SvetlinG.Georgiev,KhaledZennir FunctionalAnalysiswithApplications Also of Interest AppliedNonlinearFunctionalAnalysis.AnIntroduction Papageorgiou,NikolaosS./Winkert,Patrick,2018 ISBN978-3-11-051622-7,e-ISBN(PDF)978-3-11-053298-2, e-ISBN(EPUB)978-3-11-053183-1 ElementaryFunctionalAnalysis Markin,MaratV.,2018 ISBN978-3-11-061391-9,e-ISBN(PDF)978-3-11-061403-9, e-ISBN(EPUB)978-3-11-061409-1 FunctionalAnalysis.ATerseIntroduction Chacón,Gerardo/Rafeiro,Humberto/Vallejo,JuanCamilo,2016 ISBN978-3-11-044191-8,e-ISBN(PDF)978-3-11-044192-5, e-ISBN(EPUB)978-3-11-043364-7 ComplexAnalysis.AFunctionalAnalyticApproach Haslinger,Friedrich,2017 ISBN978-3-11-041723-4,e-ISBN(PDF)978-3-11-041724-1, e-ISBN(EPUB)978-3-11-042615-1 RealAnalysis.MeasureandIntegration Markin,MaratV.,2019 ISBN978-3-11-060097-1,e-ISBN(PDF)978-3-11-060099-5, e-ISBN(EPUB)978-3-11-059882-7 Svetlin G. Georgiev, Khaled Zennir Functional Analysis with Applications | MathematicsSubjectClassification2010 46-00,46-01,46B25,46E15,46E20,46E30 Authors Prof.Dr.SvetlinG.Georgiev KlimentOhridskiUniversityofSofia DepartmentofDifferentialEquations FacultyofMathematicsandInformatics 1126Sofia Bulgaria [email protected] Dr.KhaledZennir QassimUniversity DepartmentofMathematics BuraydahAl-Qassim51452 SaudiArabia [email protected] ISBN978-3-11-065769-2 e-ISBN(PDF)978-3-11-065772-2 e-ISBN(EPUB)978-3-11-065804-0 LibraryofCongressControlNumber:2019937688 BibliographicinformationpublishedbytheDeutscheNationalbibliothek TheDeutscheNationalbibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableontheInternetathttp://dnb.dnb.de. ©2019WalterdeGruyterGmbH,Berlin/Boston Coverimage:-strizh-/iStock/GettyImages Typesetting:VTeXUAB,Lithuania Printingandbinding:CPIbooksGmbH,Leck www.degruyter.com Preface Functionalanalysismeansanalysisonfunctionspaces.Thisisafieldofmathematics thatdevelopedinthefirsthalfofthe20thcenturythanksinparticulartotheworkof M.Frechet,S.Banach,andD.Hilbert.Examplesoftheefficiencyoffunctionalanalysis hasbeentheintroductionofSobolev’sspaces(1935)andL.Schwartz’sinventionofthe theoryofdistributions(1945–1950).Thesespaceshavemadegreatprogressinsolving the problems of partial differential equations and provide the main tools still used todayinthisfieldofboththeoreticalandnumericalstudies. Classicalanalysisfocusesonfinitedimensionalspacesonℝorℂ.Thisissuitable, forexample,forsolvinglineardifferentialequations.Inordertosolvemorecompli- catedequations,likenonlineardifferentialequations,integralequations,andpartial differentialequations,thesolutionshavetobesoughtaprioriinvectorspacesofan infinitenumberofdimensions.Thecomputationofexplicitsolutionsisoftenoutof reachandonetriestodescribethestructureofthesesolutionsbytheirbelongingto spacesadaptedtotheproblemposed.Thestudyofstabilitynaturallyleadstocon- sideringspaceswithtopologiesdefinedbynorms,semi-normsordistances.Froma purelymathematicalpointofview,functionalanalysiscanalsobeseenasanexten- siontoinfinitedimensionsofEuclideangeometryinfinitedimensions.Thetransition fromfinitedimensiontoinfinitedimensionisnotalwayseasybecauseweloseapart ofthegeometricintuition.Whereasonafinitedimensionalvectorspacethereisonly one“reasonable”topology,onaspaceofinfinitedimensionwemustoftenconsider severaltopologiessimultaneously. Themaingoal,inrealizingthistextbook,istopresentausefultooltojuniorre- searchersandbeginninggraduatestudentsofengineeringandsciencecoursesinor- dertoacquireelementaryknowledgeandsolidtoolsthatarefundamentaltotheun- derstandingofmathematicsandtheparticulardisciplines(geometry,probabilities, partialdifferentialequations)withinphysics,inmechanics,orintheapplicationsof mathematicstotheanalysisoflargesystems.Itcontainstenchapters,andeachchap- terconsistsofresultswiththeirdetailedproofs,numerousexamples,andexercises withsolutions.Eachchapterconcludeswithasectionfeaturingadvancedpractical problemswithsolutionsfollowedbyasectiononnotesandreferences,explainingits contextwithinexistingliterature.Wewillpresenthereinadetailedwaythecontents ofeachofthem. Chapter1isentirelydevotedtothepresentationofdefinitionsandresultsneces- saryforproceedinginthiswork.Wefirstrecallafewbasicresultsonthelinear,metric, normedandBanachspacesanditsproperties.Theseareusedinparticulartointro- ducethevariousconceptsofweaksolutionstoPDEs.Wewillseeregularlylinksand relationshipsbetweenfunctionanalysisandapplicationsonPDEs.Chapter2istitled Lebesgueintegration.Itisdevotedtothestudyofmeasureandintegration,Lebesgue measurablefunctionsandgeneralmeasurespaces,wheretherearemanyprovedre- https://doi.org/10.1515/9783110657722-201 VI | Preface sults.ThepurposeofChapter3istopresentresultsaccordingtotheLpspaces,which contains,definitions,separability,dualityandgeneralLpspaceswithitsnorms.The results,presentedinChapter4,concernlinearoperators,inverseoperatorsinnormed linearspacesandtheirproperties.Chapter5istitledLinearfunctionals;herewein- troduceandtreatthelinearfunctionalsintheirgeneralformandrelatedtheadjoint operators.Chapter6isreservedfortopologicalstudies;itisfollowedbyChapter7ti- tledSelf-adjointoperatorsinHilbertspaces.Themethodofthesmallparameterwill bethemainsubjectofChapter8andtheparametercontinuationmethodwillbethe subjectofChapter9. So we realize that the fixed-point theorems are essential in the applications of the function analysis. They are the basic mathematical tools in showing the exis- tence of solutions in various kinds of equations. Fixed-point theory is at the heart ofnonlinearanalysisandprovidesthenecessarytoolstostudyexistencetheorems in many different nonlinear problems. The aim of Chapter 10 is the study of some fixed-pointtheorems.Westartwiththesimplestandbestknownofthem:Banach’s fixed-pointtheoremforcontractionmaps.ThenweaddresstheBrinciarifixed-point theorem,whichisageneralizationofthistheorem.Wewillthenseemorepowerful andsomewhatdeepertheorems.Wecanthusstudysuccessivelythetheoremofthe fixedpointofBrouwer(validinfinitedimension)andthenthetheoremofthefixed pointofSchauder(whichisthegeneralizationininfinitedimension).UnlikeBanach’s theorem,theproofsofthelattertworesultsarenotconstructive,whichexplainswhy they require somewhat more sophisticated tools. Many different proofs of these re- sultsexistandonemaybeinterestedinoneormoreofthem.Wefinishthischapter bygivingapplicationsinmanyproblems. Thisisthefirstvolumeofaseriesofatleasttwovolumes;theremainderofthe serieswillbepreparedlater. SvetlinG.Georgiev KhaledZennir Contents Preface|V 1 Vector,metric,normedandBanachspaces|1 1.1 Vectorspaces|1 1.2 Metricspaces|24 1.3 Usefulinequalities|29 1.4 Completespaces|32 1.5 Normedspaces|39 1.6 Banachspaces|53 1.7 Innerproductspaces|54 1.8 Hilbertspaces|62 1.9 Separablespaces|69 1.10 Advancedpracticalproblems|70 2 Lebesgueintegration|73 2.1 Lebesgueoutermeasure.Measurablesets|73 2.2 TheLebesguemeasure.TheBorel–Cantellilemma|95 2.3 Nonmeasurablesets|99 2.4 TheCantorset.TheCantor–Lebesguefunction|102 2.5 Lebesguemeasurablefunctions|107 2.6 TheRiemannintegral|124 2.7 Lebesgueintegration|125 2.7.1 TheLebesgueintegralofaboundedmeasurablefunctionoverasetof finitemeasure|125 2.7.2 TheLebesgueintegralofameasurablenonnegativefunction|135 2.7.3 ThegeneralLebesgueintegral|143 2.8 Continuityanddifferentiabilityofmonotonefunctions.Lebesgue’s theorem|158 2.9 Generalmeasurespaces|168 2.10 Generalmeasurablefunctions|169 2.11 Integrationovergeneralmeasurespaces|171 2.12 Advancedpracticalproblems|176 3 TheLpspaces|179 3.1 Definition|179 3.2 TheinequalitiesofHölderandMinkowski|180 3.3 Someproperties|182 3.4 TheRiesz–Fischertheorem|183 3.5 Separability|189 VIII | Contents 3.6 Duality|190 3.7 GeneralLpspaces|204 3.8 Advancedpracticalproblems|207 4 Linearoperators|209 4.1 Definition|209 4.2 Linearoperatorsinnormedvectorspaces|211 4.3 Inverseoperators|229 4.4 Advancedpracticalproblems|233 5 Linearfunctionals|235 5.1 TheHahn–Banachextensiontheorem|235 5.2 ThegeneralformofthelinearfunctionalsonEninthecaseF=R|241 5.3 ThegeneralformofthelinearfunctionalsonHilbertspaces|242 5.4 Weakconvergenceofsequencesoffunctionals|244 5.5 Advancedpracticalproblems|244 6 Relativelycompactsetsinmetricandnormedspaces.Compact operators|247 6.1 Definitions.Generaltheorems|247 6.2 Criteriaforcompactnessofsetsinmetricspaces|250 6.3 ACriteriaforrelativecompactnessinthespaceC([a,b])|254 6.4 ACriteriaforcompactnessinthespaceLp([a,b]),p>1|257 6.5 Compactoperators|260 6.6 Advancedpracticalproblems|263 7 Self-adjointoperatorsinHilbertspaces|265 7.1 Adjointoperators.Self-adjointoperators|265 7.2 Unitaryoperators|266 7.3 Projectionoperators|267 8 Themethodofthesmallparameter|273 8.1 Abstractfunctionsofarealvariable|273 8.2 Powerseries|280 8.3 AnalyticabstractfunctionsandTaylor’sseries|282 8.4 Themethodofthesmallerparameter|286 8.5 Anapplicationtointegralequations|289 9 Theparametercontinuationmethod|299 9.1 Statementofthebasicresult|299 9.2 Anapplicationtoaboundaryvalueproblemforaclassofsecondorder ordinarydifferentialequations|300