasingtherigidityofthepolymerbackbone, thus reducing the interchain interactions by the inhibition of the chain packing. The introduction of thus reducing the interchain interactions by the inhibition of the chain packing. The introduction molecular asymmetry, flexible units, or bulky pendant groups are some of them. In this regard, ofmolecularasymmetry,flexibleunits,orbulkypendantgroupsaresomeofthem. Inthisregard, Sadavarte et al. [28] described the phosphorylation condensation of 4-pentadecylbenzene-1,3- Sadavarteetal.[28]describedthephosphorylationcondensationof4-pentadecylbenzene-1,3-diamine diamine with four commercially available aromatic acids (biphenyl-4,4′dicarboxylic acid, 4,4′- withfourcommerciallyavailablearomaticacids(biphenyl-4,4(cid:48)dicarboxylicacid,4,4(cid:48)-oxybisbenzoic oxybisbenzoic acid, terephthalic acid and isophthalic acid). They obtained medium molecular mass acid, terephthalic acid and isophthalic acid). They obtained medium molecular mass polymers, polymers, showing constitutional isomerism, with improved solubility in organic solvents due to the showingconstitutionalisomerism,withimprovedsolubilityinorganicsolventsduetothependant pendant dodecyl chains. dodecylchains. Damaceanu et al. [29] also improved the solubility of polyamides by introducing asymmetry in Damaceanuetal.[29]alsoimprovedthesolubilityofpolyamidesbyintroducingasymmetryin the polymer structure. Their group produced high molecular mass polyamides, synthesized from thepolymerstructure. Theirgroupproducedhighmolecularmasspolyamides, synthesizedfrom asymmetric diamines with phenoxy-substituted benzophene segments, using some aromatic diacid asymmetricdiamineswithphenoxy-substitutedbenzophenesegments,usingsomearomaticdiacid chlorides containing ether, hexafluoroisopropylidene or diphenylsilane groups. chloriAdelssoc,o pnrteavinioiunsglye,t hUeerd,ha e[x3a0]fl aunodro Giseonptriloep aynldid Seunteeor r[3d1i]p rheevnieywlseilda ntheeg croonusptsit.utional isomerism in polyAamlsoid,ep rsetrvuioctuusrleys, Ureegdaard[3in0g] acnondsGtiteunttiiolenaaln odrdSeurt,e trh[e3o1r]yr,e avniedw peodlytahmeicdoen ssttriutucttiuornea. lisomerismin polyamidestructuresregardingconstitutionalorder,theory,andpolyamidestructure. 3.3. Aromatic Polyamides with Spherical-Like Structures Aromatic polyamides show outstanding mechanical, thermal, and chemical properties as a result of their linear structure and their interchain hydrogen bonds, and thus they are considered high performance polymers. However, they are also highly insoluble in organic solvents, intractable and cannot be melt-processed. The inhibition of the amide-amide linkages to increase their solubility and make them easier to melt can be achieved by means of introducing asymmetric or bulky pendant groups, or by modification of the polymer architecture. The introduction of dendritic structure, or Polymers2017,9,414 8of44 3.3. AromaticPolyamideswithSpherical-LikeStructures Aromaticpolyamidesshowoutstandingmechanical,thermal,andchemicalpropertiesasaresult of their linear structure and their interchain hydrogen bonds, and thus they are considered high performancepolymers. However,theyarealsohighlyinsolubleinorganicsolvents,intractableand cannotbemelt-processed. Theinhibitionoftheamide-amidelinkagestoincreasetheirsolubilityand make them easier to melt can be achieved by means of introducing asymmetric or bulky pendant groups, or by modification of the polymer architecture. The introduction of dendritic structure, orsphere-likegeometry,inhibittheinterchaininteractions,leadingtoprocessablehighperformance polymers of known molecular mass, spherical, defect free and monodisperse, with low solution viscosity, poor mechanical properties, and good solubility [32]. These properties enable aromatic polyamidestobeusedinbiologicalandmedicalapplications,andfornovelapplicationsrelatedto theirencapsulationcharacteristics,chromatography,catalysis,orself-assembly. Spherical-like aromatic polyamides can be obtained by different procedures. Dendrimers are prepared either by convergent growth (reaction of preformed dendrons with a central core molecule) or divergent growth (slow addition of building blocks of low molecular mass starting fromapolyfunctionalmolecule,thecore)bytediousmultiple-stepsprocedures[33]. Thepreparation ofhyperbranchedpolymersismucheasier,usuallyfollowingaone-potprocedureunderconventional polymerization reactions; and they are neither monodisperse or defect-free. In addition to the dendritic (D) and terminal (T) units present in perfect dendrimers, hyperbranched polymers also havelinear(L)units,beingtheirstructuremonomer-dependent. Anoverviewaboutthesynthesis, propertiesandapplicationsofthesetypesofaromaticpolyamideswaspublishedbyScholletal.[34] andJikeiandKakimoto[32]. A more recent work by Matsumoto [35] reported the preparation of aromatic polyamide dendrimers, using a divergent approach, up to the sixth generation with a polyhedral oligomeric silsesquioxane(POSS).Aneight-functionalcorewaspreparedusingocta(n-propylamine)-POSSand anAB buildingblockusing3,5-bis(trifluoroacetamido)benzoicacidanddeprotectedwithhydrazine 2 toyieldtheG1dendrimer. Therestofthedendrimers(synthesizedinasimilarway)wereobtainedin highyieldswithouttediouspurification. Theseorganic-inorganichybridnanoparticleshavepotential applicationinnanoscienceasfluorescentnanofillerswithcontrolledfunctionality,shapeandsize. Tsushima and coworkers [36] also reported a much easier procedure to isolate dendrimers comparedtotraditionalmethods.Theyperformedaone-potmultistepsynthesisbypreparingdendritic aromaticpolyamidedendronsonaglycine-modifiedWangresinasthesolidsupport. Anyunreacted chemicals can be removed by washing the resin with solvents, as the propagating dendrons are attachedtotheinsolublesupport. Aromatic and semiaromatic amine-terminated hyperbranched polyamides and carboxylic acid-terminatedhyperbranchedpolyamide-estersweresynthesizedbyShabbirandcoworkers[37]. Theformerwerepreparedbylowtemperaturepolycondensationofanaromatictriamine(1,3,5-tris(4(cid:48)- aminophenylcarbamoyl)benzene) (B monomer) with different A diacid chlorides (terephthaloyl 3 2 chloride, isophthaloyl chloride, sebacoyl chloride and adipoyl chloride) to render hyperbranched polyamidessolubleinpolaraproticsolvents,withglasstransitiontemperatures(T )between138and g 198◦Candmolecularmassesintherangeof1.3×104–2.7×104. Fluorescentporoushyperbranchedaramidswithdifferentterminalfunctionalgroupsthrough anA +B approachhavebeensynthesizedbyHu[38]. Heused1,3,5-tri(4-carboxylphenyl)benzene 2 3 and p-phenylenediamine to prepare polyamides with strong blue fluorescence with potential applications in storage, separation, catalysis and light emitting. Examples of other applications ofhyperbranchedpolyamidesaretheiruseinreverseosmosismembranes[39],(Scheme6,P17–P19), in applications related to their magnetic properties due to the complexation of hyperbranched polyamideswithametal[40],totheirelectrochromicpropertiesaftertheintroductionofelectroactive units [41], or the improvement of thermal properties of composites grafted with hyperbranched polyamides[42,43]. Polymers2017,9,414 9of44 Polymers 2017, 9, 414 9 of 42 SScchheemmee 66.. HHyyppeerrbbrraanncchheedd aarraammiiddss.. 4. Aromatic Polyamides with Selected Properties and Applications 4. AromaticPolyamideswithSelectedPropertiesandApplications 44.1.1..P Poolylyaammidideessw wiitthh HHiigghh TThheerrmmaall SSttaabbiilliittyy aanndd FFllaammee--RReettaarrddaanntt PPrrooppeerrttiieess AArarammididssa raerceo ncsoindseirdeedreadh iga hhpiegrhf orpmerafnocrmepaonlcyem perolmymainerly mfoaritnwlyo rfeoars otnwso, forreathsoenirso, uftosrt anthdeiinrg outstanding mechanical performance and for their thermal stability and flame resistance. In this mechanicalperformanceandfortheirthermalstabilityandflameresistance.Inthissection,wedescribe section, we describe some of the novel structures reported in the literature during the last years. some of the novel structures reported in the literature during the last years. Polymers with flame Polymers with flame retardant properties usually contain halogens in their structure and some of retardant properties usually contain halogens in their structure and some of them will also be them will also be described later. describedlater. In a first group, several authors have studied the synthesis of good thermal stability fluorinated In a first group, several authors have studied the synthesis of good thermal stability polyamides. Jiang et al. [44] reported on the preparation of fluorine containing polyamides obtained fluorinated polyamides. Jiang et al. [44] reported on the preparation of fluorine containing from polycondensation of 2-(4-trifluoromethylphenoxy)terephthalic acid with four trifluoromethyl- polyamidesobtainedfrompolycondensationof2-(4-trifluoromethylphenoxy)terephthalicacidwith fosuubrsttirtiufltuedor aormometahtyicl- bsuisb(estthiteurt eadmianreo)ms (aStcihcebmise( e7t, hPe2r0)a. mPoinlyem)ser(sS chhaedm Tegs 7b,etPw2e0e)n. 18P9o alynmd e2r1s4 °hCa,d Tansdb e1t0w%e emnas1s8 9losasn dtem21p4er◦aCtu,reasn dran1g0i%ngm fraosms lo47s5s ttoem 4p83e ra°Ctu. reGshareamngyi negt afrlo. m[454] 7d5estcori4b8e3 th◦eC . g preparation of a series of fluorescent anthraquinone-quinoxaline containing polyamides, prepared Ghaemy et al. [45] describe the preparation of a series of fluorescent anthraquinone-quinoxaline from an aromatic diamine, 2,3-bis(4-(4-amino-2-(trifluoromethyl) phenoxy)phenyl)naphtho[2,3- containingpolyamides,preparedfromanaromaticdiamine,2,3-bis(4-(4-amino-2-(trifluoromethyl) pfh]qeunionxoyx)aplhineen-y7,l1)n2-adpihontheo. [P2o,3l-yfa]qmuiidneosx halaidn eη-7in,h1 2b-edtwioeneen. 0.P3o9l yaanmd id0.e6s2 hdaLd/g,η Tgs bbeettwweeeenn 203.309 aanndd inh 03.6223 d°LC/, ga,ndT 1s0%be mtwaeses nlo2s3s 0teamnpder3a2t3ur◦eCs ,ina nthde 1r0a%ngem oafs s36l2o stso t4e3m3 p°Cer aintu Nre2s. Sinhotchkerarvain egt ealo. f[4366]2 g present a series of organic-soluble poly(ether-amide)s bearing sulfoxide and electron withdrawing to 433 ◦C in N . Shockravi et al. [46] present a series of organic-soluble poly(ether-amide)s trifluoromethyl 2group, starting from bis(ether-amide) monomer, 2,2′-sulfoxide-bis[4-methyl(2- bearingsulfoxideandelectronwithdrawingtrifluoromethylgroup, startingfrombis(ether-amide) trifluoromethyl)-4-aminophenoxy) phenyl ether], and several aromatic acids. The polymers could be monomer,2,2(cid:48)-sulfoxide-bis[4-methyl(2-trifluoromethyl)-4-aminophenoxy)phenylether],andseveral cast into flexible and tough films from DMA solutions, with Tgs between 160 and 220 °C. In addition, aromaticacids. ThepolymerscouldbecastintoflexibleandtoughfilmsfromDMAsolutions,with T10s%b emtwasese lnos1s6 t0emanpder2a2tu0r◦eCs .wIenrea dredciotirodne,d1 i0n% thme raasnsgleo sosf t4e0m0 ptoe r5a0t5u °rCes inw Ner2e anredc ofrrodmed 38in0 ttoh e48r0a n°Cge ign air atmosphere. Also, Damaceanu et al. [47] prepared two different aromatic fluorinated of 400 to 505 ◦C in N and from 380 to 480 ◦C in air atmosphere. Also, Damaceanuetal.[47] polyamides. One of th2e polyamides contained in the main chain 1,3,4-oxadiazole and naphthalene preparedtwodifferentaromaticfluorinatedpolyamides. Oneofthepolyamidescontainedinthemain moieties. The other derived from an asymmetrycal diamine containing a phenoxy-substituted chain1,3,4-oxadiazoleandnaphthalenemoieties. Theotherderivedfromanasymmetrycaldiamine benzophenone. The obtained polyamide films showed excellent thermal stability, with starting containingaphenoxy-substitutedbenzophenone. Theobtainedpolyamidefilmsshowedexcellent decomposition temperatures above 400 °C. Finally, Jiang et al. [48] synthetized 9,9-bis[4- thermal stability, with starting decomposition temperatures above 400 ◦C. Finally,Jiangetal. [48] (chloroformylphenoxy)phenyl]xanthene, from which the authors obtained aromatic polyamides with synthetized 9,9-bis[4-(chloroformylphenoxy)phenyl]xanthene, from which the authors obtained ether and bulky xanthenes groups, by means of low temperature polycondensation with several aromatic polyamides with ether and bulky xanthenes groups, by means of low temperature aromatic diamines. Concerning thermal properties, the Tgs varied between 236 to 298 °C, with pdoelycocomnpdoesnitsiaotnio tnemwpiethrastuevreesr aalt a1r0o%m mataiscsd loiasms binetews.eeCno 4n9c0e rannidn g53t5h e°Crm ina lNp2r, oapnedr tuieps t,ot h5e15T °gCs ivna Orie2.d Polymers2017,9,414 10of44 between236to298◦C,withdecompositiontemperaturesat10%masslossbetween490and535◦Cin NP2o,lyamnerds 2u0p17t, o9, 541145 ◦CinO2. 10 of 42 Polymers 2017, 9, 414 10 of 42 SScchheemmee 77.. FFlluuoorriinnaatteedd aarraammiiddss.. Scheme 7. Fluorinated aramids. Another investigation line is focused in the use of substituted benzophenone in the main chain AAnnootthheerr iinnvveessttiiggaattiioonn lliinnee iiss ffooccuusseedd iinn tthhee uussee ooff ssuubbssttiittuutteedd bbeennzzoopphheennoonnee iinn tthhee mmaaiinn cchhaaiinn of aramids. As noted previously, Damaceanu et al. [29] prepared and characterized several aromatic ooff aarraammiiddss.. AAss nnootteedd pprreevviioouussllyy,, DDaammaacceeaannuu eett aall.. [[2299]] pprreeppaarreedd aanndd cchhaarraacctteerriizzeedd sseevveerraall aarroommaattiicc polyamides containing pendant phenoxy motifs in benzophenone sub-structure in the structural unit, ppoollyyaammiiddeess ccoonnttaaiinniinngg ppeennddaanntt pphheennooxxyy mmoottiiffss iinn bbeennzzoopphheennoonnee ssuubb--ssttrruuccttuurree iinn tthhee ssttrruuccttuurraall uunniitt,, wwwiittihhth tt hhtheeerrmrmmaaall lss tstaatabbbiilliiiltitytyy uu uppp t totoo 3 33888555 ◦ °°CCC aaannnddd TTTgggsss rrraaannngggiiinnnggg fffrrrooommm 222222555 tttooo 222555666 °°◦CCC (((SSSccchhheeemmmeee 888, ,,P PP222333)).) .. Scheme 8. Aramids with substituted benzophenone in the main chain. SScchheemmee 88.. AArraammiiddss wwiitthh ssuubbssttiittuutteedd bbeennzzoopphheennoonnee iinn tthhee mmaaiinn cchhaaiinn.. Patil et al. [49] prepared polymers reacting the monomer having aromatic–aliphatic amide and ethePr altiinlk eatg aels. ,[ 4b9is]- [p(r4e-apmariendo bpeonlzyyml)e-r4s- breenazctaimngid teh]e e mthoenr,o wmiethr hdaifvfienrgen atr momolaet ipc–roaplioprhtaiotincs aomf iIdPeC a onrd Patiletal.[49]preparedpolymersreactingthemonomerhavingaromatic–aliphaticamideand eTthPeCr .l Dinikffaegreesn,t ibails -s[c(a4n-anminign ocableonrzimyle)-tr4y-b (eDnSzCam) aindael]y estihs eorf, twheitshe dpoiflfyearemnitd meso slhe opwroedp oTrgtsio inns t hoef IrPanCg oe r etherlinkages,bis-[(4-aminobenzyl)-4-benzamide]ether,withdifferentmoleproportionsofIPCor ToPfC 1.9 D7 itfof e2r0e4n °tiCa,l asncadn tnhienyg s chaolworeimd netor ym (aDssS Clo)s sa nbaellyoswis 3 o3f6 t°hCe swe hpeonl yaanmaliydzeesd s bhyo wtheedrm Togsg irna vtihme ertarny.g e TPC.Differentialscanningcalorimetry(DSC)analysisofthesepolyamidesshowedT sintherangeof g of 197S thoa 2b0b4ir ° Cet, aanl.d [ t5h0e] yd sehsocrwibeed tnhoe mpaoslys cloonssd benelsoawtio 3n3 6o f° C4 -whyhdenro axnya-2ly,6z-eddia bmyi nthoeprymriomgirdaivniem wetirtyh. 197to204◦C,andtheyshowednomasslossbelow336◦Cwhenanalyzedbythermogravimetry. diffeSrheanbt bdiria ceitd a cl.h l[o5r0i]d edse, stcor iboeb tathine speomlyiacroonmdaetnisca htiyopne robfr a4n-hchyeddro axnyd-2 ,c6a-rdbioaxmyilnico pacyirdim teidrminien awteidth Shabbir et al. [50] describe the polycondensation of 4-hydroxy-2,6-diaminopyrimidine with daifrfoemreantti cd piaoclyida mchidloe-reidsteesr,s .t oT hoeb toabinta isneemdi aarmoomrpathico uhsy ppoelrybmraenrcsh headd aηnindh rcaanrgbionxgy lbice twaceiden t e0r.2m1 indaLt/egd different diacid chlorides, to obtain semiaromatic hyperbranched and carboxylic acid terminated aaarroonmmd aa0tt.ii2cc8 p pdooLllyy/gaa mmaniidddee h--eeassdttee errxss..c eTTlhhleeen oto bbthttaaeiirnnmeedadl aasmmtaoborirplpithhyoo uwussit phpo o1lly0ym%m eemrrssa hshsaa dldo ηsηsi nah trr ataennmggipinneggr abbteuettrwwesee eefnrno 0m0..22 1314 dd6L Lt/o/gg a5n0d8 0°.C28. AdsL /sge eann dp rheavdio uexsclye,l lSeandt atvhaerrtme aelt satla. b[i2li8t]y awlsiot ha n1a0l%yz mesa tshse l opsoisnl hyacto tnedmepnesraatitounre os ff rao dmia 3m4i6n eto and 0.28 dL/g and had excellent thermal stability with 10% mass loss at temperatures from 5(0p8e n°Cta. dAecsy slebeenn zperneev-1io,3u-sdliya,m Siandea) vwairtthe deitf faelr.e [n2t8 c]o amlsmo earnciaally azreosm thaeti cp doilaycciodns dtoe nosbattaiionn a oraf ma iddsia wmiitnhe 346 to 508 ◦C. As seen previously, Sadavarte et al. [28] also analyzes the polycondensation of (ppeenntdaadnetc pylebnetnadzeencyel- 1c,h3a-dinias.m Tihneer)m wailt hp rdoipffeerrteienst creopmomrteedrc iinalc laurdoem 1a0t%ic dmiaacsisd lso stos voabltuaeins aurpa mtoi d46s0 w °iCth a diamine (pentadecylbenzene-1,3-diamine) with different commercial aromatic diacids to obtain p(einn dNa2n),t hpiegnht afodre acyral mchidaisn cso. nTthaienrimnga la plirpohpaetricti echs arienpso, ratnedd Tingsc lvuadleu e1s0 v%a rmyiansgs bloestsw veaelnu 1e6s 9u tpo t2o1 54 6°0C .° C aramidswithpendantpentadecylchains. Thermalpropertiesreportedinclude10%masslossvalues u(ipn tNo24M),6 h0ali◦lgaChk p(fioonru Nar rea)t,m haiildg. sh[ 5cf1oo]nr etamarianpmilnoigyd esadlci opan hctaahtiiinrcai ncl hgdaaiialnicpsi,dh a,a nt(i2dcS cT)h-g5sa- i[vn4as-l(,u4a-enmsd evTtahryysliv-n2ag-lp ubheetsthwvaaleiremyniin d1gy69lbp eteotnw 2tea1en5no °y1Cl6-.9 aminMoa)blleankzpooyulra me2ti naol.] i[s5o1p]h etmhaplilco yaecdid ,a inch air aplo dlyicaocindd, e(n2sSa)t-i5o-n[4 p-(r4o-mceessthg wyli-t2h- pahlitphhaalitmic iadnydlp aernotmanaotyicl - to215◦C. admiiisnooc)ybaennaztoeys.l aTmhien op]oisloyapmhtihdaelsi co abctiadin, eind ap rpeoselyncteodn dienntesraetsiotinn gp rtohceersms awl ipthro paleirpthieast i(c5 %an dm aarsos mloastsic Mallakpouretal.[51]employedachiraldiacid, (2S)-5-[4-(4-methyl-2-phthalimidylpentanoyl- dtieismopcyearantautrees .u pT htoe 3p5o5l y°Cam inid Ne2s) . obtained presented interesting thermal properties (5% mass loss amino)benzoylamino]isophthalic acid, in a polycondensation process with aliphatic and aromatic Flame-retardancy polyamides were also analyzed by several authors. Also, the group of temperature up to 355 °C in N2). diisocyanates. The polyamides obtained presented interesting thermal properties (5% mass loss Mallakpour et al. [52] describe the synthesis of aromatic polyamides with flame retardancy Flame-retardancy polyamides were also analyzed by several authors. Also, the group of tepmroppeerrattiuesr,e uupsintog 3c5o5n◦vCenintioNn2a)l. heating as well as microwave irradiation. The polymers were Mallakpour et al. [52] describe the synthesis of aromatic polyamides with flame retardancy pproreppearrtieeds ,u suisnign ga dcioancivde nmtoionnoaml ehr ewatiitnhg a La-sp hwenelyl laalsa nminiectreotrwaabvroem iorrpahdtihaatiloimn.i dTe hger opuopl.y mers were To improve thermal resistance and flame retardancy properties, halogens as bromine and prepared using a diacid monomer with a L-phenylalaninetetrabromophthalimide group. chlorine are usually employed in the formulation of all kind of polymers, also in aromatic To improve thermal resistance and flame retardancy properties, halogens as bromine and polyamides. For example, Rafiee et al. [53] describe the preparation of flame-retardancy polyamides, chlorine are usually employed in the formulation of all kind of polymers, also in aromatic p olyamides. For example, Rafiee et al. [53] describe the preparation of flame-retardancy polyamides,
Description: