CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS 201 EditorialBoard J. BERTOIN, B. BOLLOBA´S, W. FULTON, B. KRA, I. MOERDIJK, C. PRAEGER, P. SARNAK, B. SIMON, B. TOTARO FUNCTIONALANALYSIS Thiscomprehensiveintroductiontofunctionalanalysiscoversboththeabstracttheory and applications to spectral theory, the theory of partial differential equations, and quantummechanics.Itstartswiththebasicresultsofthesubjectandprogressestowards a treatment of several advanced topics not commonly found in functional analysis textbooks,includingFredholmtheory,formmethods,boundaryvalueproblems,semi- grouptheory,traceformulas,andamathematicaltreatmentofstatesandobservablesin quantummechanics. Thebookisaccessibletograduatestudentswithbasicknowledgeoftopology,real andcomplexanalysis,andmeasuretheory.Withcarefullywrittenoutproofs,morethan 300 problems, and appendices covering the prerequisites, this self-contained volume canbeusedasatextforvariouscoursesatthegraduatelevelandasareferencetextfor researchersinthefield. JanvanNeervenholdsanAntonivanLeeuwenhoekprofessorshipatDelftUniversity ofTechnology.Authoroffourbooksandmorethan100peer-reviewedarticles,heis a leading expert in functional analysis and operator theory and their applications in stochasticanalysisandthetheoryofpartialdifferentialequations. CAMBRIDGE STUDIES IN ADVANCED MATHEMATICS EditorialBoard J.Bertoin,B.Bolloba´s,W.Fulton,B.Kra,I.Moerdijk,C.Praeger,P.Sarnak,B.Simon,B.Totaro AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridgeUniversityPress. Foracompleteserieslisting,visitwww.cambridge.org/mathematics. AlreadyPublished 160 A.Borodin&G.OlshanskiRepresentationsoftheInfiniteSymmetricGroup 161 P.WebbFiniteGroupRepresentationsforthePureMathematician 162 C.J.Bishop&Y.PeresFractalsinProbabilityandAnalysis 163 A.BovierGaussianProcessesonTrees 164 P.SchneiderGaloisRepresentationsand(ϕ,(cid:3))-Modules 165 P.Gille&T.SzamuelyCentralSimpleAlgebrasandGaloisCohomology(2ndEdition) 166 D.Li&H.QueffelecIntroductiontoBanachSpaces,I 167 D.Li&H.QueffelecIntroductiontoBanachSpaces,II 168 J.Carlson,S.Mu¨ller-Stach&C.PetersPeriodMappingsandPeriodDomains(2ndEdition) 169 J.M.LandsbergGeometryandComplexityTheory 170 J.S.MilneAlgebraicGroups 171 J.Gough&J.KupschQuantumFieldsandProcesses 172 T.Ceccherini-Silberstein,F.Scarabotti&F.TolliDiscreteHarmonicAnalysis 173 P.GarrettModernAnalysisofAutomorphicFormsbyExample,I 174 P.GarrettModernAnalysisofAutomorphicFormsbyExample,II 175 G.NavarroCharacterTheoryandtheMcKayConjecture 176 P.Fleig,H.P.A.Gustafsson,A.Kleinschmidt&D.PerssonEisensteinSeriesandAutomorphic Representations 177 E.PetersonFormalGeometryandBordismOperators 178 A.OgusLecturesonLogarithmicAlgebraicGeometry 179 N.NikolskiHardySpaces 180 D.-C.CisinskiHigherCategoriesandHomotopicalAlgebra 181 A.Agrachev,D.Barilari&U.BoscainAComprehensiveIntroductiontoSub-RiemannianGeometry 182 N.NikolskiToeplitzMatricesandOperators 183 A.YekutieliDerivedCategories 184 C.DemeterFourierRestriction,DecouplingandApplications 185 D.Barnes&C.RoitzheimFoundationsofStableHomotopyTheory 186 V.Vasyunin&A.VolbergTheBellmanFunctionTechniqueinHarmonicAnalysis 187 M.Geck&G.MalleTheCharacterTheoryofFiniteGroupsofLieType 188 B.RichterCategoryTheoryforHomotopyTheory 189 R.Willett&G.YuHigherIndexTheory 190 A.BobrowskiGeneratorsofMarkovChains 191 D.Cao,S.Peng&S.YanSingularlyPerturbedMethodsforNonlinearEllipticProblems 192 E.KowalskiAnIntroductiontoProbabilisticNumberTheory 193 V.GorinLecturesonRandomLozengeTilings 194 E.Riehl&D.VerityElementsof∞-CategoryTheory 195 H.KrauseHomologicalTheoryofRepresentations 196 F.Durand&D.PerrinDimensionGroupsandDynamicalSystems 197 A.ShefferPolynomialMethodsandIncidenceTheory 198 T.Dobson,A.Malnicˇ&D.MarusˇicˇSymmetryinGraphs 199 K.S.Kedlayap-adicDifferentialEquations Functional Analysis JAN VAN NEERVEN DelftUniversityofTechnology UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom OneLibertyPlaza,20thFloor,NewYork,NY10006,USA 477WilliamstownRoad,PortMelbourne,VIC3207,Australia 314–321,3rdFloor,Plot3,SplendorForum,JasolaDistrictCentre, NewDelhi–110025,India 103PenangRoad,#05–06/07,VisioncrestCommercial,Singapore238467 CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learning,andresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781009232470 DOI:10.1017/9781009232487 ©JanvanNeerven2022 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2022 AcataloguerecordforthispublicationisavailablefromtheBritishLibrary. ISBN978-1-009-23247-0Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyof URLsforexternalorthird-partyinternetwebsitesreferredtointhispublication anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents Preface pageix NotationandConventions xi 1 BanachSpaces 1 1.1 BanachSpaces 2 1.2 BoundedOperators 9 1.3 Finite-DimensionalSpaces 18 1.4 Compactness 21 1.5 IntegrationinBanachSpaces 23 Problems 28 2 TheClassicalBanachSpaces 33 2.1 SequenceSpaces 33 2.2 SpacesofContinuousFunctions 34 2.3 SpacesofIntegrableFunctions 47 2.4 SpacesofMeasures 64 2.5 BanachLattices 73 Problems 77 3 HilbertSpaces 87 3.1 HilbertSpaces 87 3.2 OrthogonalComplements 92 3.3 TheRieszRepresentationTheorem 95 3.4 OrthonormalSystems 97 3.5 Examples 100 Problems 106 4 Duality 115 4.1 DualsoftheClassicalBanachSpaces 115 4.2 TheHahn–BanachExtensionTheorem 128 4.3 AdjointOperators 137 v vi Contents 4.4 TheHahn–BanachSeparationTheorem 142 4.5 TheKrein–MilmanTheorem 144 4.6 TheWeakandWeak∗Topologies 147 4.7 TheBanach–AlaogluTheorem 152 Problems 163 5 BoundedOperators 171 5.1 TheUniformBoundednessTheorem 171 5.2 TheOpenMappingTheorem 174 5.3 TheClosedGraphTheorem 176 5.4 TheClosedRangeTheorem 178 5.5 TheFourierTransform 180 5.6 TheHilbertTransform 190 5.7 Interpolation 192 Problems 201 6 SpectralTheory 209 6.1 SpectrumandResolvent 209 6.2 TheholomorphicFunctionalCalculus 216 Problems 224 7 CompactOperators 227 7.1 CompactOperators 227 7.2 TheRiesz–SchauderTheorem 230 7.3 FredholmTheory 234 Problems 252 8 BoundedOperatorsonHilbertSpaces 255 8.1 Selfadjoint,Unitary,andNormalOperators 255 8.2 TheContinuousFunctionalCalculus 266 8.3 TheSz.-NagyDilationTheorem 272 Problems 277 9 TheSpectralTheoremforBoundedNormalOperators 281 9.1 TheSpectralTheoremforCompactNormalOperators 281 9.2 Projection-ValuedMeasures 285 9.3 TheBoundedFunctionalCalculus 287 9.4 TheSpectralTheoremforBoundedNormalOperators 293 9.5 TheVonNeumannBicommutantTheorem 301 9.6 ApplicationtoOrthogonalPolynomials 305 Problems 308 10 TheSpectralTheoremforUnboundedNormalOperators 311 10.1 UnboundedOperators 311 Contents vii 10.2 UnboundedSelfadjointOperators 322 10.3 UnboundedNormalOperators 326 10.4 TheSpectralTheoremforUnboundedNormalOperators 332 Problems 344 11 BoundaryValueProblems 347 11.1 SobolevSpaces 347 11.2 ThePoissonProblem−Δu= f 372 11.3 TheLax–MilgramTheorem 385 Problems 388 12 Forms 399 12.1 Forms 399 12.2 TheFriedrichsExtensionTheorem 410 12.3 TheDirichletandNeumannLaplacians 411 12.4 ThePoissonProblemRevisited 415 12.5 Weyl’sTheorem 416 Problems 425 13 SemigroupsofLinearOperators 427 13.1 C -Semigroups 427 0 13.2 TheHille–YosidaTheorem 439 13.3 TheAbstractCauchyProblem 447 13.4 AnalyticSemigroups 455 13.5 Stone’sTheorem 473 13.6 Examples 475 13.7 SemigroupsGeneratedbyNormalOperators 498 Problems 500 14 TraceClassOperators 507 14.1 Hilbert–SchmidtOperators 507 14.2 TraceClassOperators 510 14.3 TraceDuality 521 14.4 ThePartialTrace 523 14.5 TraceFormulas 526 Problems 539 15 StatesandObservables 543 15.1 StatesandObservablesinClassicalMechanics 543 15.2 StatesandObservablesinQuantumMechanics 545 15.3 PositiveOperator-ValuedMeasures 561 15.4 HiddenVariables 574 15.5 Symmetries 577 viii Contents 15.6 SecondQuantisation 598 Problems 617 AppendixA Zorn’sLemma 621 AppendixB TensorProducts 623 AppendixC TopologicalSpaces 627 AppendixD MetricSpaces 637 AppendixE MeasureSpaces 647 AppendixF Integration 661 AppendixG Notes 671 References 691 Index 701 Preface ThisbookisbasedonnotescompiledduringthemanyyearsItaughtthecourse“Ap- plied Functional Analysis” in the first year of the master’s programme at Delft Uni- versityofTechnology,forstudentswithpriorexposuretothebasicsofRealAnalysis and the theory of Lebesgue integration. Starting with the basic results of the subject coveredinatypicalFunctionalAnalysiscourse,thetextprogressestowardsatreatment ofseveraladvancedtopics,includingFredholmtheory,boundaryvalueproblems,form methods,semigrouptheory,traceformulas,andsomemathematicalaspectsofQuantum Mechanics. With a few exceptions in the later chapters, complete and detailed proofs are given throughout. This makes the text ideally suited for students wishing to enter thefield. Greatcarehasbeentakentopresentthevarioustopicsinaconnectedandintegrated way, and to illustrate abstract results with concrete (and sometimes nontrivial) appli- cations. For example, after introducing Banach spaces and discussing some of their abstractproperties,asubstantialchapterisdevotedtothestudyoftheclassicalBanach spacesC(K),Lp(Ω),M(Ω),withsomeemphasisoncompactness,density,andapproxi- mationtechniques.Theabstractmaterialinthechapterondualityiscomplementedbya numberofnontrivialapplications,suchasacharacterisationoftranslation-invariantsub- spacesofL1(Rd)andProkhorov’stheoremaboutweakconvergenceofprobabilitymea- sures.ThechapteronboundedoperatorscontainsadiscussionoftheFouriertransform andtheHilberttransform,andincludesproofsoftheRiesz–ThorinandMarcinkiewicz interpolationtheorems.AftertheintroductionoftheLaplaceoperatorasaclosableop- eratorinLp,itsclosureΔisrevisitedinlaterchaptersfromdifferentpointsofview:as the operator arising from a suitable sesquilinear form, as the operator −∇(cid:2)∇ with its naturaldomain,andasthegeneratoroftheheatsemigroup.Inparallel,thetheoryofits Gaussiananalogue,theOrnstein–Uhlenbeckoperator,isdevelopedandtheconnection withorthogonal polynomialsandthe quantumharmonicoscillator is established.The chapteronsemigrouptheory,besidesdevelopingthegeneraltheory,includesadetailed treatment of some important examples such as the heat semigroup, the Poisson semi- ix