The pond snail under stress: Interactive effects of food limitation, toxicants and copulation explained by Dynamic Energy Budget theory vrije universiteit The pond snail under stress: Interactive effects of food limitation, toxicants and copulation explained by Dynamic Energy Budget theory academisch proefschrift ter verkrijging van de graad Doctor aan de Vrije Universiteit Amsterdam, op gezag van de rector magnificus prof.dr. F.A. van der Duyn Schouten, in het openbaar te verdedigen ten overstaan van de promotiecommissie van de faculteit der Aard- en Levenswetenschappen op dinsdag 18 juni 2013 om 13.45 uur in de aula van de universiteit, De Boelelaan 1105 door Elke Iris Zimmer geboren te Norden, Duitsland promotor: prof.dr. S.A.L.M. Kooijman copromotoren: dr. T. Jager dr. V. Ducrot Contents 1. General introduction 3 1.1. Mechanistic effect modeling . . . . . . . . . . . . . . . . . . . . . . . 5 1.2. Deviations from von Bertalanffy growth . . . . . . . . . . . . . . . . 8 1.3. Effect patterns: Hormesis . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4. Maternal effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5. Extrapolation to the population level . . . . . . . . . . . . . . . . . . 10 1.6. The pond snail Lymnaea stagnalis . . . . . . . . . . . . . . . . . . . 10 1.7. The pond snail in my thesis . . . . . . . . . . . . . . . . . . . . . . . 12 2. Juvenile food limitation in standardized tests 15 2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2. Materials and Methods. . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.1. Growth model . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2.2. Simulation experiments with hypothetical toxicants . . . . . 19 2.2.3. Description of available data: the full life-cycle (FLE) and the partial life-cycle (PLE) experiments . . . . . . . . . . . . 20 2.2.4. The juvenile feeding experiment (JFE) . . . . . . . . . . . . . 21 2.2.5. Obtainingmodelparametersanderrorstructurefromexper- imental data . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.3. Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3.1. Experiments and model fit . . . . . . . . . . . . . . . . . . . 22 2.3.2. Model simulations . . . . . . . . . . . . . . . . . . . . . . . . 23 2.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4.1. Deviation of the von Bertalanffy growth pattern . . . . . . . 26 2.4.2. Food limitation in the pond snail . . . . . . . . . . . . . . . . 27 2.4.3. Protein content of food in other aquatic invertebrates . . . . 27 2.4.4. Differences in patterns following from experimental setup . . 28 2.4.5. Model simulations . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4.6. Implications for ecotoxicology and risk assessment . . . . . . 29 2.5. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3. Interaction between food and toxicant leads to hormesis 33 3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.2. Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2.1. Experimental work . . . . . . . . . . . . . . . . . . . . . . . . 35 3.2.2. Model analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 36 I 3.3. Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.4. Implications for ecotoxicology . . . . . . . . . . . . . . . . . . . . . . 40 4. Modeling the full life cycle of Lymnaea stagnalis 43 4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.2. Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2.1. The standard model . . . . . . . . . . . . . . . . . . . . . . . 46 4.2.2. The metabolic acceleration . . . . . . . . . . . . . . . . . . . 47 4.2.3. Reproduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2.4. The data used for parameterization. . . . . . . . . . . . . . . 49 4.2.5. The data used for validation . . . . . . . . . . . . . . . . . . 50 4.2.6. Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2.7. Assumptions and simplifications . . . . . . . . . . . . . . . . 51 4.3. Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3.1. General patterns . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3.2. Food limitation vs. metabolic acceleration . . . . . . . . . . . 53 4.3.3. Metabolic acceleration in other organisms . . . . . . . . . . . 56 4.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 5. The dynamics of male/female functions in a starving hermaphrodite 61 5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2. Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.2.1. Experimental approach . . . . . . . . . . . . . . . . . . . . . 63 5.2.2. The modeling approach . . . . . . . . . . . . . . . . . . . . . 65 5.2.3. Starvation response . . . . . . . . . . . . . . . . . . . . . . . 67 5.3. Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.3.1. Maternal effects . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.3.2. Offspring fitness . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.3.3. Effects of mating opportunity . . . . . . . . . . . . . . . . . . 73 5.3.4. Effect of food limitation on fecundity: starvation response . . 73 5.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6. Dynamic Energy Budget theory meets individual-based modelling 79 6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.2. How can DEB benefit IBMs? . . . . . . . . . . . . . . . . . . . . . . 81 6.3. How can IBMs benefit DEB? . . . . . . . . . . . . . . . . . . . . . . 81 6.4. DEB-IBM links DEB theory with IBMs . . . . . . . . . . . . . . . . 82 6.5. The DEB-IBM Framework. . . . . . . . . . . . . . . . . . . . . . . . 82 6.6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7. General discussion 89 7.1. Choosing the right model . . . . . . . . . . . . . . . . . . . . . . . . 89 7.1.1. Acceleration vs. food limitation . . . . . . . . . . . . . . . . . 89 7.1.2. Simplified model vs. full DEB model . . . . . . . . . . . . . . 90 7.1.3. Deviations from von Bertalanffy growth . . . . . . . . . . . . 91 7.1.4. Effect patterns: Hormesis . . . . . . . . . . . . . . . . . . . . 91 7.1.5. Maternal effects . . . . . . . . . . . . . . . . . . . . . . . . . 94 7.1.6. Extrapolation to the population level. . . . . . . . . . . . . . 95 7.2. Factors influencing the outcome of ecotoxicological experiments . . . 96 7.2.1. Feeding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 7.2.2. Other environmental factors . . . . . . . . . . . . . . . . . . . 97 7.2.3. The sublethal endpoints growth and reproduction . . . . . . 98 7.3. The perfect ecotoxicological experiment with the pond snail . . . . . 98 7.4. Outlook / Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7.4.1. Howdoesmetabolicaccelerationinfluencetherestofthelife cycle? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 7.4.2. How important are the proposed changes of κ with light regime for realistic extrapolation of effects? . . . . . . . . . . 100 7.4.3. Whatisthebestfoodsourceforthepondsnailinastandard test? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 7.5. Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Appendices 107 A. Supplement for Chapter 2 107 A.1. Dynamic Energy Budget (DEB) theory . . . . . . . . . . . . . . . . 107 A.1.1. Concepts and ideas . . . . . . . . . . . . . . . . . . . . . . . . 107 A.1.2. The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 A.1.3. Inclusion of toxic effects . . . . . . . . . . . . . . . . . . . . . 111 A.1.4. Temperature dependence . . . . . . . . . . . . . . . . . . . . 111 A.2. Experimental part . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 A.2.1. Life-cycle of Lymnaea stagnalis . . . . . . . . . . . . . . . . . 112 A.2.2. Rearing conditions at the snail culture . . . . . . . . . . . . . 112 A.2.3. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 A.3. Analysis of the error structure. . . . . . . . . . . . . . . . . . . . . . 116 B. Supplement for Chapter 4 119 B.1. Assumptions that specify the standard DEB model . . . . . . . . . . 119 B.2. The basic fluxes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 B.2.1. Respiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 C. Supplement for Chapter 5 123 C.1. The experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . 123 C.2. Development of clutches . . . . . . . . . . . . . . . . . . . . . . . . . 123 Short summary 127 Samenvatting 129 Zusammenfassung 133 Publication list 137 Acknowledgements 139 Bibliography 141
Description: