ebook img

Functional analysis PDF

127 Pages·2004·0.694 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Functional analysis

Functional Analysis Alexander C. R. Belton Copyright c Alexander C. R. Belton 2004, 2006 (cid:13) Hyperlinked and revised edition All rights reserved The right of Alexander Belton to be identified as the author of this work has been asserted by him in accordance with the Copyright, Designs and Patents Act 1988. Contents Contents i Introduction iii 1 Normed Spaces 3 1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Subspaces and Quotient Spaces . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Completions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Direct Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5 Initial Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.6 Nets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.7 Exercises 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2 Linear Operators 17 2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Completeness of B(X,Y) . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 Extension of Linear Operators . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 The Baire Category Theorem . . . . . . . . . . . . . . . . . . . . . . . 19 2.5 The Open-Mapping Theorem . . . . . . . . . . . . . . . . . . . . . . . 21 2.6 Exercises 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.7 The Closed-Graph Theorem . . . . . . . . . . . . . . . . . . . . . . . . 26 2.8 The Principle of Uniform Boundedness . . . . . . . . . . . . . . . . . . 27 2.9 The Strong Operator Topology . . . . . . . . . . . . . . . . . . . . . . 27 2.10 Exercises 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 Dual Spaces 31 3.1 Initial Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2 The Weak Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3 Zorn’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.4 The Hahn-Banach Theorem . . . . . . . . . . . . . . . . . . . . . . . . 32 3.5 The Weak Operator Topology . . . . . . . . . . . . . . . . . . . . . . . 36 3.6 Adjoint Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.7 The Weak* Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.8 Exercises 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.9 Tychonov’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 i ii Contents 3.10 The Banach-Alaoglu Theorem . . . . . . . . . . . . . . . . . . . . . . . 40 3.11 Topological Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.12 The Krein-Milman Theorem . . . . . . . . . . . . . . . . . . . . . . . . 45 3.13 Exercises 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4 Normed Algebras 53 4.1 Quotient Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.2 Unitization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3 Approximate Identities . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.4 Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5 Invertibility 59 5.1 The Spectrum and Resolvent . . . . . . . . . . . . . . . . . . . . . . . . 60 5.2 The Gelfand-Mazur Theorem . . . . . . . . . . . . . . . . . . . . . . . 61 5.3 The Spectral-Radius Formula . . . . . . . . . . . . . . . . . . . . . . . 61 5.4 Exercises 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6 Characters and Maximal Ideals 65 6.1 Characters and the Spectrum . . . . . . . . . . . . . . . . . . . . . . . 66 6.2 The Gelfand Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6.3 The Representation Theorem . . . . . . . . . . . . . . . . . . . . . . . 68 6.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.5 Exercises 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 via A Tychonov Nets 75 A.1 Exercises A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Solutions to Exercises 79 Exercises 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Exercises 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Exercises 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Exercises 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Exercises 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Exercises 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Exercises 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Exercises A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Bibliography 117 Index 119 Introduction These notes are an expanded version of a set written for a course given to final-year undergraduates at the University of Oxford. A thorough understanding of the Oxford third-year b4 analysis course (an introduction to Banach and Hilbert spaces) or its equivalent is a prerequisite for this material. We use [24] as a compendium of results from that series of lectures. (Numbers in square brackets refer to items in the bibliography.) The author acknowledges his debt to all those from whom he has learnt functional analysis, especially Professor D. A. Edwards, Dr G. R. Allen and Dr J. M. Lindsay. The students attending the course were very helpful, especially Mr A. Evseev, Mr L. Taitz and Ms P. Iley. This document was typeset using LATEX2ε with Peter Wilson’s memoir class and the -LATEXandXY-picpackages. The index was produced withthe aidof theMakeIndex AMS program. Alexander C. R. Belton Lady Margaret Hall Oxford 20th August 2004 This edition contains a few additional exercises and the electronic version is equipped with hyperlinks, thanks to the hyperref package of Sebastian Rahtz and Heiko Oberdiek. ACRB University College Cork 30th September 2006 Convention ThroughoutthesenoteswefollowtheDirac-formalismconventionthatinnerproducts on complex vector spaces are conjugate linear in the first argument and linear in the second, in contrast to many Oxford courses. iii Spaces 1 One Normed Spaces Throughout, the scalar field of a vector space will be denoted by F and will be either the real numbers R or the complex numbers C. Basic Definitions Definition 1.1. A norm on a vector space X is a function : X R+ := [0, ); x x k·k → ∞ 7→ k k that satisfies, for all x, y X and α F, ∈ ∈ (i) x = 0 if and only if x = 0 (faithfulness), k k (ii) αx = α x (homogeneity) k k | |k k and (iii) x+y 6 x + y (subadditivity). k k k k k k A seminorm on X is a function p: X R+ that satisfies (ii) and (iii) above. → Definition 1.2. Anormed vector space is a vector space X with a norm ; if necessary k·k wewilldenotethenormonthespaceX by . Wewillsometimes usethetermnormed X k·k space as an abbreviation. Definition 1.3. A Banach space is a normed vector space (E, ) that is complete, k ·k i.e., every Cauchy sequence in E is convergent, where E is equipped with the metric d(x,y) := x y . k − k Definition 1.4. Let (x ) be a sequence in the normed vector space X. The series n n>1 ∞ x is convergent if there exists x X such that n x is convergent to x, n=1 n ∈ k=1 k n>1 and the series is said to have sum x. The series is absolutely convergent if ∞ x is P (cid:0)P (cid:1) n=1k nk convergent. P Theorem 1.5. (Banach’s Criterion) A normed vector space X is complete if and only if every absolutely convergent series in X is convergent. Proof This is a b4 result: see [24, Theorem 1.2.9]. (cid:3) 3 4 Normed Spaces Subspaces and Quotient Spaces Definition 1.6. A subspace of a vector space X is a subset M X that is closed under ⊆ vector addition and scalar multiplication: M + M M and αM M for all α F, ⊆ ⊆ ∈ where A+B := a+b : a A, b B and αA := αa : a A A,B X, α F. { ∈ ∈ } { ∈ } ∀ ⊆ ∈ Example 1.7. Let (X, T) be a topological space and let (E, ) be a Banach space E k·k over F. The set of continuous, E-valued functions on X forms an vector space, denoted by C(X,E), where the algebraic operations are defined pointwise: if f, g C(X,E) and ∈ α F then ∈ (f +g)(x) := f(x)+g(x) and (αf)(x) := αf(x) x X. ∀ ∈ The subspace of bounded functions C (X,E) := f C(X,E) f < , b ∞ ∈ k k ∞ (cid:8) (cid:12) (cid:9) where (cid:12) : C (X,E) R+; f sup f(x) : x X , ∞ b E k·k → 7→ k k ∈ is a Banach space, with supremum norm (s(cid:8)ee Theorem 1.36)(cid:9). If X is compact ∞ k · k then every continuous, E-valued function is bounded, hence C(X,E) = C (X,E) in this b case. If E = C (the most common case of interest) we use the abbreviations C(X) and C (X). b Proposition 1.8. A subspace of a Banach space is closed if and only if it is complete. Proof See [24, Theorem 1.2.10]. (cid:3) Definition 1.9. Given a vector space X with a subspace M, the quotient space X/M is the set X/M := [x] := x+M x X , where x+M := x+m : m M , ∈ { ∈ } (cid:8) (cid:12) (cid:9) equipped with the vector-spac(cid:12)e operations [x]+[y] := [x+y] and α[x] := [αx] x,y X, α F. ∀ ∈ ∈ (It is a standard result of linear algebra that this defines a vector space; for a full discussion see [7, Appendix A.4].) The dimension of X/M is the codimension of M (in X). Theorem 1.10. Let X be a normed vector space with a subspace M and let [x] := inf x m : m M [x] X/M. X/M k − k ∈ ∀ ∈ (cid:13) (cid:13) (cid:8) (cid:9) (cid:13) (cid:13)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.