ebook img

Functional Analysis of an Arabidopsis thaliana Abiotic Stress-inducible Facilitated Diffusion ... PDF

18 Pages·2009·4.17 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Functional Analysis of an Arabidopsis thaliana Abiotic Stress-inducible Facilitated Diffusion ...

THEJOURNALOFBIOLOGICALCHEMISTRY VOL.285,NO.2,pp.1138–1146,January8,2010 ©2010byTheAmericanSocietyforBiochemistryandMolecularBiology,Inc. PrintedintheU.S.A. Functional Analysis of an Arabidopsis thaliana Abiotic Stress-inducible Facilitated Diffusion Transporter for Monosaccharides*□S Receivedforpublication,August10,2009,andinrevisedform,November6,2009Published,JBCPapersinPress,November9,2009,DOI10.1074/jbc.M109.054288 KohjiYamada‡§,YurikoOsakabe‡,JunyaMizoi§,KazuoNakashima§,YasunariFujita§,KazuoShinozaki¶, andKazukoYamaguchi-Shinozaki‡§1 Fromthe‡LaboratoryofPlantMolecularPhysiology,GraduateSchoolofAgriculturalandLifeSciences,TheUniversityofTokyo, Tokyo113-8657,Japan,the§BiologicalResourcesDivision,JapanInternationalResearchCenterforAgriculturalSciences, Tsukuba,Ibaraki305-8686,Japan,andthe¶RIKENPlantScienceCenter,Yokohama,Kanagawa203-0045,Japan Sugarsplayindispensablerolesinbiologicalreactionsandare distancetransport(1,2).Inmostplantspecies,solublesugars distributedintovarioustissuesororganellesviatransportersin are mainly present in the forms of glucose, fructose, and plants.Underabioticstressconditions,plantsaccumulatesug- sucrose.Sucroseisdirectlytransportedintosinkcellsorhet- arsasameanstoincreasestresstolerance.Here,wereportan erotrophic organs and is taken up by sucrose transporters or abioticstress-inducibletransporterformonosaccharidesfrom hexosetransportersaftercleavagebycellwall-boundinvertases Arabidopsis thaliana that is termed ESL1 (ERD six-like 1). (3).Sugarscanalsobedistributedinthesubcellularlevelinto ExpressionofESL1wasinducedunderdroughtandhighsalinity different organelles, depending on their actual requirements. conditionsandwithexogenousapplicationofabscisicacid.Pro- During the daytime, many plant species assimilate carbon to moter analyses using (cid:1)-glucuronidase and green fluorescent synthesize starches, which are transiently stored in chloro- proteinreportersrevealedthatESL1ismainlyexpressedinperi- plasts.Incontrast,sugarsremobilizetosinkcellsorheterotro- cycle and xylem parenchyma cells. The fluorescence of ESL1- phic organs during the night (4). In addition, sugars can be greenfluorescentprotein-fusedproteinwasdetectedattono- importedintothevacuolesfortransientorlongtermstorage plastintransgenicArabidopsisplantsandtobaccoBY-2cells. (5).Itisreportedthatasystemforsugaruptakeintovacuoleis Furthermore, alanine-scanning mutagenesis revealed that an contained in certain plants like sugar beet (6) or maize (7). N-terminalLXXXLLmotifinESL1wasessentialforitslocaliza- Underabioticstressconditions,galactinolandraffinoseaccu- tionatthetonoplast.TransgenicBY-2cellsexpressingmutated mulateinplantcells(8).OverexpressionofGolS2,whichisan ESL1,whichwaslocalizedattheplasmamembrane,showedan abiotic stress-inducible galactinol synthase gene, increases uptakeabilityformonosaccharides.Moreover,thevalueofK m endogenousgalactinolandraffinoselevelsandimprovesabio- for glucose uptake activity of mutated ESL1 in the transgenic tic stress tolerance in Arabidopsis (8). These results indicate BY-2cellswasextraordinarilyhigh,andthetransportactivity thatsugarsmightfunctionasosmo-protectants,althoughlittle wasindependentfromaprotongradient.Theseresultsindicate is known about their physiological function under abiotic that ESL1 is a low affinity facilitated diffusion transporter. stresses.Theexpressionofgenesnotonlyforsugarsynthases Finally, we detected that vacuolar invertase activity was butalsosugartransportersisinducedunderabioticstresscon- increased under abiotic stress conditions, and the expression ditions(9),andsugarsmightbetransportedtospecifictissues patternsofvacuolarinvertasegenesweresimilartothatofESL1. ororganellesunderabioticstressconditions(10). Under abiotic stress conditions, ESL1 might function coordi- Physiological analyses showed that both facilitated diffu- natelywiththevacuolarinvertasetoregulateosmoticpressure sion and secondary active transporters for sugars exist in byaffectingtheaccumulationofsugarinplantcells. plants (11, 12). All of the previously characterized sugar transporters are secondary active transporters (10, 13–15). Inmanycases,theactivitiesofsecondaryactivetransporters Inplants,sugarsplayessentialrolesasamainenergysource, in plants are dependent upon proton gradients. STP1 was substratesforpolymersynthesis,storagecompounds,andcar- initiallyisolatedasaplantsugartransporterfromArabidop- bonprecursorsthatarerequiredforawidenumberofanabolic sisandwasshowntobeaproton/hexosesymporterlocalized and catabolic reactions. To distribute sugars within whole attheplasmamembrane(13).Sugartransportersforhexose plants, several transporters are required not only to traverse and sucrose uptake across the plasma membrane have been biologicalmembranesonthesubcellularlevelbutalsoforlong identified in various plant species (16–18). However, little is known about sugar transporters localized at the tonoplast. *Thisworkwassupportedbyagrant-in-aidforscientificresearchinpriority Recently, two proton-dependent antiporters involved in glu- areasfromtheMinistryofEducation,Culture,Sports,Science,andTech- coseinfluxacrossthetonoplastwereidentifiedinArabidopsis nologyofJapan. □S Theon-lineversionofthisarticle(availableathttp://www.jbc.org)contains (10,15).Ontheotherhand,theactivitiesoffacilitateddiffusion supplemental “Experimental Procedures,” Tables S1 and S2, and Figs. transporters depend on substrate concentration and are not S1–S6. dependentuponprotongradients.Becausevariousplantspe- 1Towhomcorrespondenceshouldbeaddressed.Tel.:81-3-5841-8137;Fax: 81-3-5841-8009;E-mail:[email protected]. cies accumulate a considerable amount of soluble sugars in 1138 JOURNALOFBIOLOGICALCHEMISTRY VOLUME285•NUMBER2•JANUARY8,2010 This is an Open Access article under the CC BY license. ArabidopsisFacilitatedDiffusionTransporterforHexoses their vacuoles (5), the existence of facilitated diffusion trans- culturedwithNaClandABAattheconcentrationof250mM portersfortheeffluxofsugarsacrossthetonoplastshavebeen and100(cid:1)M,respectively. predictedforplantcells(11,19). Histochemical Localization—The ERD6 or ESL1 promoter: ERD6, a member of a multigene family in Arabidopsis, has GUSreporterplasmidwasconstructedbycloningPCR-ampli- beenisolatedfromacDNAlibrarypreparedfromArabidopsis fiedfragmentscontaininga1472-or1743-bpsequenceofthe plantsexposedtodroughtstressfor1h.Sequenceanalysisof ERD6 and ESL1 promoter region, respectively. The following thisgeneindicatedthatitencodesaputativesugartransporter primers were used to amplify DNA fragments for promoter (20).Here,wereportthecharacterizationofESL1(ERDsix-like GUSanalysis:ERD6pro-EcoRI-FandERD6pro-XhoI-Rforthe 1),whichisamemberoftheERD6-likefamilyandanabiotic ERD6promoterfragmentandESL1pro-EcoRI-FandESL1pro- stress-inducible transporter. We present evidence that ESL1 SalI-RfortheESL1promoterfragment.Thesefragmentswere requiresanN-terminalLXXXLLmotifforitslocalizationtothe ligated into the pGK-GUS vector (23), and GUS activity was tonoplast.Furthermore,weanalyzedthefunctionalpropertyof determinedaspreviouslydescribed(24).Wethenconstructed ESL1byusingamutatedformofESL1thatislocalizedatthe theERD6ortheESL1promoter:TM-GFPconstructusingthe plasmamembraneinplantcells. primersERD6pro-ApaI-FandERD6pro-XbaI-RfortheERD6 promoterfragmentandESL1pro-ApaI-FandESL1pro-SmaI-R EXPERIMENTALPROCEDURES fortheESL1promoterfragment.Thesefragmentsweresubse- PlantMaterialsandGrowthConditions—Arabidopsisthali- quentlyligatedintothepGK35S-TM-sGFPvector(supplemen- ana Columbia ecotype plants were grown on germination tal “Experimental Procedures”). GFP fluorescence (excitation mediumagarplateswith3%sucrosefor3weeksundera16-h filter, 488 nm; emission filter bandpass, 505- 530 nm) was light/8-h dark regime as previously described (21). Plants for observedwithalaserscanningconfocalmicroscope(LSM510; thetransientexpressionassayweregrownonsoilunderan8-h Zeiss). light/16-h dark regime. Suspension-cultured tobacco BY-2 Subcellular Localization of ESL1—Transient expression cells(NicotianatabacumL.cv.BrightYellow2)wereobtained assay using mesophyll protoplasts from Arabidopsis were fromtheRikenBioresourceCenter.Thecellsweresubcultured performed as previously described (25). For cloning of the onceinLinsmaierandSkoogmediumfor5daysat30°Cinthe 35Spro:ESL1-GFP construct,thefragmentoftheESL1cod- dark with an orbital shaker. A T-DNA insertional mutant of ing region was amplified by PCR from Arabidopsis cDNA ESL1(SALK_025646)wasobtainedfromtheArabidopsisBio- with the ESL1-BamHI-F and ESL1-BamHI-R primer pair. logical Resource Center. Information appertaining to the The ESL1 fragment was ligated into the BamHI site of the T-DNAinsertionalmutantwasobtainedfromthewebsitefor pGK35S-sGFP vector (supplemental “Experimental Proce- the Salk Institute Genomic Analysis Laboratory. The T-DNA dures”). We established stable BY-2 cell lines expressing insertionalsitewasconfirmedbyPCRusingaT-DNAleftbor- GFP-fusedESL1orESL1(LLL/AAA)toanalyzetheirrespec- derprimer(LBa1)andanESL1-specificprimer(ESL1-RP)pair. tive subcellular localization. BY-2 cells were transformed AllprimersequencesareshowninsupplementalTableS2. with each plasmid via Agrobacterium tumefaciens (strain RNAGelBlotAnalysis,QuantitativeReverseTranscription- EHA105)accordingtothepreviouslyestablishedmethod(26). PCR,andAbioticStressandHormoneTreatments—TotalRNA The ESL1 fragment was amplified by PCR with the ESL1- extraction from 3-week-old Arabidopsis plants, RNA gel blot analysis,andqRT-PCR2analysiswereconductedaspreviously BamHI-FandESL1-BamHI-Rprimerpairandwasligatedinto thepBE2113-CsGFPvector(supplemental“ExperimentalPro- described(22).ForRNAgelblotanalysis,eachlanewasloaded with7(cid:1)goftotalRNA,andthefull-lengthcDNAsequenceof cedures”).TogenerateanESL1(LLL/AAA)fragment,weused the ESL1(LLL/AAA)-BamHI-F and ESL1-BamHI-R primer eachgenewasusedasaprobe.ForqRT-PCRanalysis,cDNA pair.Foralaninescanninganalysis,weusedtheforwardprim- wassynthesizedfromtotalRNAusingSuperScriptIII(Invitro- gen) with random primers according to the manufacturer’s ers,ESL1(L10A)-BamHI-F,ESL1(E11A)-BamHI-F,ESL1(G13A)- instructions.qRT-PCRwasperformedonaLightCycler(Roche BamHI-F, ESL1(L14A)-BamHI-F, ESL1(L15A)-BamHI-F, Applied Science) using SYBR Premix Ex Taq kit (Takara) and ESL1(L16A)-BamHI-F. We used ESL1-BamHI-R as the accordingtothemanufacturer’sinstructions.TheERD6,ESL1 reverseprimerfortheamplificationofthefragmentsutilized At(cid:2)fruct3,At(cid:2)fruct4,and18SrRNAfragmentwereamplified forthealaninescanningassay.Fortheco-localizationassay, withERD6-F-qRTandERD6-R-qRT,ESL1-F-qRTandESL1- we amplified the ESL1 fragment with the ESL1-XbaI-F and R-qRT, BFRUCT3-F-qRT and BFRUCT3-R-qRT, BFRUCT4- ESL1-SmaI-R primer pair, and the fragment was subse- F-qRTandBFRUCT4-R-qRT,and18S-F-qRTand18S-R-qRT quently ligated into the pGKX-cYFP vector (supplemental primer pairs, respectively. For abiotic stress and ABA treat- “ExperimentalProcedures”).WethenconstructedtheCFP- ments,theplantsweretransferredintohydroponicMurashige VAM3 construct using the primers VAM3-NotI-F and and Skoog medium at 2 days prior to abiotic stress and hor- VAM3-XhoI-R to amplify VAM3 from Arabidopsis cDNA. monetreatments.Theplantsweredehydratedonparafilmor The VAM3 fragment was subsequently ligated into the pBI22135S-nCFP vector (supplemental “Experimental Pro- cedures”). GFP fluorescence, YFP fluorescence (excitation 2Theabbreviationsusedare:qRT,quantitativereversetranscription;GFP, filter, 514 nm; emission filter bandpass, 530/30 nm), CFP greenfluorescentprotein;MES,4-morpholineethanesulfonicacid;CCCP, fluorescence(excitationfilter,458nm;emissionfilterband- carbonyl cyanide m-chlorophenylhydrazone; Wm, wortmannin; BFA, brefeldinA;ABA,abscisicacid;GUS,(cid:2)-glucuronidase. pass,482.5/30nm),andchlorophyllautofluorescence(exci- JANUARY8,2010•VOLUME285•NUMBER2 JOURNALOFBIOLOGICALCHEMISTRY 1139 ArabidopsisFacilitatedDiffusionTransporterforHexoses tation filter, 543 nm; emission filter bandpass, (cid:3)560 nm) RESULTS wereobservedwiththelaserscanningconfocalmicroscope. ComparativeAnalysisofAminoAcidSequencesoftheERD6- Functional Characterization of ESL1—To measure glucose like Transporters—Supplemental Fig. S1A presents a phylo- transport activity by using suspension-cultured tobacco BY-2 genictreebasedontheaminoacidsequencesof53Arabidopsis cells,weestablishedtransgenicBY-2celllinesexpressingESL1 proteins exhibiting homology to the monosaccharide trans- orESL1(LLL/AAA).TheESL1fragmentwasamplifiedbyPCR porterSTP1(13),10humanglucosetransporters(GLUT),and withtheprimersESL1-BamHI-FandESL1-BamHI-R2forthe amyo-inositoltransporter(HMIT).Sevenfamiliesofmonosac- 35Spro:ESL1construct,andtheESL1(LLL/AAA)fragmentwas charide transporters exist in Arabidopsis including the 19- amplified with the ESL1(LLL/AAA)-BamHI-F and ESL1- memberERD6-likefamilyasthelargestmonosaccharidetrans- BamHI-R2primersforthe35Spro:ESL1(LLL/AAA)construct. porter family in Arabidopsis. ERD6 was isolated from an Each fragment was ligated into the pBE2113Not vector, and Arabidopsis cDNA library from plants that were exposed to transport activity was subsequently measured by a previously droughtstressfor1h(20).AcDNAofahomologousERD6-like describedmethodwithmodifications(27).Briefly,theaccu- family gene was isolated from sugar beet (Beta vulgaris) by mulationofglucosewasmeasuredin0.5-mlaliquotsofcell PCR-basedcloning(30).Inaddition,wefoundERD6-likefam- suspension.First,eachsuspensionwasfiltered.Afterfilter- ilyhomologousgenesinvariousplantspeciesfromGenBankTM ing,thesuspensionswereresuspendedinuptakebuffer(20 indicotssuchasbarrelmedic(Medicagotruncatula;GenBankTM mMMES,0.5mMCaSO ;pHadjustedto5.7withKOH)and 4 accession number ABN08184) and Grape vine (Vitis vinif- equilibrated for 45 min with continuous orbital shaking. era; CAO22837), in monocots such as rice (Oryza sativa; Equilibrated cells were collected by filtration and resus- BAF12080)andcorn(Zeamays;ACG32874),ingymnosperms pendedinfreshuptakebuffertoobtainadensityof200mgof suchasSitkaspruce(Piceasitchensis;ABK25410),andinmoss cells/ml. The cells were incubated on the orbital shaker for suchasPhyscomitrellapatens(XP_001782547). 1.5hindarknessat30°C.Tostartthereaction,450(cid:1)lofcells TheERD6-likefamilyshowslowhomologytoanypreviously were mixed with 50 (cid:1)l of medium containing 3.7 or 7.4 kBq characterizedArabidopsismonosaccharidetransporters.How- [U-14C]glucose(CFB96;GEHealthcare).Thetotalglucosecon- ever, they exhibited high homology to mammalian glucose centration was adjusted by adding unlabeled glucose. After transporters,especiallyGLUT6andGLUT8(supplementalFig. incubation at 30°C for 10 min, the reaction was stopped by S1A). From a phylogenic analysis of the ERD6-like family in dilution with 10 ml of ice-cold washing buffer (20 mM MES, Arabidopsis,weidentifiedaclosehomologueofERD6,which 0.5mMCaSO ;pHadjustedto6.5withKOH).Thecellswere 4 wenamedESL1(ERDsix-like1)(supplementalFig.S1B).Anal- collectedona25-mmglassfiberfilter(GF/B;Whatman)and ysis of ERD6 and ESL1 revealed 12 putative transmembrane rinsed by the further addition of 5 ml of washing buffer. The domainsandconservedsequencesamongthemajorfacilitated filters were dissolved in a scintillation mixture (Clear-sol; superfamily (supplemental Fig. S1C), as well as all previously Nacalai Tesque), and their radioactivities were counted characterized monosaccharide transporters. An N-glycosyla- (LS6000; Beckman). The competitors or the inhibitor were added30spriortotheadditionof[14C]glucose. tionsiteinloop9,afeaturesharedbetweenGLUT6andGLUT8 (31),wasnotfoundinERD6andESL1. Invertase Assay—All of the steps were performed at 4°C Expression Analyses—To examine the physiological func- unless otherwise noted. The measurement of acid invertase tions of ERD6 and those of ESL1 under abiotic stresses, we activity was performed as previously described (28, 29) with initiallyanalyzedtheirexpressionpatternsunderabioticstress minormodifications.Three-week-oldArabidopsisplantswere homogenized in an extraction buffer (20 mM sodium phos- conditionsandABAtreatmentwithRNAgelblothybridization phate,1mMEDTA,1mMEGTA,1mMMgCl ,1mMMnCl ,5 (Fig.1A).Ingoodaccordancetoapreviousstudy(32),maximal 2 2 mMdithiothreitol,pH6.5)andcentrifuged(10minat27,000(cid:1) accumulationofERD6mRNAwasdetectedafter1and2hof g). The supernatant was desalted on a gel filtration column exposure to drought stress. The expression of ESL1 was (PD10;GEHealthcare)andwasusedasthesourceofthesoluble inducedwithin1handwasstronglyexpressedafter5hunder invertase.Thepelletfromcentrifugationofahomogenatewas abiotic stresses. ABA treatment had a converse effect on the washed twice with the extraction buffer. The cell wall-bound expression patterns of ERD6 and ESL1. Accumulation of the acid invertase was solubilized from the wash pellet with the ESL1mRNAwasincreasedafter5hinABAtreatment,whereas extractionbuffercontaining1MNaClbyshakingfor5h.The thatofERD6wasdecreased.Wenextinvestigatedthechanges resultantsolublefractionwasusedfortheassaywithoutdesalt- of the expression in leaves and roots under high salinity and ingandwasusedasthesourceoftheinsolubleinvertase.Forthe ABAtreatmentbyqRT-PCRanalysis(Fig.1B).Theexpression acidinvertaseactivityassay,weusedasolutioncontaining40(cid:1)l levelofERD6wassimilarinbothleavesandrootsundernormal of0.4Msodiumacetate(pH5.0),10(cid:1)lof1Msucrose,and50(cid:1)l conditions. However, its expression in leaves was decreased ofextractionenzyme(solubleenzyme,20(cid:1)g;insolubleenzyme, afterexposuretothehighsalinityandABAtreatment,whereas 5(cid:1)g)inafinalvolumeof100(cid:1)l.Incubationwascarriedoutat root expression levels were not reduced. On the other hand, 37°Cfor30min.Thereactionwasstoppedat95°Cfor5min, ESL1expressionwashigherinrootsthaninleavesundernor- andthereactionsolutionwasneutralizedbytheadditionof10 mal conditions. The mRNA accumulation of ESL1 in roots (cid:1)lof1MKOH.Theconcentrationofglucosewasdetermined underthehighsalinityandABAtreatmentwasalsohigherthan withanF-kit(RocheAppliedScience). thatinleaves.Theseresultswereingoodaccordancewiththe 1140 JOURNALOFBIOLOGICALCHEMISTRY VOLUME285•NUMBER2•JANUARY8,2010 ArabidopsisFacilitatedDiffusionTransporterforHexoses data from the public microarray database(supplementalFig.S2A). Histological Expression Profiles— Todeterminethehistologicalexpres- sion profiles of ERD6 and ESL1, we first generated ERD6pro:GUS and ESL1pro:GUS transgenic plants. GUS expression was detected in both shoots and roots of the ERD6pro:GUS and ESL1pro:GUS plants (Fig. 2A). In flowers, GUS staining was detected in sepals of the ERD6pro:GUS and ESL1pro: GUSplants(Fig.2A).Furthermore, inERD6pro:GUSplants,GUSstain- ing was observed in epidermal and cortex cells of roots and was espe- FIGURE1.ExpressionanalysisofERD6andESL1underabioticstressconditionsandABAtreatment.Total ciallystrongincortexcells(Fig.2A, RNAfromwholeplants,leaves,androotswereusedforNorthernblot(A)andqRT-PCRanalyses(B),respec- tively.Thevalueofcontrol(leaf)wassetto1.0.TonormalizeERD6andESL1expression,18SrRNAwasamplified panel i). On the other hand, in asaninternalcontrol. ESL1pro:GUS plants, GUS staining was strongly detected in pericycle andxylemparenchymacellsofroots and also detected in the root endodermis (Fig. 2A, panel ii). As our next approach, we generated ERD6pro:TM-GFP and ESL1pro: TM-GFP transgenic plants. TM- GFP is a membrane-localized GFP fused to the N-terminal half of the monosaccharide transporter, STP9 (33). Although free GFP diffuses through plasmodesmata, TM-GFP doesnotdiffuseforbeinglocalized at membrane. In the root tips and thematureregionofroots,GFPfluo- rescence was mainly detected in epidermal and cortex cells of the ERD6pro:TM-GFP plants (Fig. 2B, paneli),anditwasstronglydetected inpericycleandxylemparenchyma cellsoftheESL1pro:TM-GFPplants (Fig. 2B, panel ii). The results of the promoter:TM-GFP plants were coincidentwiththoseofpromoter: GUSplants. ERD6 and ESL1 showed differ- encesinexpressionpatternsandhis- tological localizations. These results suggest that ERD6 and ESL1 may have different physiological func- tions.Anumberofabioticstress-in- ducible genes have been identified FIGURE2.Histologicalexpressionprofilesandsubcellularlocalization.A,paneli,ERD6pro:GUSplant.Panel ii,ESL1pro:GUSplant.Whitebars,1mm;blackbars,100(cid:1)m.B,paneli,ERD6pro:TM-GFPplant.Panelii,ERD6pro: in various plant species, and the TM-GFPplant.Redindicatespropidiumiodidestainingofcellwalls.Bars,50(cid:1)m.C,paneli,transientexpression productsofthesegenesfunctionin ofESL1-GFPfusionproteininArabidopsisprotoplasts.TheleftpanelshowsamergedimageofGFPfluorescence andchloroplastautofluorescence.TherightpanelistheimageobtainedbyNomarskidifferentialinterference abiotic stress responses and toler- contrastmicroscopy.ThearrowsindicatethatGFPfluorescenceseparateditsvolumefromcytoplasmcontain- ance(34).Theinductionpatternof ingchloroplasts.Bars,10(cid:1)m.Panelii,subcellularlocalizationofESL1-GFPfusionproteinsinepidermalcellsof ESL1geneexpressionunderabiotic rootsin35Spro:ESL1-GFPtransgenicplants.TheleftpanelshowstheimageofGFPfluorescence,andtheright panelistheimageobtainedfromNomarskidifferentialinterferencecontrastmicroscopy.Bar,10(cid:1)m. stress conditions was similar to JANUARY8,2010•VOLUME285•NUMBER2 JOURNALOFBIOLOGICALCHEMISTRY 1141 ArabidopsisFacilitatedDiffusionTransporterforHexoses FIGURE3.Thedi-leucine-basedsortingsignalintheNterminusofESL1.A,theN-terminalsequencebetweenESL1andESL1(LLL/AAA).BandC,the subcellularlocalizationoftheESL1-GFPandESL1(LLL/AAA)-GFPfusionproteinsinguardcellsoftransgenicArabidopsisplants(B)andtransgenictobaccoBY-2 suspensioncells(C).DandE,co-localizationassaywithFM4-64.SubcellularlocalizationofESL1-GFP(D)andESL1(LLL/AAA)-GFP(E)fusionproteinsinArabi- dopsistransgenicplantsisshown.Rootsof5-day-oldseedlingsexpressedESL1-GFPorESL1(LLL/AAA)-GFPafter5(cid:1)MFM4-64treatment.FluorescenceofGFP andFM4-64isindicatedinpanelsiandii,respectively.Co-stainingwithFM4-64isshowninpaneliii.FandG,sensitivitytomembranetrafficinhibitors, wortmannin(panelv)andBFA(panelvi).Rootsof5-day-oldseedlingsexpressedESL1-GFP(F)orESL1(LLL/AAA)-GFP(G)after60minof33.3(cid:1)MWmtreatment orafter60minof50(cid:1)MBFAand5(cid:1)MFM4-64treatment.RedindicatesvesiclesthatweredyedbyFM4-64.ThearrowsindicateWmcompartments,andthe arrowheadsindicateBFAcompartments.HandI,alanine-scanningmutagenesisanalysisoftheN-terminalregionofESL1.Asterisksindicatetheessential leucineresiduesnecessaryforESL1-GFPtolocalizetothetonoplast.Bars,10(cid:1)m. thoseofabioticstress-induciblegenes.Therefore,wefocused EXXXL(L/I).Whenthismotifwasmutated,GLUT8wasmislo- ourfunctionalcharacterizationonESL1inthisstudy. calizedtotheplasmamembrane(36).Interestingly,wenoted ESL1LocalizationattheTonoplastRequiresanN-terminal thatmostofthetransportersintheERD6-likefamilyalsocon- Di-leucine-likeMotif—ThesubcellularlocalizationofESL1was tain a di-leucine or a tri-leucine sequence in their N termini studied in Arabidopsis mesophyll protoplasts that transiently (supplemental Fig. S4A). For the case of ESL1, it contained a expressed a GFP-fused ESL1 protein (ESL1-GFP) driven by tri-leucinesequenceinitsNterminus. the 35S promoter, revealing the localization at the tonoplast Stemmingfromtheobservationsgainedfrommammalian (Fig.2C,paneli).Co-localizationofsignalsatthetonoplastwas studies, we hypothesized that di-leucine or tri-leucine se- alsoobservedwhenexpressedwiththeCFP-VAM3tonoplast quences in the N termini of ERD6-like transporters also marker(supplementalFig.S3).Wenextestablishedtransgenic determinetheirsubcellularlocalizations.Asaresult,wegen- Arabidopsis plants expressing ESL1-GFP (35Spro:ESL1-GFP). erated ESL1(LLL/AAA)-GFP, in which the tri-leucine of In the 35Spro:ESL1-GFP plants, GFP fluorescence was ESL1wasmutatedintoatri-alanine(Fig.3A).Fluorescence observedattonoplastsandvesicularstructures(Fig.2C,panel of ESL1(LLL/AAA)-GFP was localized to many vesicular ii).GLUT8,whichisamammalianhomologueoftheERD6-like structures and the plasma membrane and not at the tono- family,islocalizedatthelateendosomeorthelysosome(35). plast in Arabidopsis plants and tobacco BY-2 suspension GLUT8 contains an N-terminal acidic di-leucine motif cells(Fig.3,BandC). 1142 JOURNALOFBIOLOGICALCHEMISTRY VOLUME285•NUMBER2•JANUARY8,2010 ArabidopsisFacilitatedDiffusionTransporterforHexoses causes the trans-Golgi network or early endosome to aggregate with the FM4-64, and they are located inside an aberrant compartment (BFA compartment) (38). Under Wm treatment, we detected Wm compartments in both 35Spro: ESL1-GFP and 35Spro:ESL1(LLL/ AAA)-GFPplants(Fig.3,F,panelv, and G, panel v). However, we detectedBFAcompartmentsinonly 35Spro:ESL1(LLL/AAA)-GFP plants underBFAtreatment(Fig.3,F,panel vi, and G, panel vi). These results indicate that ESL1 and ESL1(LLL/ AAA) are localized at different intracellular compartments. Thus, theN-terminaltri-leucinesequence ofESL1playsafunctionalroleforits subcellularsortingsignal. We next performed alanine-scan- ning mutagenesis in the N-terminal region containing the tri-leucine sequencetoidentifythecriticalresi- duesforthetonoplastlocalizationof ESL1 (Fig. 3I). In transgenic BY-2 cells,ESL1(L10A)-GFPappearedto belocalizedmainlyattheendoplas- micreticulum,whereasESL1(L14A)- GFP and ESL1(L15A)-GFP were localized to the plasma membrane (Fig. 3I). Thus, the LXXXLL motif was essential for ESL1 to be sorted FIGURE4.KineticsanalysisofglucoseuptakeactivityofESL1(LLL/AAA).A,relativeexpressionofESL1in tothetonoplastinplantcells. transgenicBY-2cellsdeterminedbyqRT-PCR.Thehighestexpressionlevelwassetto1.0.TonormalizeESL1 ESL1WasaFacilitatedDiffusion expression,18SrRNAwasamplifiedasaninternalcontrol.Thedatarepresentthemeansandthestandard Transporter for Monosaccharide— errorofthreereplications.n.d.,notdetected.B,glucose(50mM)uptakeactivityoftonoplast-localizedESL1and thatofplasmamembrane-localizedESL1(LLL/AAA)inBY-2cells.Inrelativecomparisonwiththevectorcontrol To verify whether ESL1 is a func- linea,statisticalsignificanceatalevelofp(cid:4)0.01isindicatedbyanasterisk.C,concentration-dependent tionalmonosaccharidetransporter, glucoseuptakeactivityofESL1(LLL/AAA)andthatofthevectorcontrollineainBY-2cells.D,netactivityof ESL1(LLL/AAA).Thepresentedvaluesrepresentthesubtractionofglucoseuptakeactivityofvectorcontrol we generated transgenic BY-2 cells cellsfromthatofERD6(LLL/AAA)-expressingcellsinC.UptakedatawerefittedtoMichaelis-MentenandEadie- expressingESL1(Fig.4A).However, Hoftee(inset)equations.Eachvaluerepresentsthemean(cid:2)S.D.(n(cid:3)3).Fw,freshweight. a similar level of glucose was ob- servedinESL1-expressingcellsand The lipophilic styryl dye (FM4-64) is known as an endo- vector control cells (Fig. 4B). We suspected that the lack of cytic marker (37). This dye is transferred from the plasma transporter activity was due to the tonoplast localization of membrane via endosomes to the vacuole whenexogenously ESL1.Therefore,wesubsequentlyestablishedtransgenicBY-2 added to plant cells. We tried to use this dye as a means to cells expressing plasma membrane localized ESL1(LLL/AAA) analyzethelocalizationsofESL1andESL1(LLL/AAA).Fifteen (Fig.4A).Incontrasttotheaforementionedresults,thesecells minaftertheadditionofFM4-64,ESL1-GFPshowedonlyweak exhibitedsignificantlyhigherglucoseuptakeactivityrelativeto co-localizationwiththeFM4-64positiveendosomesinArabi- vectorcontrolcells(Fig.4B).Wethenanalyzedthekineticsof dopsisrootcells(Fig.3D,paneliii).Incontrast,themajorityof glucose transport activity of ESL1(LLL/AAA) using the sub- ESL1(LLL/AAA)-GFP signals were co-stained with FM4-64 strateconcentrationbetween25and250mM(Fig.4C).Because (Fig.3E,paneliii).Furthermore,weanalyzedtheeffectsofves- BY-2 cells exhibited a naturally high background of glucose icletraffickinginhibitors,wortmannin(Wm)andbrefeldinA uptake ability (Fig. 4C), we calculated the net activities of (BFA). Wm is an inhibitor of phosphatidylinositol-3-OH ESL1(LLL/AAA), which were determined by the subtracted kinase, and BFA is a fungal toxin that inhibits the guanine- values of glucose uptake of vector control cells from those of nucleotideexchangefactor.InArabidopsisrootcells,Wmleads ESL1(LLL/AAA)-expressingcells(Fig.4D).K andV values m max tothevacuolation(Wmcompartment)ofendosomes,suchas ofESL1(LLL/AAA)forglucosewere102.2(cid:2)2.0mMand2.5(cid:2) theprevacuolarcompartmentormultivesicularbody(38).BFA 0.1nmolmgfreshweight(cid:3)110min(cid:3)1,respectively. JANUARY8,2010•VOLUME285•NUMBER2 JOURNALOFBIOLOGICALCHEMISTRY 1143 ArabidopsisFacilitatedDiffusionTransporterforHexoses TABLE1 These results showed positive correlation between mRNA Inhibitionof(cid:5)14C(cid:6)glucoseuptakebyvariouscompoundsinthe accumulationandtheactivityofvacuolarinvertases.Moreover, ESL1(LLL/AAA)linea weinvestigatedtheexpressionofthevacuolarinvertasegenes The(cid:5)14C(cid:6)glucoseconcentrationwas5mMwhencompetingcarbohydrateswere inleavesandroots(supplementalFig.S5D).Theexpressionof addedand50mMwhenCCCPwasadded. Addedcompound Uptake At(cid:2)fruct3wasmainlydetectedinroots.ThemRNAinduction patternofAt(cid:2)fruct3inleavesandrootswassimilartothatof %ofcontrol Control(nocompetitororinhibitor) 100.0 ESL1underhighsalinityandABAtreatment(Fig.1B).Onthe 125mMD-glucose 22.2(cid:2)1.4 otherhand,theexpressionofAt(cid:2)fruct4wasmainlydetectedin 125mML-glucose 95.7(cid:2)2.1 125mM2-deoxy-D-glucose 27.4(cid:2)2.9 leaves.Accordingtodatafromthepublicmicroarraydatabase, 125mMD-fructose 65.5(cid:2)1.8 the histological expression patterns of the vacuolar invertase 125mMD-galactose 45.1(cid:2)3.5 125mMD-mannose 54.7(cid:2)2.7 geneswerepartiallyoverlappedwiththatofESL1(supplemen- 125mMD-xylose 76.5(cid:2)3.2 talFig.S2B).ESL1mightcoordinatelyfunctionwiththevacu- 112255mmMMDD--smoarnbintiotlol 110121..89(cid:2)(cid:2)72..56 olarinvertasesinthosecellsinwhichbothESL1andthevacu- 125mMmyo-inositol 111.7(cid:2)3.6 olarinvertasegenesareexpressed. 112255mmMMsDu-gcrluocsoesaminehydrochloride 110099..27(cid:2)(cid:2)74..13 AnalysisofaT-DNAInsertionalMutantofESL1underHigh 125mMmaltose 117.4(cid:2)2.8 Salinity Conditions—We identified a mutant line (SALK_ 100(cid:1)MCCCP 104.9(cid:2)2.8 025646) carrying a T-DNA insertion in the fifth exon of the ESL1 gene (supplemental Fig. S6A). The T-DNA insertional Table 1 shows the sensitivities of ESL1(LLL/AAA)-depen- mutant,whichwedesignatedasesl1-1,wasaknock-outmutant dent transport to competitors or an inhibitor. The uptake of becausetheESL1mRNAwasnotaccumulatedinesl1-1(sup- [14C]glucosewassignificantlyinhibitedbyhexosessuchasglu- plementalFig.S6B).Weobservednodifferencesbetweenthe cose,fructose,galactose,andmannoseandapentose(xylose), rootlengthsofthismutantandthoseofwild-typeplantsunder withglucoseshowingthehighestlevelofinhibition.Theaddi- high salinity conditions (supplemental Fig. S6C). The ERD6- tionoflinearorcircularpolyols,glucosamine,anddisacchar- likefamilyisthelargestmonosaccharidetransporterfamilyin idesdidnotaffectthe[14C]glucoseuptakeactivityofESL1(LLL/ Arabidopsiscontaining19genes.Itispossiblethatadditional AAA). Furthermore, reduction of the proton gradient caused genesintheERD6-likefamilymayfunctionredundantlywith by the protonophore (CCCP) did not have any effect on the ESL1. transport activity of ESL1(LLL/AAA) cells, although glucose DISCUSSION uptakeactivityofvectorcontrolcellswasinhibitedbyadding CCCP(supplementalTableS1).ThesedatasuggestthatESL1 In this study, we characterized the abiotic stress-inducible functionsasalowaffinityfacilitateddiffusiontransporterfor monosaccharidetransporterESL1,whichbelongstotheERD6- monosaccharides. likegenefamily.Theanalysisofglucoseuptakeactivityusing VacuolarInvertaseActivityIsIncreasedunderAbioticStress transgenic tobacco BY-2 suspension cells revealed that Conditions—To determine the physiological role of ESL1 in ESL1(LLL/AAA),whichislocalizedattheplasmamembrane, plantcells,itisimportanttohaveanunderstandingregarding functionsasalowaffinitytransporterformonosaccharides.Its theamountofhexoseinvacuoles.Invertasesareconsideredas K valuewasexceptionallyhighandshowedloweraffinityto m keyenzymestoconvertsucroseintoglucoseandfructose.Deg- glucose(Fig.4D)comparedwithpreviouslycharacterizedsugar radationofsucrosebyvacuolarinvertaseisoneofthesources transporterssuchasSTP1(about20(cid:1)M)(13),PLT5(about2 forvacuolarhexose(39).Wethenanalyzedvacuolarinvertase mM)(14,41),orVGT1(about4mM)(15).Moreover,thetrans- activityunderabioticstressconditions.Wemeasuredthevac- portactivityofESL1(LLL/AAA)wasnotaffectedbythereduc- uolarandcellwall-boundinvertaseactivitywhenArabidopsis tionoftheprotongradientcausedbyaprotonophore(Table1), plants were exposed to abiotic stresses or ABA treatment for thereby indicating that ESL1 is a facilitated diffusion trans- 5h.Vacuolarinvertaseactivityforsolubleacidinvertaseswas porter.Althoughphysiologicalfeaturesonplasmamembrane increasedunderabioticstressconditionsandABAtreatment mightbedifferentfromthoseonthetonoplast,itisdifficultto (supplementalFig.S5A).Particularly,vacuolarinvertaseactiv- assay the functions of transporters that are localized at the ity under drought and ABA treatments was higher than that tonoplastinappropriatesystemsusingplantcells.Inthisstudy, underhighsalinityconditions.Cellwall-boundinvertaseactiv- we measured the activity of the mutated ESL1, ESL1(LLL/ ityforinsolubleacidinvertasesdidnotchange(supplemental AAA),inplantcells.Allpreviouslycharacterizedmonosaccha- Fig.S5B).Theseresultssuggestthathexoseswereaccumulated ridetransportersinArabidopsisaresecondaryactivetransport inthevacuoleunderexposuretoabioticstressconditions. systems that are dependent on a proton gradient. To date, There are two vacuolar invertase genes (At(cid:2)fruct3 and facilitated diffusion transporters for sugars have not been At(cid:2)fruct4) inArabidopsis (40). We analyzed the expression isolated, although biochemical experiments indicated that patternsofthosegenesunderabioticstressconditions(supple- sugar-specificfacilitateddiffusiontransportersexistinplant mental Fig. S5C). The transcript level of At(cid:2)fruct3 increased cells(11,12). afterexposureto2hofdroughtandABAtreatmentsandexpo- UsingtheGFPreportergeneinbothprotoplastsandtrans- sureto5hofhighsalinity.Atthe5-htimepoint,themRNA genicArabidopsisplants,weshowedthattheESL1proteinis accumulationofAt(cid:2)fruct3underdroughtandABAtreatment mainlylocalizedattonoplasts(Figs.2Cand3B).BecausetheK m was also higher than that under the high salinity condition. value of ESL1(LLL/AAA) in BY-2 cells was approximately 1144 JOURNALOFBIOLOGICALCHEMISTRY VOLUME285•NUMBER2•JANUARY8,2010 ArabidopsisFacilitatedDiffusionTransporterforHexoses 100 mM, hexoses should accumulate to a concentration of Interestingly,thismotifwasnotfoundintheNterminiofnon- nearly100mMinthevacuoleunderabioticstressconditionsto plant ERD6-like transporters, such as human GLUT8, red obtainsufficientactivity.Degradationfromsucrosebyinverta- imported fire ant (Solenopsis invicta; AAX92638), and starlet sesisoneofthesourcesforhexoseinthevacuole(39).Inmaize, seaanemone(Nematostellavectensis;XP_001634924). expressionofavacuolarinvertasegeneisincreasedbydrought AcommonfeaturebetweentheLXXXLLmotifandreported stress and ABA treatment (42, 43). We showed that vacuolar di-leucinemotifsfrommammalsandyeastisthattwoleucine invertaseactivityinArabidopsiswasalsoincreasedbydrought, residues are conserved in-line. The two leucine residues are high salt stress, and ABA treatment (supplemental Fig. S5A). known to be essential for interaction with adaptor proteins Hexose levels in the vacuole might be increased by vacuolar related with membrane traffic. For example, Nef, which is an invertase under abiotic stresses. Because the expression pat- accessory protein of the human immunodeficiency virus, has terns of the vacuolar invertase genes were similar to that of theabilitytoredistributeCD4fromtheplasmamembraneto ESL1(supplementalFigs.S2BandS5D),ESL1mightworkcoor- theinteracellularcompartmentbytheinteractionbetweenits dinatelywiththevacuolarinvertasetoaccumulatehexosesin acidic di-leucine motif and adaptor proteins. Mutations of plantcellsunderabioticstressconditions. leucineresiduesofitsacidicdi-leucinemotifabolishedtheabil- Sugars(e.g.glucose,sucrose,galactinol,andraffinose)accu- ityofNef,whereasmutationsofotherneighboringresiduesof mulateinplantcellsunderabioticstressconditions(8).Inaddi- theleucinehadnoeffect(46).InthecaseofESL1,eachmuta- tion, it is thought that the vacuole functions as a storage tion of two leucine residues of LXXXLL, ESL1(L14A) and organelle for soluble sugars. Some previous reports indicated ESL1(L15A),changedthelocalizationofESL1fromthetono- thathexosesinthevacuoleaccountformorethan90%ofthe plasttotheplasmamembrane(Fig.3I),indicatingthatfunction total hexose content in various plant species (5). Because the oftheLXXXLLmotifwasdisruptedbythemutations.Onthe direction of transport for facilitated diffusion transporters other hand, ESL1(L10A) appeared to be localized mainly at depends upon a substrate concentration gradient, ESL1 may the endoplasmic reticulum (Fig. 3I). We considered that the functionintheeffluxofhexosesfromthevacuoletothecyto- AXXXLLsequencemightchangetheaffinityforbindingtothe plasm as a mechanism to regulate sugar remobilization and adaptorproteinsorhavetheabilitytointeractwithotheradap- osmoticpressureunderabioticstressconditions. torproteins.Futureanalysisoftheadaptorproteinsthatinter- Itisreportedthatthechangeofsubcellularlocalizationofa act with the LXXXLL motif would provide more information mammalianglucosetransporterbyendocytictraffickingregu- pertaining to the mechanisms of membrane trafficking in latesitstransportactivity(44).Forexample,GLUT4isdepos- plants. ited at intracellular compartments during its unstimulated Inconclusion,weisolatedESL1asanabioticstress-inducible stateandisacutelyredistributedtotheplasmamembranefor geneandfunctionallycharacterizedESL1asthefacilitateddif- theuptakeofglucoseinresponsetoinsulinandotherstimuli fusion transporter for monosaccharides from plants using (44). The C-terminal di-leucine motif in GLUT4 has been mutated ESL1. ESL1 was localized at the tonoplast, and its showntobefunctionallyinvolvedinthisdynamicintracellular N-terminalLXXXLLmotifwasessentialforpropersubcellular distributionresponse.Wethentestedwhethertheintracellular sortingtothetonoplast.Moreover,weconfirmedthattheactiv- traffickingofESL1wasalsoregulatedbystimuli.However,we ity of vacuolar invertase was increased during abiotic stress couldnotobserveanychangesinthelocalizationofESL1under conditions,andtheexpressionpatternsofthevacuolarinvert- ourexperimentalconditionsusingArabidopsismesophyllpro- asegenesweresimilartothatofESL1.Therefore,wehypothe- toplasts(datanotshown). size that ESL1 regulates sugar remobilization and cellular The alanine scanning analysis of the N-terminal region of osmoticpressureinacoordinatedresponsewiththevacuolar ESL1 determined that an LXXXLL motif was essential to its invertaseinplantcellsunderabioticstresses. localizationatthetonoplast(Fig.3I).Moreover,ESL2alsocon- tainsthismotifinitsNterminus(supplementalFig.S4A)and Acknowledgments—WethankDr.MichihiroKasahara(TeikyoUni- wasalsolocalizedatthetonoplast(supplementalFig.S4B).Col- versity,Tokyo,Japan)andDr.MakiKatsuhara(OkayamaUniver- lectively,theseresultsindicatedthattheLXXXLLmotifpoten- sity,Okayama,Japan)fortechnicaladviceanddiscussion.Wealso tially functions as a sorting signal of ERD6-like transporters thank Kyoko Yoshiwara and Dr. Yusuke Ito (Japan International ResearchCenterforAgriculturalSciences,Ibaraki,Japan)fortechni- to the tonoplast. There are many reports for two types of di- cal support and Dr. Yasuo Niwa (Shizuoka Prefectural University, leucinemotifsfrommammalsandyeast:theacidicdi-leucine Shizuoka,Japan)forprovidinguswiththesGFPgene. motif EXXXL(L/I) and the acidic cluster di-leucine motif DXXLL (45). We found that an acidic di-leucine motif (LEAGLLL)overlapstheLXXXLLmotifsequenceintheNter- REFERENCES minusofESL1.Howeveraminoacidsubstitutioninthisacidic 1. Williams,L.E.,Lemoine,R.,andSauer,N.(2000)TrendsPlantSci.5, di-leucine motif did not affect the subcellular localization of 283–290 ESL1 in BY-2 cells (Fig. 3I). Therefore, the LXXXLL motif 2. Lalonde,S.,Wipf,D.,andFrommer,W.B.(2004)Annu.Rev.PlantBiol. appearstobeanoveldi-leucinemotifthatfunctionsasasorting 55,341–372 3. Rolland,F.,Baena-Gonzalez,E.,andSheen,J.(2006)Annu.Rev.PlantBiol. signalinplants.WefoundtheLXXXLLmotifintheNtermini 57,675–709 ofERD6-liketransportersinvariousplantsotherthanArabi- 4. Smith,A.M.,Zeeman,S.C.,andSmith,S.M.(2005)Annu.Rev.PlantBiol. dopsis,eveningymnospermssuchasSitkaspruce(P.sitchensis; 56,73–98 ABK24356) and in moss such as P. patens (XP_001782547). 5. Voitsekhovskaja,O.V.,Koroleva,O.A.,Batashev,D.R.,Knop,C.,Tomos, JANUARY8,2010•VOLUME285•NUMBER2 JOURNALOFBIOLOGICALCHEMISTRY 1145 ArabidopsisFacilitatedDiffusionTransporterforHexoses A.D.,Gamalei,Y.V.,Heldt,H.W.,andLohaus,G.(2006)PlantPhysiol. 25. Yoo,S.D.,Cho,Y.H.,andSheen,J.(2007)Nat.Protoc.2,1565–1572 140,383–395 26. Matsuoka,K.,andNakamura,K.(1991)Proc.Natl.Acad.Sci.U.S.A.88, 6. Briskin,D.P.,Thornley,W.R.,andWyse,R.E.(1985)PlantPhysiol.78, 834–838 871–875 27. Petra´sek,J.,Mravec,J.,Bouchard,R.,Blakeslee,J.J.,Abas,M.,Seifertova´, 7. Rausch,T.,Butcher,D.N.,andTaiz,L.(1987)PlantPhysiol.85,996–999 D.,Wisniewska,J.,Tadele,Z.,Kubes,M.,Covanova´,M.,Dhonukshe,P., 8. Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M., Skupa,P.,Benkova´,E.,Perry,L.,Krecek,P.,Lee,O.R.,Fink,G.R.,Geisler, Yamaguchi-Shinozaki,K.,andShinozaki,K.(2002)PlantJ.29,417–426 M.,Murphy,A.S.,Luschnig,C.,Zazímalova´,E.,andFriml,J.(2006)Sci- 9. Maruyama,K.,Sakuma,Y.,Kasuga,M.,Ito,Y.,Seki,M.,Goda,H.,Shi- ence312,914–918 mada,Y.,Yoshida,S.,Shinozaki,K.,andYamaguchi-Shinozaki,K.(2004) 28. Ohyama,A.,Ito,H.,Sato,T.,Nishimura,S.,Imai,T.,andHirai,M.(1995) PlantJ.38,982–993 PlantCellPhysiol.36,369–376 10. Wormit, A., Trentmann, O., Feifer, I., Lohr, C., Tjaden, J., Meyer, S., 29. Tang,X.,Ruffner,H.P.,Scholes,J.D.,andRolfe,S.A.(1996)Planta198, Schmidt, U., Martinoia, E., and Neuhaus, H. E. (2006) Plant Cell 18, 17–23 3476–3490 30. Chiou,T.J.,andBush,D.R.(1996)PlantPhysiol.110,511–520 11. Martinoia,E.,Kaiser,G.,Schramm,M.J.,andHeber,U.(1987)J.Plant 31. Uldry,M.,andThorens,B.(2004)PflugersArch.447,480–489 Physiol.131,467–478 32. Kiyosue,T.,Abe,H.,Yamaguchi-Shinozaki,K.,andShinozaki,K.(1998) 12. Sacchi, G. A., Abruzzese, A., Lucchini, G., Fiorani, F., and Cocucci, S. Biochim.Biophys.Acta1370,187–191 (2000)PlantSoil220,1–11 33. Meyer,S.,Lauterbach,C.,Niedermeier,M.,Barth,I.,Sjolund,R.D.,and 13. Sauer, N., Friedla¨nder, K., and Gra¨ml-Wicke, U. (1990) EMBO J. 9, Sauer,N.(2004)PlantPhysiol.134,684–693 3045–3050 34. Yamaguchi-Shinozaki,K.,andShinozaki,K.(2006)Annu.Rev.PlantBiol. 14. Klepek,Y.S.,Geiger,D.,Stadler,R.,Klebl,F.,Landouar-Arsivaud,L.,Lem- 57,781–803 oine,R.,Hedrich,R.,andSauer,N.(2005)PlantCell17,204–218 35. Augustin,R.,Riley,J.,andMoley,K.H.(2005)Traffic6,1196–1212 15. Aluri, S., and Bu¨ttner, M. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 36. Ibberson, M., Uldry, M., and Thorens, B. (2000) J. Biol. Chem. 275, 2537–2542 4607–4612 16. Toyofuku,K.,Kasahara,M.,andYamaguchi,J.(2000)PlantCellPhysiol. 37. Ueda,T.,Yamaguchi,M.,Uchimiya,H.,andNakano,A.(2001)EMBOJ. 41,940–947 20,4730–4741 17. Barth,I.,Meyer,S.,andSauer,N.(2003)PlantCell15,1375–1385 38. Jaillais,Y.,Fobis-Loisy,I.,Mie`ge,C.,andGaude,T.(2008)PlantJ.53, 18. Weise,A.,Barker,L.,Ku¨hn,C.,Lalonde,S.,Buschmann,H.,Frommer, 237–247 W.B.,andWard,J.M.(2000)PlantCell12,1345–1355 39. Roitsch,T.,andGonza´lez,M.C.(2004)TrendsPlantSci.9,606–613 19. Bu¨ttner,M.(2007)FEBSLett.581,2318–2324 40. Haouazine-Takvorian, N., Tymowska-Lalanne, Z., Takvorian, A., Tre- 20. Kiyosue,T.,Yamaguchi-Shinozaki,K.,andShinozaki,K.(1994)PlantMol. gear,J.,Lejeune,B.,Lecharny,A.,andKreis,M.(1997)Gene197,239–251 Biol.25,791–798 41. Reinders,A.,Panshyshyn,J.A.,andWard,J.M.(2005)J.Biol.Chem.280, 21. Osakabe, Y., Maruyama, K., Seki, M., Satou, M., Shinozaki, K., and 1594–1602 Yamaguchi-Shinozaki,K.(2005)PlantCell17,1105–1119 42. Pelleschi,S.,Guy,S.,Kim,J.Y.,Pointe,C.,Mahe´,A.,Barthes,L.,Leonardi, 22. Sakuma,Y.,Maruyama,K.,Osakabe,Y.,Qin,F.,Seki,M.,Shinozaki,K., A.,andPrioul,J.L.(1999)PlantMol.Biol.39,373–380 andYamaguchi-Shinozaki,K.(2006)PlantCell18,1292–1309 43. Trouverie,J.,Chateau-Joubert,S.,The´venot,C.,Jacquemot,M.P.,and 23. Qin,F.,Sakuma,Y.,Tran,L.S.,Maruyama,K.,Kidokoro,S.,Fujita,Y., Prioul,J.L.(2004)Planta219,894–905 Fujita,M.,Umezawa,T.,Sawano,Y.,Miyazono,K.,Tanokura,M.,Shi- 44. Huang,S.,andCzech,M.P.(2007)CellMetabolism5,237–252 nozaki,K.,andYamaguchi-Shinozaki,K.(2008)PlantCell20,1693–1707 45. Bonifacino,J.S.,andTraub,L.M.(2003)Annu.Rev.Biochem.72,395–447 24. Mizuno, S., Osakabe, Y., Maruyama, K., Ito, T., Osakabe, K., Sato, T., 46. Janvier,K.,Kato,Y.,Boehm,M.,Rose,J.R.,Martina,J.A.,Kim,B.Y., Shinozaki,K.,andYamaguchi-Shinozaki,K.(2007)PlantJ.50,751–766 Venkatesan,S.,andBonifacino,J.S.(2003)J.CellBiol.163,1281–1290 1146 JOURNALOFBIOLOGICALCHEMISTRY VOLUME285•NUMBER2•JANUARY8,2010

Description:
From the ‡Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo,. Tokyo 113-8657
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.