Function of Polymers in Encapsulation Process Edited by M. Ali Aboudzadeh and Shaghayegh Hamzehlou Printed Edition of the Special Issue Published in Polymers www.mdpi.com/journal/polymers Function of Polymers in Encapsulation Process Function of Polymers in Encapsulation Process Editors M. Ali Aboudzadeh Shaghayegh Hamzehlou MDPI‚Basel‚Beijing‚Wuhan‚Barcelona‚Belgrade‚Manchester‚Tokyo‚Cluj‚Tianjin Editors M.AliAboudzadeh ShaghayeghHamzehlou CNRS,IPREM PolymatandKimika UniversityofPauandPays AplikatuaSaila del’Adour(UPPA) KimikaFakultatea Pau UniversityoftheBasque France CountryUPV-EHU Donostia-SanSebastia´n Spain EditorialOffice MDPI St. Alban-Anlage66 4052Basel,Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Polymers (ISSN 2073-4360) (available at: www.mdpi.com/journal/polymers/special issues/Funct Polym Encapsulation Process). For citation purposes, cite each article independently as indicated on the article page online and as indicatedbelow: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number, PageRange. ISBN978-3-0365-3776-4(Hbk) ISBN978-3-0365-3775-7(PDF) © 2022 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon publishedarticles,aslongastheauthorandpublisherareproperlycredited,whichensuresmaximum disseminationandawiderimpactofourpublications. ThebookasawholeisdistributedbyMDPIunderthetermsandconditionsoftheCreativeCommons licenseCCBY-NC-ND. Contents AbouttheEditors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Prefaceto”FunctionofPolymersinEncapsulationProcess” . . . . . . . . . . . . . . . . . . . . ix Abbas Rahdar, Saman Sargazi, Mahmood Barani, Sheida Shahraki, Fakhara Sabir and M. AliAboudzadeh Lignin-Stabilized Doxorubicin Microemulsions: Synthesis, Physical Characterization, and In VitroAssessments Reprintedfrom: Polymers2021,13,641,doi:10.3390/polym13040641 . . . . . . . . . . . . . . . . . 1 BjadK.Almutairy,AbdullahAlshetaili,AmerS.Alali,MohammedMuqtaderAhmed,Md. KhalidAnwerandM.AliAboudzadeh Design of Olmesartan Medoxomil-Loaded Nanosponges for Hypertension and Lung Cancer Treatments Reprintedfrom: Polymers2021,13,2272,doi:10.3390/polym13142272 . . . . . . . . . . . . . . . . 15 MohammedF.Aldawsari,Md.KhalidAnwer,MohammedMuqtaderAhmed,FarhatFatima, GamalA.SolimanandSaurabhBhatiaetal. EnhancedDissolutionofSildenafilCitrateUsingSolidDispersionwithHydrophilicPolymers: PhysicochemicalCharacterizationandInVivoSexualBehaviorStudiesinMaleRats Reprintedfrom: Polymers2021,13,3512,doi:10.3390/polym13203512 . . . . . . . . . . . . . . . . 29 Chandrasekar Ponnusamy, Abimanyu Sugumaran, Venkateshwaran Krishnaswami, RajaguruPalanichamy,RavichandiranVelayuthamandSubramanianNatesan DevelopmentandEvaluationofPolyvinylpyrrolidoneK90andPoloxamer407Self-Assembled Nanomicelles: EnhancedTopicalOcularDeliveryofArtemisinin Reprintedfrom: Polymers2021,13,3038,doi:10.3390/polym13183038 . . . . . . . . . . . . . . . . 45 SylwiaŁukasiewicz DevelopmentofaNewPolymericNanocarrierDedicatedtoControlledClozapineDeliveryat theDopamineD -Serotonin5-HT Heteromers 2 1A Reprintedfrom: Polymers2021,13,1000,doi:10.3390/polym13071000 . . . . . . . . . . . . . . . . 63 KushaSharma,Ze’evPoratandAharonGedanken Designing Natural Polymer-Based Capsules and Spheres for Biomedical Applications—A Review Reprintedfrom: Polymers2021,13,4307,doi:10.3390/polym13244307 . . . . . . . . . . . . . . . . 79 MiriamKhodeir,HeJia,AlexandruVladandJean-Franc¸oisGohy Application of Redox-Responsive Hydrogels Based on 2,2,6,6-Tetramethyl-1-Piperidinyloxy MethacrylateandOligo(Ethyleneglycol)MethacrylateinControlledReleaseandCatalysis Reprintedfrom: Polymers2021,13,1307,doi:10.3390/polym13081307 . . . . . . . . . . . . . . . . 121 MichałRudko,TomaszUrbaniakandWitoldMusiał RecentDevelopmentsinIon-SensitiveSystemsforPharmaceuticalApplications Reprintedfrom: Polymers2021,13,1641,doi:10.3390/polym13101641 . . . . . . . . . . . . . . . . 131 Virginija Skurkyte-Papieviene, Ausra Abraitiene, Audrone Sankauskaite, Vitalija RubezieneandJulijaBaltusnikaite-Guzaitiene Enhancement of the Thermal Performance of the Paraffin-Based Microcapsules Intended for TextileApplications Reprintedfrom: Polymers2021,13,1120,doi:10.3390/polym13071120 . . . . . . . . . . . . . . . . 147 v Valentina Sabatini, Laura Pellicano, Hermes Farina, Eleonora Pargoletti, Luisa Annunziata andMarcoA.Ortenzietal. Design of New Polyacrylate Microcapsules to Modify the Water-Soluble Active Substances Release Reprintedfrom: Polymers2021,13,809,doi:10.3390/polym13050809 . . . . . . . . . . . . . . . . . 163 GabrielMorand,PascaleChevallier,Ce´dricGuyon,MichaelTatoulianandDiegoMantovani In-Situ One-Step Direct Loading of Agents in Poly(acrylic acid) Coating Deposited by Aerosol-AssistedOpen-AirPlasma Reprintedfrom: Polymers2021,13,1931,doi:10.3390/polym13121931 . . . . . . . . . . . . . . . . 177 XiangLai,XuanZhang,ShukaiLi,JieZhang,WeifengLinandLonggangWang Polyethyleneimine-OleicAcidMicelles-StabilizedPalladiumNanoparticlesasHighlyEfficient CatalysttoTreatPollutantswithEnhancedPerformance Reprintedfrom: Polymers2021,13,1890,doi:10.3390/polym13111890 . . . . . . . . . . . . . . . . 189 vi About the Editors M.AliAboudzadeh Dr. M.AliAboudzadehiscurrentlyaMarieCurieresearchfellowinIPREMinstitute,whichis a joint research unit attached to the CNRS and the University of Pau and Pays de l’Adour, France. He received his B.Sc. (2003) and M.Sc. (2006) in Polymer Engineering from Amir Kabir University of Technology (AUT) and Iran Polymer & Petrochemical Institute (IPPI), respectively. He obtained his Ph.D. (in 2015) in Applied Chemistry and Polymer Materials from the University of the Basque Country (UPV/EHU), Spain and so far he has done several postdoctoral fellowships in different institutes. Dr. Aboudzadeh is an author/coauthor of more than 35 professional research articles and 2 book chapters. He is also the editor of a book entitled “Emulsion-based Encapsulation of Antioxidants:DesignandPerformance“publishedbySpringerNature.Hisresearchinterestsinclude polymersynthesisandcharacterization,polymerphysics,supramolecularassemblies,rheology,DNA nanotechnology,andencapsulationviaemulsion-basedsystems. ShaghayeghHamzehlou Dr. Shaghayegh Hamzehlou obtained her B.Sc. and M.Sc. in polymer engineering at Amir KabirUniversityofTechnology(PolyTechniqueofTehran)on2006. Later,sheworkedforfouryears as R&D Engineer in a manufacturing company, working on polymer based insulation materials for highvoltagegenerators. In2010, shemovedtoUniversityofBasquecountrytodothePh.D.inthe frameworkofaEuropeanproject,MarieCurietrainingnetworkITNNANOPOLY.In2014,shejoined Basque Center for Macromolecular Design and Engineering as a postdoctoral fellow involving in a EuropeanprojectRECOBAforthreeyears. Currently,sheisworkingasaresearcheratUniversityof BasqueCountry.Herresearchisfocusedonpolymerreactionengineering,modelling,andsimulation of kinetics, topology, microstructure, and morphology of the complex polymerization systems. She has(co)authoredmorethan30scientificarticles,4bookchaptersandhadoralpresentationsinmore than 20 national and international conferences and was a keynote lecturer at the Polymer Reaction EngineeringX(PRE10)May20-25,2018. vii Preface to ”Function of Polymers in Encapsulation Process” Encapsulation technology comprises enclosing active agents (core materials) within a homogeneous/heterogeneous matrix (wall material) at the micro/nano scale. In the last few years encapsulation has gained a lot of interest. Using this process, a physical barrier is developed between the inner substance and the environment which, on one hand, prevents its degradation and facilitates its handling and transportation and, on the other hand, allows the controlled release of the core material in a certain ambiance. Polymers may be used to trap the material of interest insidethemicro/nano-capsules. Suchencapsulatedsystemshavemanyapplicationsinthefieldsof the food industry, drug delivery, agriculture, cosmetics, coatings, adhesives, and so forth. Various biopolymers, such as alginate, chitosan, carrageenan, gums, gelatin, whey protein, or starch, act as a barrier against external conditions. Encapsulation in biodegradable polymers can also enhance the permeability and stability of the active agent and, thus, its bioavailability. Choosing the right polymerisveryimportantinthisprocessduetoitsimpactontargetdeliveryandcontrolledrelease, and, therefore, on the bioavailability of active agents. It should have the necessary properties, such as being non-reactive with the active agent, flexibility, stability, strength, and impermeability. If the active agent has application in the food industry, the used polymer should be “generally recognizedassafe”(GRAS),biodegradable,andcapableofpreservingtheencapsulatedmaterialfrom theatmosphere. There are a number of chemical, physical or mechanical processes available for encapsulation such as emulsion-solvent evaporation/extraction methods, coacervation-phase separation, spray drying, interfacial and in situ polymerization. The choice of a particular technique depends on the attributes of the polymer and the active agent. There are still many aspects to be developed in this field, which offer new challenges and breakthrough opportunities. The main objective of this interdisciplinary book is to bring together, at an international level, a high-quality collection of reviews and original research articles dealing with the importance of natural or synthetic polymers in encapsulation processes and their applications. A deep understanding and relevant theoretical calculationsforexploringthefunctionsofthematerials(involvedintheformulations)havealsobeen obtained by fundamental investigations. We believe that the present book has explored the latest researchonthefunctionofpolymersinencapsulationtechnologyincludingfundamentaltheoryand experiments together with reviews and articles. More efficient designs and preparation processes, as well as further understandings of the interfacial chemistry of encapsulated materials within the polymericsystems,arestillneeded. The main aim of the book is to inspire and to guide scientists in this field. For the industrial establishments, the book also presents easy-to-achieve approaches that have been developed so far andcouldcreateaplatformforindustrialmaterialproduction. The Editorsexpress their appreciationto all contributorsfrom different partsof the world that have cooperated in the preparation of this book. In this context, this international book gives the activereaderdifferentperspectivesonthesubjectandencourageshim/hertoreadtheentirebook. M.AliAboudzadehandShaghayeghHamzehlou Editors ix polymers Article Lignin-Stabilized Doxorubicin Microemulsions: Synthesis, Physical Characterization, and In Vitro Assessments AbbasRahdar1,* ,SamanSargazi2,MahmoodBarani3 ,SheidaShahraki2,FakharaSabir4 andM.AliAboudzadeh5,6,* 1 DepartmentofPhysics,UniversityofZabol,Zabol98613-35856,Iran 2 CellularandMolecularResearchCenter,ResistantTuberculosisInstitute,ZahedanUniversityofMedical Sciences,Zahedan98167-43463,Iran;[email protected](S.S.);[email protected](S.S.) 3 DepartmentofChemistry,ShahidBahonarUniversityofKerman,Kerman76169-14111,Iran; [email protected] 4 FacultyofPharmacy,InstituteofPharmaceuticalTechnologyandRegulatoryAffairs,UniversityofSzeged, H-6720Szeged,Hungary;[email protected] 5 CentrodeFísicadeMateriales,CSIC-UPV/EHU,PaseoManuelLardizábal5, 20018Donostia-SanSebastián,Spain 6 DonostiaInternationalPhysicsCenter(DIPC),PaseoManuelLardizábal4, 20018Donostia-SanSebastián,Spain * Correspondence:[email protected](A.R.);[email protected](M.A.A.) Abstract: Encapsulationof thechemotherapy agentswithin colloidal systemsusually improves drugefficiencyanddecreasesitstoxicity. Inthisstudy,lignin(LGN)(thesecondmostabundant biopolymernexttocelluloseonearth)wasemployedtopreparenoveldoxorubicin(DOX)-loaded oil-in-water (O/W) microemulsions with the aim of enhancing the bioavailability of DOX. The dropletsizeofDOX-loadedmicroemulsionwasobtainedas≈7.5nmbydynamiclightscattering Citation: Rahdar,A.;Sargazi,S.; (DLS)analysis.Theentrapmentefficiency(EE)%ofLGN/DOXmicroemulsionswascalculatedtobe Barani,M.;Shahraki,S.;Sabir,F.; about82%.Inaddition,aslowandsustainablereleaserateofDOX(68%)wasobservedafter24hfor Aboudzadeh,M.A.Lignin-Stabilized thesemicroemulsions.ThecytotoxiceffectsofstandardDOXandLGN/DOXmicroemulsionson DoxorubicinMicroemulsions: non-malignant(HUVEC)andmalignant(MCF7andC152)celllineswereassessedbyapplication Synthesis,PhysicalCharacterization, ofatetrazolium(MTT)colorimetricassay.Disruptionofcellmembraneintegritywasinvestigated andInVitroAssessments.Polymers 2021,13, 641. https://doi.org/ by measuring intracellular lactate dehydrogenase (LDH) leakage. Invitro experiments showed 10.3390/polym13040641 thatLGN/DOXmicroemulsionsinducednoticeablemorphologicalalterationsandagreatercell- killingeffectthanstandardDOX.Moreover,LGN/DOXmicroemulsionssignificantlydisruptedthe AcademicEditor:IolandaDeMarco membraneintegrityofC152cells. Theseresultsdemonstratethatencapsulationandslowrelease ofDOXimprovedthecytotoxicefficacyofthisanthracyclineagentagainstcancercellsbutdidnot Received:3February2021 improveitssafetytowardsnormalhumancells. Overall,thisstudyprovidesascientificbasisfor Accepted:18February2021 futurestudiesontheencapsulationefficiencyofmicroemulsionsasapromisingdrugcarrierfor Published:21February2021 overcomingpharmacokineticlimitations. Publisher’sNote:MDPIstaysneutral Keywords:microemulsion;doxorubicin;invitro;cytotoxicity;lignin(LGN) withregardtojurisdictionalclaimsin publishedmapsandinstitutionalaffil- iations. 1. Introduction Doxorubicin (DOX) is an anthracycline and active anticancer drug that contains a naphthacenequinonenucleuswithaglycosidicbondtoanaminosugar[1]. DOXisstruc- Copyright: © 2021 by the authors. turallysimilartodaunorubicinexceptthattheformercontainsahydroxylacetylgroup Licensee MDPI, Basel, Switzerland. instead of an acetyl group at the 8-position. DOX is slightly soluble in normal saline This article is an open access article and sparingly soluble in alcohol, and has broad-spectrum activity against neoplasms, distributed under the terms and lymphomas,solidtumors,andbreasttumors[2]. Ithasbeenwidelyusedasafirst-line conditionsoftheCreativeCommons therapyintesticular,breast,andhepatocellularcarcinoma. DOXhasdifferentbiomedical Attribution(CCBY)license(https:// applicationsinvariouschemotherapeuticregimens. Itwaspreviouslyappliedincombina- creativecommons.org/licenses/by/ 4.0/). tionwithbleomycin,dacarbazine,cyclophosphamidevincristine,andprednisoneforthe 1 Polymers2021,13,641 treatmentofnon-Hodgkin’sandHodgkin’slymphomas. AnotherapplicationofDOXand cyclophosphamidecanbeusedasadjuvanttherapywithorwithoutincludingfluorouracil followedbypaclitaxelforbreastcancer. ThecombinationofDOXwithagreaterdoseof cisplatinandmethotrexatehasbeensuccessfullyappliedtotreatosteogenicsarcoma[3,4]. DOX attachment to DNA via intercalation could inhibit the function of topoisomerase II,resultingindisruptionofDNAandRNA.ThequinonegroupofDOXisreducedby cytochromeP450reductasetoproducesemiquinoneoxygenfreeradicalsthatcanattack thecells’DNA. Moreover,DOXbindstocellmembranesandmodifiesthefluidityofiontransport[5,6]. Thecellmembranesarepermeabletothelipid-solubleanthracyclinemoleculeswithan unprotonatedsugaraminogrouplikeDOXwithapKavalueofabout8.2.Thesecompounds havedirectaccesstotheintracellularsitesinallcells,includingtumorcells. The limitations in the application of conventional DOX are its bone marrow sup- pression,nephrotoxicity,andcardiotoxicity. ThetoxicityissuesrelatedtoDOXlimitits long-term use for clinical purposes [7,8]. P-glycoprotein (P-gp) also shows multidrug- resistance-associatedprotein-1(MRP1)-mediatedeffluxthatmakesthetumorlessrespon- sivetowardsDOX.Theotherchallengesareitsshorthalf-life,poorsolubility,lackoforal dosageformulations,instabilityofthedrugsundergastricconditions,andhepaticfirst-pass effect[9,10]. Severalapproacheshavebeenusedtoreducethetoxicityandenhancethe oralefficacyofDOX.Someofthememployprolongedinfusionalongwithsimultaneous administrationwithothercardioprotectiveagents(dexrazoxane)[11]. Furthermore,an- thracyclineanalogsandothernoveldrugdeliverysystemscanbeappliedtomodifyits distributionandreduceitsaccumulationintheheartandloweritstoxicity. DOXcanbe incorporated within different carrier systems, for example, DOX-loaded liposomes for efficienttargetingagainsttumors[6]. Furthermore,encapsulationofDOXindendrimers, nanocrystals,nanogels,nanotubes,andnanoemulsionshasbeenstudied[12]. Microemulsion,asapotentialdrugdeliverysystem,allowscontrolledorsustained releaseofdrugsfororal,topical,ocular,andpercutaneousadministration. Incomparison tootherdosageforms,microemulsionsoffertheadvantagesofeasyformation,highscale- up,greaterstability,thehigherdrugsolubilizationofhydrophobicdrugs,andenhanced bioavailability [13,14]. A microemulsion system composed of oil, surfactant (non-ionic or anionic), co-surfactants, and water can form a large number of configurations and phasesviamixingdifferentproportionsofcomponentstodesigntheformulation[14,15]. Non-ionicsurfactantsarepreferablebecauseoftheirhightolerability,lowerirritationand toxicity,andtheyhavethepotentialtoenhancethebiocompatibilityofthecolloidalsystem. Microemulsionscanbedevelopedbyapplyingsingleordoublechainsurfactants. Single chains do not lower the interfacial tension, and that is why co-surfactants are needed. Theco-surfactantsmayexhibittoxicityintheformulationofmicroemulsions[16]. Inthis context,theselectionofsurfactantandco-surfactantisofgreatsignificance. Phospholipids- basedmicroemulsionsarepreferredoverothersyntheticsurfactantsfromatoxicitypointof view[17].Greensurfactants(GSs)providebenefitsoverothersyntheticsurfactantsinmany drugdeliverymethods[18]. ThemostrelevantpropertiesofGSsarebiodegradability,eco- nomicproduction,environmentaltolerance,specificity,andstructuraldiversity[4,19,20]. DespitethemanyadvantagesofGSssuchasthecommercializationandeconomicavailabil- ityinindustries,theyarenotproductiveenoughduetothehighoperationalandmaterial costsneededfortheirsynthesis. Hence,theuseofnanotechnologicalmethodstoincrease theproductionofGSsviamicrobialinductionhasbeenevaluated. Alotofresearchstudies havebeencarriedoutondecreasingthecostsourcesformanufacturingGSs[21]. Lignin(LGN)(aphenolicpolymerderivedfromphenylpropanoidunits,)isthetypeof GSthatweusedinthisstudy. Thisbiodegradablenaturalpolymer,whichistheresultofin- dustrialwoodprocessing,haswidespreadimplementationsasarenewablebioresourcefor producingdifferentend-productsincludingdetergents,surfactants,anddispersants[22]. LGNsaredevelopedfromdifferentmethods,includingchemicalmodificationsusingalky- lation,destruction,sulfonation,etc.[23]. LGNisalsoapotentialmaterialforbiomedical 2