ebook img

Functional analysis with applications PDF

406 Pages·2019·1.538 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Functional analysis with applications

SvetlinG.Georgiev,KhaledZennir FunctionalAnalysiswithApplications Also of Interest AppliedNonlinearFunctionalAnalysis.AnIntroduction Papageorgiou,NikolaosS./Winkert,Patrick,2018 ISBN978-3-11-051622-7,e-ISBN(PDF)978-3-11-053298-2, e-ISBN(EPUB)978-3-11-053183-1 ElementaryFunctionalAnalysis Markin,MaratV.,2018 ISBN978-3-11-061391-9,e-ISBN(PDF)978-3-11-061403-9, e-ISBN(EPUB)978-3-11-061409-1 FunctionalAnalysis.ATerseIntroduction Chacón,Gerardo/Rafeiro,Humberto/Vallejo,JuanCamilo,2016 ISBN978-3-11-044191-8,e-ISBN(PDF)978-3-11-044192-5, e-ISBN(EPUB)978-3-11-043364-7 ComplexAnalysis.AFunctionalAnalyticApproach Haslinger,Friedrich,2017 ISBN978-3-11-041723-4,e-ISBN(PDF)978-3-11-041724-1, e-ISBN(EPUB)978-3-11-042615-1 RealAnalysis.MeasureandIntegration Markin,MaratV.,2019 ISBN978-3-11-060097-1,e-ISBN(PDF)978-3-11-060099-5, e-ISBN(EPUB)978-3-11-059882-7 Svetlin G. Georgiev, Khaled Zennir Functional Analysis with Applications | MathematicsSubjectClassification2010 46-00,46-01,46B25,46E15,46E20,46E30 Authors Prof.Dr.SvetlinG.Georgiev KlimentOhridskiUniversityofSofia DepartmentofDifferentialEquations FacultyofMathematicsandInformatics 1126Sofia Bulgaria [email protected] Dr.KhaledZennir QassimUniversity DepartmentofMathematics BuraydahAl-Qassim51452 SaudiArabia [email protected] ISBN978-3-11-065769-2 e-ISBN(PDF)978-3-11-065772-2 e-ISBN(EPUB)978-3-11-065804-0 LibraryofCongressControlNumber:2019937688 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2019WalterdeGruyterGmbH,Berlin/Boston Coverimage:-strizh-/iStock/GettyImages Typesetting:VTeXUAB,Lithuania Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com Preface Functionalanalysismeansanalysisonfunctionspaces.Thisisafieldofmathematics thatdevelopedinthefirsthalfofthe20thcenturythanksinparticulartotheworkof M.Frechet,S.Banach,andD.Hilbert.Examplesoftheefficiencyoffunctionalanalysis hasbeentheintroductionofSobolev’sspaces(1935)andL.Schwartz’sinventionofthe theoryofdistributions(1945–1950).Thesespaceshavemadegreatprogressinsolving the problems of partial differential equations and provide the main tools still used todayinthisfieldofboththeoreticalandnumericalstudies. Classicalanalysisfocusesonfinitedimensionalspacesonℝorℂ.Thisissuitable, forexample,forsolvinglineardifferentialequations.Inordertosolvemorecompli- catedequations,likenonlineardifferentialequations,integralequations,andpartial differentialequations,thesolutionshavetobesoughtaprioriinvectorspacesofan infinitenumberofdimensions.Thecomputationofexplicitsolutionsisoftenoutof reachandonetriestodescribethestructureofthesesolutionsbytheirbelongingto spacesadaptedtotheproblemposed.Thestudyofstabilitynaturallyleadstocon- sideringspaceswithtopologiesdefinedbynorms,semi-normsordistances.Froma purelymathematicalpointofview,functionalanalysiscanalsobeseenasanexten- siontoinfinitedimensionsofEuclideangeometryinfinitedimensions.Thetransition fromfinitedimensiontoinfinitedimensionisnotalwayseasybecauseweloseapart ofthegeometricintuition.Whereasonafinitedimensionalvectorspacethereisonly one“reasonable”topology,onaspaceofinfinitedimensionwemustoftenconsider severaltopologiessimultaneously. Themaingoal,inrealizingthistextbook,istopresentausefultooltojuniorre- searchersandbeginninggraduatestudentsofengineeringandsciencecoursesinor- dertoacquireelementaryknowledgeandsolidtoolsthatarefundamentaltotheun- derstandingofmathematicsandtheparticulardisciplines(geometry,probabilities, partialdifferentialequations)withinphysics,inmechanics,orintheapplicationsof mathematicstotheanalysisoflargesystems.Itcontainstenchapters,andeachchap- terconsistsofresultswiththeirdetailedproofs,numerousexamples,andexercises withsolutions.Eachchapterconcludeswithasectionfeaturingadvancedpractical problemswithsolutionsfollowedbyasectiononnotesandreferences,explainingits contextwithinexistingliterature.Wewillpresenthereinadetailedwaythecontents ofeachofthem. Chapter1isentirelydevotedtothepresentationofdefinitionsandresultsneces- saryforproceedinginthiswork.Wefirstrecallafewbasicresultsonthelinear,metric, normedandBanachspacesanditsproperties.Theseareusedinparticulartointro- ducethevariousconceptsofweaksolutionstoPDEs.Wewillseeregularlylinksand relationshipsbetweenfunctionanalysisandapplicationsonPDEs.Chapter2istitled Lebesgueintegration.Itisdevotedtothestudyofmeasureandintegration,Lebesgue measurablefunctionsandgeneralmeasurespaces,wheretherearemanyprovedre- https://doi.org/10.1515/9783110657722-201 VI | Preface sults.ThepurposeofChapter3istopresentresultsaccordingtotheLpspaces,which contains,definitions,separability,dualityandgeneralLpspaceswithitsnorms.The results,presentedinChapter4,concernlinearoperators,inverseoperatorsinnormed linearspacesandtheirproperties.Chapter5istitledLinearfunctionals;herewein- troduceandtreatthelinearfunctionalsintheirgeneralformandrelatedtheadjoint operators.Chapter6isreservedfortopologicalstudies;itisfollowedbyChapter7ti- tledSelf-adjointoperatorsinHilbertspaces.Themethodofthesmallparameterwill bethemainsubjectofChapter8andtheparametercontinuationmethodwillbethe subjectofChapter9. So we realize that the fixed-point theorems are essential in the applications of the function analysis. They are the basic mathematical tools in showing the exis- tence of solutions in various kinds of equations. Fixed-point theory is at the heart ofnonlinearanalysisandprovidesthenecessarytoolstostudyexistencetheorems in many different nonlinear problems. The aim of Chapter 10 is the study of some fixed-pointtheorems.Westartwiththesimplestandbestknownofthem:Banach’s fixed-pointtheoremforcontractionmaps.ThenweaddresstheBrinciarifixed-point theorem,whichisageneralizationofthistheorem.Wewillthenseemorepowerful andsomewhatdeepertheorems.Wecanthusstudysuccessivelythetheoremofthe fixedpointofBrouwer(validinfinitedimension)andthenthetheoremofthefixed pointofSchauder(whichisthegeneralizationininfinitedimension).UnlikeBanach’s theorem,theproofsofthelattertworesultsarenotconstructive,whichexplainswhy they require somewhat more sophisticated tools. Many different proofs of these re- sultsexistandonemaybeinterestedinoneormoreofthem.Wefinishthischapter bygivingapplicationsinmanyproblems. Thisisthefirstvolumeofaseriesofatleasttwovolumes;theremainderofthe serieswillbepreparedlater. SvetlinG.Georgiev KhaledZennir Contents Preface|V 1 Vector,metric,normedandBanachspaces|1 1.1 Vectorspaces|1 1.2 Metricspaces|24 1.3 Usefulinequalities|29 1.4 Completespaces|32 1.5 Normedspaces|39 1.6 Banachspaces|53 1.7 Innerproductspaces|54 1.8 Hilbertspaces|62 1.9 Separablespaces|69 1.10 Advancedpracticalproblems|70 2 Lebesgueintegration|73 2.1 Lebesgueoutermeasure.Measurablesets|73 2.2 TheLebesguemeasure.TheBorel–Cantellilemma|95 2.3 Nonmeasurablesets|99 2.4 TheCantorset.TheCantor–Lebesguefunction|102 2.5 Lebesguemeasurablefunctions|107 2.6 TheRiemannintegral|124 2.7 Lebesgueintegration|125 2.7.1 TheLebesgueintegralofaboundedmeasurablefunctionoverasetof finitemeasure|125 2.7.2 TheLebesgueintegralofameasurablenonnegativefunction|135 2.7.3 ThegeneralLebesgueintegral|143 2.8 Continuityanddifferentiabilityofmonotonefunctions.Lebesgue’s theorem|158 2.9 Generalmeasurespaces|168 2.10 Generalmeasurablefunctions|169 2.11 Integrationovergeneralmeasurespaces|171 2.12 Advancedpracticalproblems|176 3 TheLpspaces|179 3.1 Definition|179 3.2 TheinequalitiesofHölderandMinkowski|180 3.3 Someproperties|182 3.4 TheRiesz–Fischertheorem|183 3.5 Separability|189 VIII | Contents 3.6 Duality|190 3.7 GeneralLpspaces|204 3.8 Advancedpracticalproblems|207 4 Linearoperators|209 4.1 Definition|209 4.2 Linearoperatorsinnormedvectorspaces|211 4.3 Inverseoperators|229 4.4 Advancedpracticalproblems|233 5 Linearfunctionals|235 5.1 TheHahn–Banachextensiontheorem|235 5.2 ThegeneralformofthelinearfunctionalsonEninthecaseF=R|241 5.3 ThegeneralformofthelinearfunctionalsonHilbertspaces|242 5.4 Weakconvergenceofsequencesoffunctionals|244 5.5 Advancedpracticalproblems|244 6 Relativelycompactsetsinmetricandnormedspaces.Compact operators|247 6.1 Definitions.Generaltheorems|247 6.2 Criteriaforcompactnessofsetsinmetricspaces|250 6.3 ACriteriaforrelativecompactnessinthespaceC([a,b])|254 6.4 ACriteriaforcompactnessinthespaceLp([a,b]),p>1|257 6.5 Compactoperators|260 6.6 Advancedpracticalproblems|263 7 Self-adjointoperatorsinHilbertspaces|265 7.1 Adjointoperators.Self-adjointoperators|265 7.2 Unitaryoperators|266 7.3 Projectionoperators|267 8 Themethodofthesmallparameter|273 8.1 Abstractfunctionsofarealvariable|273 8.2 Powerseries|280 8.3 AnalyticabstractfunctionsandTaylor’sseries|282 8.4 Themethodofthesmallerparameter|286 8.5 Anapplicationtointegralequations|289 9 Theparametercontinuationmethod|299 9.1 Statementofthebasicresult|299 9.2 Anapplicationtoaboundaryvalueproblemforaclassofsecondorder ordinarydifferentialequations|300

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.