C.R.Chimie10(2007)978e993 http://france.elsevier.com/direct/CRAS2C/ Full paper / Me´moire Estimating the stabilities of actinide aqueous species. Influence of sulfoxy-anions on uranium(IV) geochemistry and * discussion of Pa(V) first hydrolysis Pierre Vitorge a,b,*, Vannapha Phrommavanhc, Bertrand Siboulet d, Dominique Youa, Thomas Vercoutera, Michael Descostes b,c, Colin J. Marsden e, Catherine Beaucaire c, Jean-Paul Gaudet f aLaboratoiredespe´ciationdesradionucle´idesetdesmole´cules(LSRM),CEASaclay, DEN/DANS/DPC/SECR,91191Gif-sur-Yvettecedex,France bUMR8587,CEASaclay,DEN/DANS/DPC/SECR,91191Gif-sur-Yvettecedex,France cLaboratoiredemesuresetmode´lisationdelamigrationdesradionucle´ides(L3MR),CEASaclay, DEN/DANS/DPC/SECR,91191Gif-sur-Yvettecedex,France dCEAMarcoule,DEN/DRCP/SCPS,30207Bagnols-sur-Ce`zecedex,France eLaboratoiredephysiquequantique,CNRSeUMR5626,Universite´ Paul-Sabatier, 118,routedeNarbonne,31062Toulousecedex4,France fLaboratoired’e´tudedestransfertsenhydrologieetenvironnement(LTHE),UMR5564,CNRS/INPG/IRD/UJF, BP53,38041Grenoblecedex9,France Received18September2006;acceptedafterrevision5April2007 Availableonline29June2007 Abstract Qualitativechemicalinformationisusedasaguidelineforcorrelationsbetweenequilibriumconstantsorbetweenequilibrium constants and atomic charges (deduced from quantum mechanics calculations). Pa(V) and Nb(V) hydrolysis constants are also recalculated from experimental data. logK(cid:2)ðAnIV=RO2(cid:3)Þ¼6:5 (cid:4)0:5 ðS O2(cid:3)Þ;10:0 (cid:4)0:8 ðSO2(cid:3)Þ;11:9 (cid:4)1:0 1 2 9 5 2 3 6 8 3 7 7 ðCO2(cid:3)Þ; and 10:0 (cid:4)0:8 ðHPO2(cid:3)Þ are estimated based on the trend of affinity for An cations in the series 3 5 8 4 CO2(cid:3)>HPO2(cid:3)zSO2(cid:3)>SO2(cid:3)zS O2(cid:3): These ideas and values are used to discuss U(IV) chemistry in S-containing 3 4 3 4 2 3 ground-waters. To cite this article: P. Vitorge et al., C. R. Chimie 10 (2007). (cid:2) 2007 Acade´mie des sciences. Published by Elsevier Masson SAS. All rights reserved. Re´sume´ Desconnaissancesqualitativesonte´te´concre´tise´essouslaformedecorre´lationsempiriquesentreconstantesd’e´quilibres,voireavec leschargesatomiques(issuesdecalculsquantiques)danslase´rieCO2(cid:3)>HPO2(cid:3)zSO2(cid:3)>SO2(cid:3)zS O2(cid:3),pour,parexemple,es- 3 4 3 4 2 3 timer logK(cid:2)ðAnIV=RO2(cid:3)Þ¼6:5 (cid:4)0:5 ðS O2(cid:3)Þ;10:0 (cid:4)0:8 ðSO2(cid:3)Þ;11:9 (cid:4)1:0 ðCO2(cid:3)Þ; et 10:0 (cid:4)0:8 ðHPO2(cid:3)Þ. 1 2 9 5 2 3 6 8 3 7 7 3 5 8 4 * PartiallypresentedattheMigration05conference[1],andpartofthePh.D.thesisofV.Phrommavanh. * Correspondingauthor. E-mailaddress:[email protected](P.Vitorge). 1631-0748/$-seefrontmatter(cid:2)2007Acade´miedessciences.PublishedbyElsevierMassonSAS.Allrightsreserved. doi:10.1016/j.crci.2007.04.015 P.Vitorgeetal./C.R.Chimie10(2007)978e993 979 Cesvaleurssontutilise´espourpre´voirl’influencee´ventuelled’anionssoufre´ssurlachimiedeU(IV)dansdeseauxsouterraines.Pour citercetarticle:P.Vitorgeetal.,C.R.Chimie10(2007). (cid:2)2007Acade´miedessciences.PublishedbyElsevierMassonSAS.Allrightsreserved. Keywords:Actinides;Hydrolysis;Sulphate;Sulfite;Thiosulphate;Carbonate;Groundwaters Mots-cle´s :Actinides;Hydrolyse;Sulfate;Sulfite;Thiosulfate;Carbonate;Eauxsouterraines 1. Introduction Selected NEA-TDB equilibrium constants and redox potentials[2]areadequateforreliablemodellingofura- The geochemical behaviour of actinides have been nium chemistry in most equilibrated groundwaters. extensivelystudiedforunderstandinguraniumandtho- Uranium is predicted to be stable in anoxic waters in rium ore deposits, and more recently for assessing the theformoftheU(OH) (aq)aqueousspeciesinequilib- 4 environmentalimpactofthepossibledisposalofwastes rium with uraninite, UO (s), a compound of low solu- 2 that contain Pa, Np, Pu, Am or Cm. Starting with ura- bility [2,5,6]. Similar behaviour is expected for Np nium [1], the Thermochemical Data Base project of andPu,eventhoughPu3þmightalsobestable[4e7]. the Nuclear Energy Agency (NEA-TDB) organised Innaturalunder-ground-watersCO2(cid:3),thecarbonate 3 the reviewing of published experimental data relevant anionisoftenthedominatingligandamongtheinorganic for modelling aqueous chemistries and solubilities of ligands(foractinidecations).However,carbonatecom- the most important radionuclides. The results of the plexesarepredictedtobeoflittleimportantforAn(IV) NEA-TDBprojectarenowwellacceptedasareference [2,4,7].Nevertheless,manyAnðCO ÞðOHÞ4(cid:3)2i(cid:3)j com- 3 i j critical review, essentially for aqueous chemistry and plexeshavebeenproposed,butnoreliablevaluescould solubility at room temperature, but these reviews pro- be validated for most of the corresponding formation poseddataonly whenconvincingexperimentalvalida- constants [2,4], for which maximum possible values tionswerepublished.Thereisthereforeagapbetween have been estimated from experimental observations, thisrestrictedsetofquantitativevalidatedthermochem- thatalsoconfirmedthesimilarbehaviourofTh,U(IV), icaldataandqualitativechemicalknowledge. Np(IV)andPu(IV)incarbonate/bicarbonateaqueousso- However, besides selected numerical values, the lutions[4,5,8]. Valueshaverecentlybeenproposedfor NEA-TDBreviewsalsoprovidequalitativeinformation theformationconstantsofseveralThðCO ÞðOHÞ4(cid:3)2i(cid:3)j 3 i j [2,3], which we used together with analogies for esti- complexes in an attempt to interpret a solubility study matingthehydrolysisconstantsandstandardpotentials ofThO (s)[8,9],buttheThðCO Þ4(cid:3)specieswerenotin- 2 3 4 [4]neededfordrawingPourbaix’diagramsofactinides cludedintheinterpretation,eventhoughweshallseeit [5]. The present paper aims at testing such rough esti- should not be completely negligible according to the matesforcomplexation. NEA-TDB data [4]. For probing such competition be- Rules of thumb are currently used by chemists for tweentheHO(cid:3)andCO2(cid:3)ligands,therelativestabilities 3 checkingthepossibleformationofhypotheticalchem- of the corresponding 1:1 complexes of An4þ will be icalspeciesinspecificchemicalconditions,whenthese compared. In this framework, the stability of AnCO2þ 3 chemicalspeciesarenotindatabases.Thismighttypi- willbe estimated: its existence has neverbeen demon- callybethecasefortheenvironmentalaqueouschem- strated,sinceitisalwayshiddenbyhydrolysedspecies. istry of An(IV), the actinide elements at the þ4 Thisover-stabilisationofhydrolysisisspecifictotheþ4 oxidationstate(An¼Th,U,NpandPu)inthepresence oxidation state: the 1:1 carbonate complexes are well of S-containing inorganic ligands; for this reason it is known, and their stabilities were well established for alsoanaimofthepresentpapertoestimatethestabili- An(III), An(V) and An(VI) (it is not known for Pa(V), tiesofAn(IV)complexeswithsulfoxy-anions. whichisknowntohaveaverydifferentaqueouschemi- For storing radioactive wastes, several projects are calbehaviourfromtheotherAn(V)). looking for geological sites that arewell isolated from Severalotherinorganichardanionsarequitereactive surfacewaters.Theseoftencorrespondtoanoxiccondi- toward actinide cations, specially those of high charge tions,whereU,NpandPuareexpectedtobestablein ðPO3(cid:3)Þ, of small size (F(cid:3)), or polydentade ðHPO2(cid:3)Þ: 4 4 theþ4oxidationstate[2,4].Interestingly,chemicalan- dependingontheircontentingroundwaterstheymight alogues are Ce(IV) and Th, and probably Zr and Hf. form complexes with actinide cations. For example, it 980 P.Vitorgeetal./C.R.Chimie10(2007)978e993 wasrecentlyproposedthatthepore-watersofCallovoe (a) 1.2 Oxfordian clay minerals, where an underground re- search laboratory is being built to study the feasibility of a deep geological repository for radioactive wastes in France [10], contain quite large amounts of SO24(cid:3). 0.9 -HOS4 The pore-water composition is approximately at the O(g) SO24(cid:3)=HS(cid:3)=H2S frontier point (Fig. 1). Although the H2O 2 most stable aqueous sulfur species - those bolded on Pourbaix’ diagrams - are sulfide (HS(cid:3)) and sulfate 0.6 ðSO2(cid:3)Þ, some other sulfoxy-anions are often detected 4 S SO2- in natural environments, typically as thiosulfate O2 4 ðS2O23(cid:3)Þ and sulfite ðSO23(cid:3)Þ ions. For example, about S2O62- 25% of the total S content has been reported to be 0.3 S2O23(cid:3) in a reducing groundwater [11], and even in SHE) SS4O62- HS S2O82- amlsooresuospxeidcitzeidntgofcoornmdiitniotnhsec[o1u2r]s.eSofultfhoexoyx-aidnaiotinvsedairse- E(V/ O3- solutionofpyrite(FeS2)[13],amineraloftenassociated 0 S SO32- with the redox regulation of ground-waters. For this HO 2O32- 2 reason, we focus on sulfoxy-anion ligands, specially onS O2(cid:3). H2(g) H2S 2 3 -0.3 Grenthe et al. have selected complexing constants for U(VI) complexes with these anions [2], but they wrote in their review that confirmation is needed: ‘‘Theonlyquantitativeinformationaboutaqueousura- HS- -0.6 nium thiosulfate complexes is the study by Melton and Amis[.]Thisreviewtentativelyaccepts[their]value, 25 °C I = 0 S2- (althoughconfirmationoftheresultsfromanotherstudy 4 mM S would be useful)’’. Furthermore: ‘‘The solid formed -0.9 seemstobeamixtureindicatingdecompositionofthio- 0 5 10 sulfate into sulfite and elemental sulfur. This review pH findsnoreliableevidencefortheformationofsolidura- (b) 0 nium thiosulfate compounds.’’ This decomposition SO2- H 4 mightverywellbetheresultofredoxreactions(dispro- H SO4- portionation), since both uranium and sulfur have 2S O awiderangeofpossibleoxidationstates,andtheirsta- 4 -5 bility domains are not well established in mixtures of 0 5 10 uranium and sulfur. This might in fact be a problem pH forotheruraniumcompoundsandcomplexeswithsul- fur-containing ligands. Unfortunately the NEA-TDB (c) 0 H2SO3 HSO3- SO32- reviews could notvalidatesuch data for the Th and Zr S S2O32- asoennlaeelcomtgeiudgehsdta[tv1ae4rf,yo1r5w]a.eltSlhiienoxcspeuelcftahtteethNicooEsmuAlpf-laTetDxeBcoofmrUepv(liVeewxI)es[h2ao]sf, HH2SS22OO3-3 -5 4O62-S2O62- HS- S2- U(IV)inmorereducingconditionseunlessthiosulfate 0 5 10 is strongly reduced, when U(IV) is formed e because pH the U4þ hard cation is usually more reactive (than Fig.1. Pourbaixdiagramofsulfur.(a)Thenamesofthemajorspe- UO2þ) toward oxygen-donor ligands. Based on the cies(HS(cid:3),HS,SO2(cid:3); HSO(cid:3)andsolidS)areinbold,andtheirpre- 2 2 4 4 same hardness rule, thiosulfate should bind to hard dominance domains are drawn with thick lines. The domains (thin cationsviatheOratherthantheSatomofthesulfoxy- dashedlines)oftheother(minorsulfur)speciesareobtainedbysup- anionligands.ThesameproblemholdsfortheU=SO2(cid:3) pressing SO24(cid:3); HSO(cid:3)4 and H2SO4. (b and c) The speciation system:theNEA-TDBreviewhasselecteddataforsulfi3te ðnamely log½HiSjOzk(cid:5)=½S(cid:5)totalÞofeachspeciesðHiSjOzkÞisrepresented for two kinetic assumptions (see text) in redox conditions corre- complexes of U(VI); but not for U(IV): ‘‘Formation of spondingtolineBofFig.6. P.Vitorgeetal./C.R.Chimie10(2007)978e993 981 aqueous uranium(IV) sulfite complexes was reported in comparisonwillbebasedonlyonhydrolysisdata,since a qualitative study by Rosenheim and Kelmy. However, thereareveryfewotherpublishedequilibriumconstants no experimental chemical thermodynamic data on these forPa(V)aqueouscomplexes.Priortothiscomparison, speciesareavailable.’’Asaprobeforligandcompetition weshallexaminetheimpactofourestimatedcomplex- (betweenS O2(cid:3) or SO2(cid:3) andtypicallyOH(cid:3)orCO2(cid:3)), ingconstantsonthegeochemicalbehaviourofU(IV). 2 3 3 3 we shall estimate the formation constants of the corre- sponding 1:1 An(IV) complexes, namely AnS2O23þ 2. Methods and AnSO2þ. 3 Various methods are commonly used for estimating 2.1. Equilibrium constants equilibrium constants, typically as empirical correla- tions with physical (or phenomenological) parameters For consistency, we used reaction data e i.e. DG(cid:2) r (atomic radii and charges, solvent interactions.). (equivalentlystandardequilibriumconstantsandpoten- They can also be obtained from molecular modelling tialsofredoxcouples)etheywerepreferredtoforma- methods. Indeed we recently estimated an uncertainty tiondata(DG(cid:2))[2]. f of10kJmol(cid:3)1onDrGforPa(V)hydrolysis[16],which (cid:2)(cid:2)MLzMþzL(cid:2)(cid:2) isabout20timeshigherthantheuncertaintyoftheexpe- K(cid:2) ¼ ð1Þ rimental determinations of equilibrium constants and 1 jMzMjjLzLj standardredoxpotentialsinaqueoussolutions.Further- wherejAjistheactivityofspeciesA. more,suchmethodsneedcaution,whenusingcalculated (cid:2) (cid:2)(cid:2) (cid:2) energies[17]. Afterothers[18,19](witha commentin (cid:2)Hþ(cid:2)(cid:2)LzL(cid:2) Ref. [7]) we also tested empirical correlations, which Ka(cid:2) ¼ (cid:2)(cid:2)HL1þzL(cid:2)(cid:2) ð2Þ appear to work surprisingly well for some of them: theyactuallyhelpinputtingnumbersforquiteencyclo- pK(cid:2) ¼(cid:3)logK(cid:2) is pH , the pH at the half-point reac- a a 1/2 pedic qualitative knowledge. It is also a way to check tion (where jLzLj¼jHL1þzLj). pK(cid:2) appears to be the a such knowledge and corresponding chemical intuition. ionicproductofwater,whenLzL ¼OH(cid:3) andwhenus- Weusesuchcorrelationshere,hopingthisspecialissue ing jH Oj¼1; but when comparing the complexing 2 willhelpsuchrulesofthumbusedbyactinidechemistry strengths of various ligands we used the concentration specialists to become less mysterious. The rough esti- ofliquidwater:jH Oj¼C (55.34molkg(cid:3)1).Super- 2 H2O matesareonlyguidelines,whichneedexperimentalcon- script (cid:2) stands for infinite dilution (ionic strength, firmation. They often originate in geometrical and I¼0),thestandardconditions(seeSection2.2). electrostaticsreasoning.Indeed,thechemicalstabilities logK(cid:2) valueswere plottedasafunctionofpK(cid:2),for 1 a ofhardcationsareoftencorrelatedwiththecharge2/ra- example when K(cid:2) is the formation constant of 1 dius ratios of the reactants. Nevertheless, we shall see AmCO2þ, 1=K(cid:2) is the protonation constant of CO2(cid:3). 3 a 3 thatthebestcorrelationsarenotspeciallywiththeatomic Weobserved charges; correlations between measured equilibrium logK(cid:2) ¼a þb pK(cid:2) ð3Þ constantswilloftenappeartofitbetter:severalphysical 1;x x x a contributionsprobablycanceloutinthosecases. linear correlations, where we fitted the a and b pa- Thepresentpaperisorganisedasfollows.First,def- x x rameters for a series of actinides (or analogues) of the initions are given, together with features and explana- same oxidation number X: AnðXÞ¼MzM ¼An3þ; tions of methodologies from the NEA-TDB reviews. An4þ; AnOþ or AnO2þ. 10a ¼K(cid:2)ðK(cid:2)Þb ¼ Results are first reported for correlations between jMLzMþzLjjHþ2jb=ðjMzMj2jLzLj1(cid:3)bjHL1þzLjbÞ is 1obtaained U(VI)(oranalogousAn(VI))1:1(1cationwith1ligand) from Eqs. (1)e(3): it is actually an equilibrium complexes and protonation of the corresponding li- constant. When b¼1, it simplifies into the 10að1Þ ¼ gands,twotypesofreactionsforwhichmanypublished K(cid:2)K(cid:2) ¼jMLzMþzLjjHþj=ðjMzMjjHL1þzLjÞ,the data are available. In a nextstep, such correlations are 1 a extendedtoAn(III)andAn(V).Therearevirtuallynore- MzMþHL1þzL#MLzMþzLþHþ ð4Þ liable published 1:1 complexing constants of An(IV), sinceAn4þhydrolysisusuallyovercomescomplexation. exchange equilibrium constant: jLzLj cancels out in ConsequentlyweshallestimateAn(IV)1:1complexing K(cid:2) K(cid:2) (¼10að1Þ),whichisnowthesameforallthereac- 1 a constants.WeshallalsoconsiderthepositionofPa(V)in tions; it also only depends on a, not on each K(cid:2) (or a ourcorrelations,sinceitschemicalbehaviourisanex- equivalently K(cid:2)). In that case, the half-point reaction 1 ception as compared to that of the other An(V): this definition is ½jHþj=jMzMj(cid:5) ¼K(cid:2)K(cid:2): a solution of 1=2 1 a 982 P.Vitorgeetal./C.R.Chimie10(2007)978e993 activityjHþjhasthesamereactivity(fortheLzL ligand) In most cases, the summation could here be restricted as a solution of activity jMzMj10að1Þ. Conversely, when to the ClO(cid:3) and Naþ (dominating) counter-ions (¼ j). 4 the (b) slope is not 1, this simple equivalent solution m isj(molal)concentration(molperkgofpurewater). j definition is no longer relevant: the general half-point Molar (M¼molL(cid:3)1) to molal conversion coefficients reaction definition is 10a ¼K(cid:2)ðK(cid:2)Þb ¼½ðjHþjjLzLjÞb= are tabulated in Handbooks (including the cited NEA- 1 a ðjMzMjjLzLjÞ(cid:5) , whose interpretation is less intuitive. TDBbooks): 1=2 Furthermore the constant of the exchange equilibrium p (Eq. (4)) is now specific for each reaction: K(cid:2)K(cid:2) ¼ A ffiIffiffiffiffi 10aðKa(cid:2)Þ1(cid:3)b ¼10a=bðK1(cid:2)Þ1(cid:3)1=b depends on each K1a(cid:2)a(or D¼1þBrpmffiIffimffiffiffi ð11Þ equivalentlyK(cid:2)),notonlyonaandb. 1 Since b did not seem to strongly depend on X, we is a DebyeeHu¨ckel term, where I is molal I, x m finallyusedthesameb (¼b)valueforalltheoxidation A¼0:509½2983 =T3 (cid:5)1:5½d =d (cid:5)0:5 kg1=2 mol(cid:3)1=2, x 298 r;T 298 T states; in that case, for comparing An(X) complexes and B¼3.28(cid:7)109 ½2983 d =ðT3 d Þ(cid:5)0:5 kg1=2 298 T r;T 298 withAn(VI)ones,weused: mol(cid:3)1=2 m(cid:3)1 are calculated from physical constants, K(cid:2) (cid:2)(cid:2)MLzMþzL(cid:2)(cid:2)(cid:2)(cid:2)AnO2þ(cid:2)(cid:2) and 3r,T the relative dielectric constant of the solvent 10aX(cid:3)aVI ¼K1(cid:2)1;;VXI¼KX(cid:2)=VI ¼(cid:2)(cid:2)AnO2L2þzL(cid:2)(cid:2)(cid:2)(cid:2)M2zM(cid:2)(cid:2) ð5Þ (rwaactceoru)natnsdfodrTgtehoemdeetrnisciteyxcaltuasibosnolaubteouttemiopneir.artuirseaTs-. sumed to be constant, Br¼1.5kg1/2mol(cid:3)1/2 at 25(cid:2)C, theconstantofthe anapproximationthatenablesmanymeasuredmeanac- AnO L2þzLþMzM#MLzMþzLþAnO2þ ð6Þ tivity coefficients of strong inorganic aqueous electro- 2 2 lytes to be fitted [2]; it corresponds to r¼4.57(cid:7) exchange equilibrium. This AnO22þ=MzM exchange 10(cid:3)10m, which appears to be of the correct order of equilibrium is similar to the Hþ/MzM one (Eq. (4)), magnitude for most inorganic hydrated ions including where now the half-point reaction definition is their first hydration sphere (by definition if a counter- ½jAnO22þj=jMzMj(cid:5)1=2 ¼Kx(cid:2)=VI: a solution of activity ion stays in the first hydration sphere, it is treated as jAnO22þjhas thesamereactivity(fortheLzL ligand)as copmplex formation, not non-ideality). Furthermore, asolutionofactivityjMzMjKx(cid:2)=VI.Similarly,forcompar- B ffiIffi¼1=lD, where lD is the Debye distance, the dis- inghydrolysisequilibria,weusedthe tance between an ion and its counter-ion atmosphere: AnO OHþþMzM#MOHzM(cid:3)1þAnO2þ ð7Þ 3.05(cid:7)10(cid:3)10m (at 25(cid:2)C and I¼1M) in the SITap- 2 2 proximation. The DebyeeHu¨ckel formula is valid for hydrolysiscompetitionequilibriumofconstant largel namelyforl >>r:Br¼1.5kg1/2mol(cid:3)1/2cor- D D p ffiffiffiffiffi (cid:6)K(cid:2) (cid:2)(cid:2)MOHzM(cid:3)1(cid:2)(cid:2)(cid:2)(cid:2)AnO2þ(cid:2)(cid:2) respondstor=lD¼1:5 Im<< 1.IndeedtheDebyee (cid:6)K(cid:2)11;V;xI¼(cid:6)K(cid:2)X=VI¼ (cid:2)(cid:2)AnO2OHþ(cid:2)(cid:2)jMzM2j ð8Þ Hstru¨ecnkgetlhsfolremssutlhaa(nD10teromr1amloMne,)wishiolenltyhevaSlIiTd faotrmiounlica is usually a good approximation for aqueous solutions where with ionic strength up to 4molkg(cid:3)1 [2]. The use of (cid:6)K(cid:2) ¼(cid:2)(cid:2)MðOHÞizM(cid:3)i(cid:2)(cid:2)(cid:2)(cid:2)Hþ(cid:2)(cid:2) ð9Þ 3ij empirical coefficients certainly partly compensates i;X (cid:2)(cid:2)MðOHÞzM(cid:3)iþ1(cid:2)(cid:2) systematicerrors(ofDintheSITformula),whichmight i(cid:3)1 verywellexplainwhythenumericalvaluesfor3 arecor- ij relatedwiththesizeandthechargesoftheions(Fig.2). is a classical stepwise standard equilibrium constant. (cid:3)log(cid:6)K(cid:2) ispH Unknown 3ij numerical values can be estimated by i;x 1/2. analogy with ions of same charge and similar sizes [3,4]. In that case it was proposed to increase the 3 2.2. Activity coefficients ij uncertainties by (cid:4)0.05kgmol(cid:3)1 [4]. Moreover, we Forionicstrengthcorrections,weusedg,themolal observed a reasonable linear correlation between in- i teraction coefficients and the charge/radius ratios activitycoefficientofionicalculatedwiththe‘‘Specific (Fig. 2(a)). For this correlation we used the formal InteractionTheory’’,theSITformula[2,4].Thecorre- sponding 3 empirical (pair interaction) coefficients charge of the cation (or the complex), which is indeed ij thechargeseenbythe(ClO(cid:3))counter-anionatlargedis- aretakenfromtheNEA-TDBreviews[4]: 4 tance. Unfortunatelythis assumptiondoes notholdfor X log g ¼(cid:3)z2Dþ 3 m ð10Þ high ionic strengths, the only conditions where the 3 i i ij j ij j m term cannot be neglected. Indeed some data for j P.Vitorgeetal./C.R.Chimie10(2007)978e993 983 (a) s figure), when using the atomic charge (Section 2.3) of e -)4 ons plex ons. An(inAnO2X(cid:3)4,forthisreason,wealsoplottedothercor- 0.8 z+,ClO ard cati eir com her cati relationswithoutusingthecharges(Fig.2(b)and(c))). 0.6 ε (M H th ot M+ 2.3. Quantum calculations MO+ 0.4 M2+2 Inourhydrolysiscorrelationstudy,weusedthefor- MO2+ mal charges of An3þ (3) and An4þ (4), while we used 2 0.2 M3+ the atomic charge of An(X) in AnOX(cid:3)4 (X¼5 or 6). 2 z/r M4+ This latter was deduced from quantum (DFT) calcula- 0 tions performed at the same calculation levels (ECP 0 1 2 3 4 andbasissets)asinourrecentpreviousworks[17,20], + fromwhichweextractedNPAatomiccharges[21,22]. O 2 Np Note that in Gaussian98 and 03, these NPA charges + H (b) 0.2 + arecalculatedwiththeNBOsoftware,whichisknown Li toconsidertheUO2þ6dorbitalsasRydbergorbitals,de- 0.1 NCa+Ks++ ARg+ b+NH+4 sr0ap.5tiit0oenet.hleeTcfithrnoisanl.orFevsoeurrle2ttshgtiiismvreaestaetshsoent7hwse5efU6redcaeatlloeccmutlriaoctneidcchtcahoregneNfigPbuAy- ) -1ol 0 charge assuming the 6d to be valence orbitals for all m theoxyactinidecations. g. Fortheligands(alone)closed-shellabinitiocalcula- k -0.1 ) ( H+ tions were performed at the MP2/6-311þg(2df,2p) -X Tl+ Li+ level; open-shell calculations are not needed, as + , K+ M -0.2 Rb+ checkedattheB3LYP/6-31þg(d,p)level.Allthequan- ( Cs+ tumcalculationsweredonewiththeGaussian98and03 Tl+ suitesofprograms[23,24]. -0.3 Ag+ NH+ DrE,theabinitioenergy,wascalculatedforthepro- 4 NpO+ tonationreactioncorrespondingtothepK equilibrium 2 a -0.4 (Fig. 3). pKa represents pH1/2; similarly, when adding -0.1 0 0.1 (Na+,X-) (kg.mol-1) 2050 CO32- (c) Th U Pu Cm Cf 1) Ac Pa Np Am Bk 2000 -kg.mol 0.5 -1ol) 1950 SO32- -) (4 J.m HPO42- O k 3,Cl rE ( 1900 SO42- + M ( 0.45 1850 La Pr Pm Eu Tb Ho Tm Lu SO2- Ce Nd Sm Gd Dy Er Yb 2 3 Fig. 2. Empirical correlations for estimating SIT ion pair 1800 0 50 coefficients. G(pKa) (kJ.mol-1) r AnOX(cid:3)4 cationsarenotinthemiddleofthecorrelation Fig.3. ProtonationreactionsofRO2(cid:3)ligandsinthegasphaseandin 2 2 cloud, indicating that the relevant phenomenological aqueoussolutions.ThepKa(inpureliquidwaterat25(cid:2)C)arecon- vertedtokJmol(cid:3)1(DG¼(cid:3)RTpK)andcomparedtotheenergyof charge might be higher (than the formal one). Con- r a thecorrespondingreactionabinitiocalculated(withneithermatrix versely,thecorrespondingpointsaremovedtotheother nortemperaturecorrection),wheretheprotonationisonanO(black side of this correlation plot (not represented on the points)orS(whitepoints)atom. 984 P.Vitorgeetal./C.R.Chimie10(2007)978e993 (a) the entropic contribution to DrE, it represents PHþ , 1134 lgK°1 SO32- CO32- ltahteeHdþtoptahretiaslloppreessiunreth:ethDerhEydprlaottioanseanefrugnyctoiofnHþofisp1rK=e2-a 12 H2PO4- F- HPO42- OPHO-43- e(Fniegr.g3y),cwhahnilgeethbeeitnwteerecneptthreathreearcrteaflnetsctsatnhdehpyroddrautciotsn. 11 Since the slope is much greater than 1, the E scale 10 SO2- M4+ hadtobecontracted,whichmeansthatthefinalcorre- 4 9 lation is quite poor. Slopes1 also means it is not 8 S2O32- + equivalenttousepK orDEforourestimatesofcom- M 3 a r 7 2+ plexingconstants:pKaappearedtobebettercorrelated 6 M O 2 withmeasuredcomplexingconstants.FurthermorepKa represents a marginal value of DE, which already is 5 + r MO 2 amarginalpartoftheDFTcalculatedelectronicenergy: 4 the experimental pK values are more reliable for our 3 a purposeandmoreaccuratethantheDEonesobtained r 2 fromquantumcalculationsinthegasphase. HCO- 1 3 pKa° 0 3. Results and discussions 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 3.1. Comparing the affinities of hard (b) 8 aX anions for Hþ and AnO22þ 67 gK° - 1 WefirstexaminedU(VI)aqueouscomplexationand l 5 hydrolysisdata,sinceasufficientlylargesetofcomplex- 4 ing constants is available. Positive logK(cid:2) vs pK(cid:2) 1 a 3 correlations are observed, and even linear correlations 2 appeartofitthedatareasonablywell.Theplotappeared 1 tobelessscatteredwhenrestrictedtotheconsistentset 0 M4+ MO22+ M3+ MO2+ pKa° ofdataselectedbytheNEA-TDBreviews(Fig.4):we -1 finally used these (NEA-TDB) consistent sets of data 1 2 3 4 5 6 7 8 9 10 11 for the figures and numerical correlations given in the present paper with the following exceptions. For (c) AnO+ << AnO2+ <An3+ << An4+ 2 2 An(VI)wedidnotusetheNEA-TDBPuO CO (aq)for- 6 2 3 zAn mation constant based ononly(logK(cid:2) ¼13:8þ0:8 [26] 5 1 (cid:3)0:6 and 9.3(cid:4)0.5 [27]) two experimental determinations 4 thatarenotconsistent(withinuncertainties).Thelatter 3 Fig.4.Protonandothercationaffinitiesforligands.K(cid:2) isthestan- X 2 1 a dardformationconstantoftheMLzMþzL complex,andK(cid:2) isthepro- a 1 tonation constant of the LzL ligand written on the figure (Table 1). 0 Since all the (log K1(cid:2);X¼aXþbXpKa(cid:2)) lines are virtually parallel for all the (X) oxidation states (a). We also used the same -1 (b ¼0.62(cid:4)0.16)slopeinlogK(cid:2) ¼ðð0:62(cid:4)0:16ÞpK(cid:2)Þregres- -2 AnO2+ << An3+< AnO22+ << An4+ sioxns for the RO22(cid:3) ligands, a1n;Xd(cid:3)asXhifted the curves bya ax (b): -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 aX(cid:3)aVI¼ðlog K1(cid:2);X(cid:3)logK1(cid:2);VIÞ¼log KX(cid:2)=VI (Eq. (5)), where (d) lg*K1° KriuX(cid:2)=mVI(iEsqt.h(e6cao))nsftoarnMtfzoMr¼theAAn3nþO,2ARnO4þ2=oMrRAOn2zOMþ(cid:3)2FeoxrchAanngaettehqeuiolxibi-- 2 -1 dation state X;aXð¼log K1(cid:2);X(cid:3)0:62pKa(cid:2)Þ can be used as a definition of a quantitative scale for the (up to now qualitative) O z pKa° An4þ>AnO2þzAn3þ>AnOþseries(yaxisof(c)).Itiscompared 2 2 -1.5 (blackfilledsymbols)withthehydrolysisconstant(*K )scaleonthe 1 2 3 4 5 6 7 8 9 10 11 1 xaxis(of(c)),andz ,theAnatomiccharge(blueopensymbolscor- An respondingtothetopscale).z ,theatomicchargeofOinRO2(cid:3) is O 2 not specially correlated with its pK (d).The x-axes are the same a for(a),(b)and(d):thenamesoftheligandsareonlywrittenon(a). P.Vitorgeetal./C.R.Chimie10(2007)978e993 985 value(thatwepublishedourselves)isclosertotheU(VI) FortheM3þ/CO2(cid:3)systems,weusedourowncomplex- 3 andNp(VI)ones(Table1)[2,4],butitisratheramaxi- ing constants (Table 1) [28], AmHCOþ is an outlier, 3 mumpossiblevaluecorrespondingtothedetectionlimit in part due to the stabilisation of H CO as CO (aq): 2 3 2 ofoursolubilitymeasurements.Forthisreason,wealso the measured pK (of the HCO(cid:3)=CO ðaqÞ couple) a 3 2 donotrelyonthe9.5(cid:4)0.5similarvaluemorerecently is not the relevant parameter for our correlations. updatedbytheNEA-TDBreview[16]. For LzL ¼RO2(cid:3) we found K(cid:2) values in the order 2 1 The PO3(cid:3) tri-anion is out of the correlation, while An4þ >AnO2þzAn3þ >AnOþ, a classical order for 4 2 2 the F(cid:3) mono anion could probably be included into the reactivity of actinide cations toward hard anions. thecorrelation,butHO(cid:3)cannot(Fig.4).Whenrestrict- However, AnO2þ (cid:8)An3þ is often written (instead of 2 ingthecorrelationstoLzL ¼RO2(cid:3)potentiallybidentate AnO2þzAn3þ). Here the available data for An3þ 2 2 oxygen-donor ligands, virtually the same logK(cid:2) value appeartobewithinthecorrelationlinesofAnO2þ.The 1 2 is observed for a given ligand with AnO2þ for atomicchargeofUinUO2þis2.8electron,whichcom- 2 2 An¼U,Np,PuorAm:thevariationsalongthisseries pares with the charge of Am3þ. Nevertheless, using areonlyslightlyhigherthanexperimentaluncertainties. atomic charges in the correlations gave poorer results log K(cid:2) ¼ðð2:0(cid:4)0:3Þþð0:66 (cid:4)0:08 Þ pK(cid:2)Þ is (seebelowandFig.4(c)).WeobtainedlogK(cid:2) z2:2þ 1;VI 5 5 a 1;III obtained for these ðAnO22þÞ cations. Adding not criti- 0:55 pKa(cid:2) for An3þ and logK1(cid:2);vz(cid:3)0:7þ0:54 pKa(cid:2) cally reviewed ðlogK(cid:2) Þ values gives similar regres- forAnO2þ. 1;VI 2 sion coefficients with increased uncertainties, namely Therearetoofewdataforastatisticalevaluationof (2.6(cid:4)0.8)insteadof(2.0(cid:4)0.3),and(0.58(cid:4)0.08)in- alltheuncertainties.Nevertheless,itseemsthatb ,the x steadof(0.66 (cid:4)0.08 ). slopes (of every logK(cid:2) vs pK(cid:2) correlations) are the 5 5 1 a same within uncertainties. Indeed a reasonable fit is 3.2. AnO RO /MROzM(cid:3)2 exchanges for obtained when fixing b ¼b (¼0.66 ), namely 2 2 2 x VI 5 MzM¼An3þ, An4þ or AnOþ2 logK1(cid:2);X ¼ðaXþ0:665 pKa(cid:2)Þ for all the oxidation states. We finally fitted the slope (and a ) on all the x SimilarlogK(cid:2) vs pK(cid:2) correlationsandobservations data, and obtained logK(cid:2) ¼ða þð0:61 (cid:4)0:05 Þ 1 a 1;X X 6 5 (asforAnO2þ,Section3.1)aremadefortheAn3þand pK(cid:2)Þ with a ¼2.25 (cid:4)0.07 , a ¼5.44 (cid:4)0.24 , 2 a III 3 5 IV 4 9 AnOþ, cations, while there are too few data for M4þ. a ¼(cid:3)1.23 (cid:4)0.48 and a ¼2.40 (cid:4)0.45 fitted 2 V 6 9 VI 8 3 Table1 FormationconstantsusedtodrawFig.4:pK(cid:2) ofRO2(cid:3) ligandsandcorrespondingK(cid:2) formationconstantscwithcationsoff-blockelements a 2 1;X [2e4,16] RO2(cid:3) pKb logK(cid:2) c logK(cid:2) c logK(cid:2) c logK(cid:2) c 2 a 1;III 1;IV 1;V 1;VI S O2(cid:3) 1.59 6.6(cid:4)0.8a 2.8(U) 2 3 6.58(U) 3.15(U) SO2(cid:3) 1.98 3.85(Am) 6.85(Np) 0.44(Np) 3.28(Np) 4 3.91(Pu) 6.89(Pu) 3.38(Pu) HPO2(cid:3) 7.21 9. (cid:4)2.a 2.95(Np) 7.24(U) 4 2 5 3 6.2(Np) SO2(cid:3) 7.22 9. (cid:4)2.a 6.6(U) 3 5 3 CO2(cid:3) 10.32 7.7(cid:4)0.3(Am) 11. (cid:4)3.a 4.96(Np) 9.67(U) 3 9 1 2 2 7.8(cid:4)0.2(Eu) 5.12(Pu) 9.32(Np) 5.1(Am) ad 2.2 5.8(cid:4)0.4 (cid:3)0.7 2.0(cid:4)0.3 bd 0.55 0.5 (cid:4)0.2 0.54 0.66 (cid:4)0.08 1 7 5 5 ae 2.25 (cid:4)0.07 5.44 (cid:4)0.24 (cid:3)1.23 (cid:4)0.48 2.40 (cid:4)0.45 x 3 5 4 9 6 9 8 3 logK(cid:2) (cid:3)0.1 (cid:4)0.5 3.0 (cid:4)0.5 (cid:3)3.6 (cid:4)0.5 0 X=VI 6 4 4 log (cid:6)K(cid:2) (cid:3)1.7 4.81 (cid:3)6.2 0 X=VI a Valueestimatedinthepresentwork. b pK oftheRO2(cid:3)ligand. a 2 c K(cid:2) isthestandardconstantofequilibriumMzþþRO2(cid:3)#MROðz(cid:3)2ÞþforMzþ¼Anxþ(X¼3or4)orAnOðX(cid:3)4Þþ(X¼5or6)frompublished 1;X 2 2 2 data(seetext)[2e4,7]. d aandb,thecoefficientsofthelogK(cid:2) ¼ðaþbpK(cid:2)Þlinearregressionarefittedforagivenoxidationstate,X. 1;X a e while a is the (fitted) intercept of a similar regression, but with the same (0.62(cid:4)0.16) slope for all the oxidation states: x logK1(cid:2);X(cid:3)ax¼ðð0:62(cid:4)0:16ÞpKa(cid:2)Þ: 986 P.Vitorgeetal./C.R.Chimie10(2007)978e993 values,whereuncertaintiesare1.96s(themaximumer- constant has been published for only one type of 1:1 rors on logK(cid:2) was þ0.9 for UO CO and (cid:3)0.8 for An(IV)complexes,namelyfortheMSO2þ complexes: 1;X 2 3 4 AnCOþ).Sincetherearenotenoughdataforameaning- logK(cid:2) ¼6:58 ðUSO2þÞ [2], 6.85 ðNpSO2þÞ [4], 3 1;IV 4 4 fulstatisticalanalysis,wefinallyincreasedtheuncertai- 6.89ðPuSO2þÞ[4]and7.04ðZrSO2þÞ[15].Whenusing 4 4 nties: logK(cid:2) (cid:3)a ¼ð0:62(cid:4)0:16ÞpK(cid:2) (Fig. 4(b)). this single datum and the (0.62(cid:4)0.16) slope value 1;X X a The standard deviation of the fit is 0.5 (it represents estimated above, the (logK(cid:2) ¼ðð5:6(cid:4)0:2Þþ 1;IV less than 3kJmol(cid:3)1), a value only a little higher than ð0:62(cid:4)0:16Þ pK(cid:2)Þ line is drawn, from which a that of many direct experimental determinations in logK(cid:2) ¼ð12:0(cid:4)1:9Þ, (10.1(cid:4)1.4), (6.8(cid:4)0.5) and 1;IV aqueous solutions, and of the order of magnitude of (6.6(cid:4)0.5)are calculatedforthe An(IV) complexesof thevariations of the logK(cid:2) values among the series of CO2(cid:3), SO2(cid:3);SO2(cid:3) and S O2(cid:3), respectively. Thevalue 1 3 3 4 2 3 the analogous cations considered here. However, ofa ¼5.6(cid:4)0.2waschosentofitthe6.58ðUSO2þÞ, IV 4 when a slope is fitted for each oxidation state, a small 6.85 ðNpSO2þÞ and 6.89 ðPuSO2þÞ data by giving 4 4 systematicdeviationcanbeinferred,namelytheslopes less weight to USO2þ, because the þ4 oxidation state 4 seem slightly different for each type of central cation is more difficult to stabilise for uranium, even if more (AnO2þ,An3þandAnOþ).Ontheotherhand,thisdif- experimental studies of U(IV) are available. However, 2 2 ferenceissmallascomparedtothescatterintheavail- the logK(cid:2) (¼6.6(cid:4)0.5) MS O2þ value is close to 1;IV 2 3 able data, and it is not specially correlated with the the MSO2þ fixed point (of the correlation). Therefore 4 chargeofthecation. it does not depend sensitively on the value estimated Sincethe(0.62(cid:4)0.16)slopedoesnotdependonX, for the slope (of the logK(cid:2) vs pK(cid:2) linear correla- 1;IV a ða (cid:3)a Þ¼logK(cid:2) (Eq. (5)), the shift between the tion). Consequently the uncertainties are relatively X VI X;VI linesinFig.4(a)isrelatedtothefollowingequation: small for (the logK(cid:2) estimate of) MS O2þ. Con- 1;IV 2 3 verselythe biggest uncertainty is for MCO2þ the most AnO RO þMzM#MROzM(cid:3)2þAnO2þ ð6aÞ 3 2 2 2 2 stablecomplex,sinceCO2(cid:3)appearedtobethemostre- 3 AnO2RO2=MROz2M(cid:3)2 exchange equilibrium (Eq. (5)) activeRO22(cid:3)ligandwestudied:itisoneoftheendpoints whose equilibrium constant is K(cid:2) . For such anions ofthecorrelationlines.Forthisreason,weestimatedan the order of their reactivity towXa=rVdI Hþ and actinide upperboundforthevalueoflogK1(cid:2);IVfromexperimen- tal data: we re-interpreted available published experi- ionsisfoundtobe mental solubilities of actinides(IV) by using the same CO2(cid:3)>HPO2(cid:3)zSO2(cid:3)>SO2(cid:3)(cid:8)S O2(cid:3) 3 4 3 4 2 3 methodology as in Refs. [4,5,29]. We obtained forma- tionconstantsconsistentwiththeoriginalinterpretation alsocorrespondingtotheirpK(cid:2) values,butnotspecially a (by the authors of Ref. [9]). However, for consistency toz ,theatomicchargeofO(Fig.4(d)). O we added the known stabilities of An(CO )4(cid:3)2i (i¼4 Wealsoattemptedtoforceb¼1inthefits,butwith- 3 i and 5), and we tested many possible complexes for out success: the correlations cannot simply be inter- which we also estimated maximum possible stabilities pretedwithEq.(4). (Table 2) for sensibility analysis; our purpose was es- Similarly,hydrolysisequilibriawerecomparedusing sentially to estimate avalue for AnCO2þ. As expected (cid:6)K(cid:2) (Eq.(8)),theconstantofahydrolysiscompetition 3 X=VI from pH vs log½CO2(cid:3)(cid:5) predominance diagrams equilibrium(Eq.(7))betweenactinideionsatoxidation 3 [7,26,28], the most restrictive conditions were found statesXandþ6:log(cid:6)K(cid:2) ¼(cid:3)1:7,log(cid:6)K(cid:2) ¼4:81 III=VI IV=VI for published solubilities of An(IV) measured at low and log(cid:6)K(cid:2) ¼(cid:3)6:2 for Np [4]. These results give V=VI pH and high CO partial pressure, namely in Refs. nearly the same An4þ >>AnO2þ >An3þ >>AnOþ 2 2 2 [9,30]. In both cases we obtained virtually the same qualitative scale (Fig. 4(c)), and the log(cid:6)K(cid:2) ¼ X=VI values: logK(cid:2) (cid:9)11:1 or 11:5 for the ThCO2þ ð0:36þ0:60Þlog(cid:6)K(cid:2) linearcorrelation. 1;IV 3 X=VI complex. Using this value (and the sulfate data), logK(cid:2) ¼ð5:8þ0:51pK(cid:2)Þ is calculated, from which 1;IV a 3.3. Estimating the stabilities of logK(cid:2) ¼ 11:1, 9.5, 6.8 and 6.6 are calculated for 1;IV AnðIVÞRO2þ complexes the An(IV) complexes CO2(cid:3), SO2(cid:3), SO2(cid:3) and S O2(cid:3), 2 3 3 4 2 3 respectively. These values are within the uncertainties We now want to estimate missing complexing con- ofthepreviousestimatesabove.TheAnCO2þ valueof 3 stantsforU(IV),namelywiththeSO2(cid:3) andS O2(cid:3) an- 11.1 is identical as, or slightly smaller (by 0.9(cid:4)1.9) 3 2 3 ions. For this we could not use the same type of than the central value (12.0(cid:4)1.9) of the above esti- correlations as those observed for UO2þ and the other mate, and the same trend was observed for AmCOþ: 2 3 cations (Section 3.2), because reliable formation it was overestimated by 0.8log unit when using the 10 P.Vitorgeetal./C.R.Chimie10(2007)978e993 987 Table2 for the SO2(cid:3) (quasi-) planar ligand (Fig. 5), which is 3 StabilitiesofAn(IV)carbonatocomplexes not specially confirmed (Fig. 4). For consistency with AnðCO ÞðOHÞ4(cid:3)2i(cid:3)j logK(cid:2)ðPuÞa, logK(cid:2)ðThÞa, logK(cid:2)ðThÞa,b our estimate, logK(cid:2) (cid:9)11:1, we prefer the last cor- 3 i j i;j i;j i;j 1;IV [5] [9] relation logK(cid:2) ¼ð5:8þ0:51 pK(cid:2)Þ, where we in- 1;IV a AnOH3þ 13.2 creased the uncertainties to encompass the previous AAnnCCOO233þOHþ (cid:9)<1211..11 tlioognK: 1(cid:2);IVlo¼gðKð5(cid:2):6(cid:4)¼0ð:ð25Þ:8þ(cid:4)ð00::642Þ(cid:4)þ0ð0:1:56Þp(cid:4)K0a(cid:2)Þ:2cÞorpreKla(cid:2)Þ- An(CO) <20.8 1;IV 1 7 a 32 from which we obtain log K(cid:2) (cid:9)11: (cid:4)3: for AAnn(COOH3()O4H)2 <<<<4427.9 27.0 <3308..15 AnCO23þ;¼9:5(cid:4)2:3 for AnS1O;IV23þ, 9.51(cid:4)2.32 for An(CO) OH(cid:3) <<40. <29.4 AnHPO2þ and 6.6(cid:4)0.8 for AnS O2þ, where uncer- 32 5 4 2 3 AnCO3ðOHÞ(cid:3)3 <<47.7 34.8 (cid:9)38.5 tainties are increased take into account the lack of ex- AnðCO Þ2(cid:3) <<37. <27.5 3 3 6 perimentaldata. AnðCO Þ ðOHÞ2(cid:3) <<46. 33.3 (cid:9)36.8 AAnnðCCOO33ð3OÞ23HOÞH24(cid:3)3(cid:3)2 <<<<5412.28 37.4 (cid:9)(cid:9)3394.9 AnlSo2gO23Kþ1(cid:2);iIsVq¼uit6e:6si(cid:4)mi0la:8r,totthheosevfaolruetheeAstniSmOat24eþdcofmo-r AnðCO Þ ðOHÞ3(cid:3) <<50. <39.2 plexes: 6.58 ðUSO2þÞ, 6.85 ðNpSO2þÞ and 6.89 3 2 3 5 4 4 AAnnððCCOO33ÞÞ443(cid:3)ðOHÞ42(cid:3) <4317 <3279..69 tðuPrueSsOof24þthÞ.esTehliisgaisndcso:nSsiOst2e(cid:3)ntanwditSh tOh2e(cid:3)mbooltehchualavresatrtuect-- AnðCO Þ ðOHÞ5(cid:3) <40. <37.9 4 2 3 3 3 3 5 rahedralstructure(Fig.5)eanOatom(ofSO2(cid:3))being AAnnððCCOO33ÞÞ465(cid:3)OH5(cid:3) <3395.6 34.4 3258..44 replaced by an S atom (in S2O23(cid:3)) and sim4ilar pKa AnðCO Þ ðOHÞ6(cid:3) <37 <36.4 values. SO2(cid:3) has a different structure, a higher pK , 3 4 2 3 a AnðCO3Þ3ðOHÞ64(cid:3) <38.5 <39.3 anda higher estimated value ofthe complexationcon- AnðCO Þ8(cid:3) <36 3 6 stant. Unfortunately, it does not seem easy to draw jHaOK(cid:3)i(cid:2)#;j iAsntðhCeOs3tÞaiðnOdaHrdÞ4j(cid:3)c2oi(cid:3)njs.tant of equilibrium An4þþiCO23(cid:3)þ oanfythseimfrpeleeleigxapnladniantiovancjuuusmtfr(oFmig.zO4,(dth))e.atomiccharge b MaximumpossiblevaluesfromtheexperimentaldataofRef.[9]; theseestimationsareconsistentwiththeoriginalinterpretation(bythe authorsofRef.[9]),buttheknownstabilitiesofAnðCO3Þi4(cid:3)2iarehere 3.4. Uranium geochemistry addedinthefitsfori¼4and5;ourpurposewasessentiallytoesti- mateavalueforAnCO23þ(seetext)andtooutlinesensitivityanalysis. Innon-complexingaqueoussolutions,thesolubility ofuraniumiscontrolledbyuraninite(UO (s))inreduc- sameslope(0.62)foralloxidationstates.Thiscorrela- 2 ingconditions, and by schoepite (UO (s)) inoxidizing tionpredictsunder- 3 and neutral conditions, as illustrated in Fig. 6(a) for stabilisationoftheAnCOX(cid:3)2complexes(X¼3or4)as 3 1mM[U].Besidesthoseminerals,aqueousU(VI)spe- compared to the AnO COX(cid:3)6 systems (X¼5 or 6): it t 2 3 cies are predominant in a large EepH domain, while might be attributed to the planar structure of CO2(cid:3), 3 aqueous U(IV) is stable only in reducing conditions, which offers a better fit to the geometry of the coordi- andismostlyhydrolysed. nating equatorial plane of the AnOX(cid:3)4 actinyl cations. 2 Onaddingcarbonateionsatatypical concentration Unfortunately, such an explanation would also hold ofundergroundwaters,aqueousU(VI)carbonatecom- plexesprevailbetweenpH4and12(Fig.6(b)),UO (s) 3 is totally dissolved, and the UO (s) stability domain is 2 reduced.Wehaveignoredthereductionofthecarbon- 1.54 1.31 CO2- SO2- ateions,sincethisreactionisusuallyveryslow.Never- 3 3 106 theless,nocarbonatecomplexofU(IV)appearsonthe Pourbaix diagrams. These complexes would predomi- zO= -1.06 zO= -1.24 nateonlyathighercarbonateconcentrationsthanthose 74 studiedhere.RaiandRyanhavealreadyproposedthat 9 1. 1.50 1.492.0 1.54 carbonatecomplexationofactinide(IV)ionsinenviron- 109 SO42- S2O32- 114 HPO42- meAntmalocnogndthiteiomnasicnasnublfeurnesgpleecciteesd, S[8O]2.(cid:3) prevails over zO= -1.20 z 1=0 -81.16 zO= -1.36 a large (EepH) domain in oxidizing to4slightly reduc- O ingequilibriumconditions.ForhighpHvalues,thisdo- Fig.5. GeometryofRO2(cid:3)ligandsoptimizedinthegasphase.ReO bond distances (A˚), ang2les ((cid:2)) and zO, the atomic charge of O are mainevenextendstoreducingconditions(Fig.1).H2S, writtenonthefigure. HS(cid:3) and S2(cid:3) prevail in reducing conditions, but their
Description: