ebook img

Full paper / Me´moire Estimating the stabilities of actinide PDF

16 Pages·2015·0.71 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Full paper / Me´moire Estimating the stabilities of actinide

C.R.Chimie10(2007)978e993 http://france.elsevier.com/direct/CRAS2C/ Full paper / Me´moire Estimating the stabilities of actinide aqueous species. Influence of sulfoxy-anions on uranium(IV) geochemistry and * discussion of Pa(V) first hydrolysis Pierre Vitorge a,b,*, Vannapha Phrommavanhc, Bertrand Siboulet d, Dominique Youa, Thomas Vercoutera, Michael Descostes b,c, Colin J. Marsden e, Catherine Beaucaire c, Jean-Paul Gaudet f aLaboratoiredespe´ciationdesradionucle´idesetdesmole´cules(LSRM),CEASaclay, DEN/DANS/DPC/SECR,91191Gif-sur-Yvettecedex,France bUMR8587,CEASaclay,DEN/DANS/DPC/SECR,91191Gif-sur-Yvettecedex,France cLaboratoiredemesuresetmode´lisationdelamigrationdesradionucle´ides(L3MR),CEASaclay, DEN/DANS/DPC/SECR,91191Gif-sur-Yvettecedex,France dCEAMarcoule,DEN/DRCP/SCPS,30207Bagnols-sur-Ce`zecedex,France eLaboratoiredephysiquequantique,CNRSeUMR5626,Universite´ Paul-Sabatier, 118,routedeNarbonne,31062Toulousecedex4,France fLaboratoired’e´tudedestransfertsenhydrologieetenvironnement(LTHE),UMR5564,CNRS/INPG/IRD/UJF, BP53,38041Grenoblecedex9,France Received18September2006;acceptedafterrevision5April2007 Availableonline29June2007 Abstract Qualitativechemicalinformationisusedasaguidelineforcorrelationsbetweenequilibriumconstantsorbetweenequilibrium constants and atomic charges (deduced from quantum mechanics calculations). Pa(V) and Nb(V) hydrolysis constants are also recalculated from experimental data. logK(cid:2)ðAnIV=RO2(cid:3)Þ¼6:5 (cid:4)0:5 ðS O2(cid:3)Þ;10:0 (cid:4)0:8 ðSO2(cid:3)Þ;11:9 (cid:4)1:0 1 2 9 5 2 3 6 8 3 7 7 ðCO2(cid:3)Þ; and 10:0 (cid:4)0:8 ðHPO2(cid:3)Þ are estimated based on the trend of affinity for An cations in the series 3 5 8 4 CO2(cid:3)>HPO2(cid:3)zSO2(cid:3)>SO2(cid:3)zS O2(cid:3): These ideas and values are used to discuss U(IV) chemistry in S-containing 3 4 3 4 2 3 ground-waters. To cite this article: P. Vitorge et al., C. R. Chimie 10 (2007). (cid:2) 2007 Acade´mie des sciences. Published by Elsevier Masson SAS. All rights reserved. Re´sume´ Desconnaissancesqualitativesonte´te´concre´tise´essouslaformedecorre´lationsempiriquesentreconstantesd’e´quilibres,voireavec leschargesatomiques(issuesdecalculsquantiques)danslase´rieCO2(cid:3)>HPO2(cid:3)zSO2(cid:3)>SO2(cid:3)zS O2(cid:3),pour,parexemple,es- 3 4 3 4 2 3 timer logK(cid:2)ðAnIV=RO2(cid:3)Þ¼6:5 (cid:4)0:5 ðS O2(cid:3)Þ;10:0 (cid:4)0:8 ðSO2(cid:3)Þ;11:9 (cid:4)1:0 ðCO2(cid:3)Þ; et 10:0 (cid:4)0:8 ðHPO2(cid:3)Þ. 1 2 9 5 2 3 6 8 3 7 7 3 5 8 4 * PartiallypresentedattheMigration05conference[1],andpartofthePh.D.thesisofV.Phrommavanh. * Correspondingauthor. E-mailaddress:[email protected](P.Vitorge). 1631-0748/$-seefrontmatter(cid:2)2007Acade´miedessciences.PublishedbyElsevierMassonSAS.Allrightsreserved. doi:10.1016/j.crci.2007.04.015 P.Vitorgeetal./C.R.Chimie10(2007)978e993 979 Cesvaleurssontutilise´espourpre´voirl’influencee´ventuelled’anionssoufre´ssurlachimiedeU(IV)dansdeseauxsouterraines.Pour citercetarticle:P.Vitorgeetal.,C.R.Chimie10(2007). (cid:2)2007Acade´miedessciences.PublishedbyElsevierMassonSAS.Allrightsreserved. Keywords:Actinides;Hydrolysis;Sulphate;Sulfite;Thiosulphate;Carbonate;Groundwaters Mots-cle´s :Actinides;Hydrolyse;Sulfate;Sulfite;Thiosulfate;Carbonate;Eauxsouterraines 1. Introduction Selected NEA-TDB equilibrium constants and redox potentials[2]areadequateforreliablemodellingofura- The geochemical behaviour of actinides have been nium chemistry in most equilibrated groundwaters. extensivelystudiedforunderstandinguraniumandtho- Uranium is predicted to be stable in anoxic waters in rium ore deposits, and more recently for assessing the theformoftheU(OH) (aq)aqueousspeciesinequilib- 4 environmentalimpactofthepossibledisposalofwastes rium with uraninite, UO (s), a compound of low solu- 2 that contain Pa, Np, Pu, Am or Cm. Starting with ura- bility [2,5,6]. Similar behaviour is expected for Np nium [1], the Thermochemical Data Base project of andPu,eventhoughPu3þmightalsobestable[4e7]. the Nuclear Energy Agency (NEA-TDB) organised Innaturalunder-ground-watersCO2(cid:3),thecarbonate 3 the reviewing of published experimental data relevant anionisoftenthedominatingligandamongtheinorganic for modelling aqueous chemistries and solubilities of ligands(foractinidecations).However,carbonatecom- the most important radionuclides. The results of the plexesarepredictedtobeoflittleimportantforAn(IV) NEA-TDBprojectarenowwellacceptedasareference [2,4,7].Nevertheless,manyAnðCO ÞðOHÞ4(cid:3)2i(cid:3)j com- 3 i j critical review, essentially for aqueous chemistry and plexeshavebeenproposed,butnoreliablevaluescould solubility at room temperature, but these reviews pro- be validated for most of the corresponding formation poseddataonly whenconvincingexperimentalvalida- constants [2,4], for which maximum possible values tionswerepublished.Thereisthereforeagapbetween have been estimated from experimental observations, thisrestrictedsetofquantitativevalidatedthermochem- thatalsoconfirmedthesimilarbehaviourofTh,U(IV), icaldataandqualitativechemicalknowledge. Np(IV)andPu(IV)incarbonate/bicarbonateaqueousso- However, besides selected numerical values, the lutions[4,5,8]. Valueshaverecentlybeenproposedfor NEA-TDBreviewsalsoprovidequalitativeinformation theformationconstantsofseveralThðCO ÞðOHÞ4(cid:3)2i(cid:3)j 3 i j [2,3], which we used together with analogies for esti- complexes in an attempt to interpret a solubility study matingthehydrolysisconstantsandstandardpotentials ofThO (s)[8,9],buttheThðCO Þ4(cid:3)specieswerenotin- 2 3 4 [4]neededfordrawingPourbaix’diagramsofactinides cludedintheinterpretation,eventhoughweshallseeit [5]. The present paper aims at testing such rough esti- should not be completely negligible according to the matesforcomplexation. NEA-TDB data [4]. For probing such competition be- Rules of thumb are currently used by chemists for tweentheHO(cid:3)andCO2(cid:3)ligands,therelativestabilities 3 checkingthepossibleformationofhypotheticalchem- of the corresponding 1:1 complexes of An4þ will be icalspeciesinspecificchemicalconditions,whenthese compared. In this framework, the stability of AnCO2þ 3 chemicalspeciesarenotindatabases.Thismighttypi- willbe estimated: its existence has neverbeen demon- callybethecasefortheenvironmentalaqueouschem- strated,sinceitisalwayshiddenbyhydrolysedspecies. istry of An(IV), the actinide elements at the þ4 Thisover-stabilisationofhydrolysisisspecifictotheþ4 oxidationstate(An¼Th,U,NpandPu)inthepresence oxidation state: the 1:1 carbonate complexes are well of S-containing inorganic ligands; for this reason it is known, and their stabilities were well established for alsoanaimofthepresentpapertoestimatethestabili- An(III), An(V) and An(VI) (it is not known for Pa(V), tiesofAn(IV)complexeswithsulfoxy-anions. whichisknowntohaveaverydifferentaqueouschemi- For storing radioactive wastes, several projects are calbehaviourfromtheotherAn(V)). looking for geological sites that arewell isolated from Severalotherinorganichardanionsarequitereactive surfacewaters.Theseoftencorrespondtoanoxiccondi- toward actinide cations, specially those of high charge tions,whereU,NpandPuareexpectedtobestablein ðPO3(cid:3)Þ, of small size (F(cid:3)), or polydentade ðHPO2(cid:3)Þ: 4 4 theþ4oxidationstate[2,4].Interestingly,chemicalan- dependingontheircontentingroundwaterstheymight alogues are Ce(IV) and Th, and probably Zr and Hf. form complexes with actinide cations. For example, it 980 P.Vitorgeetal./C.R.Chimie10(2007)978e993 wasrecentlyproposedthatthepore-watersofCallovoe (a) 1.2 Oxfordian clay minerals, where an underground re- search laboratory is being built to study the feasibility of a deep geological repository for radioactive wastes in France [10], contain quite large amounts of SO24(cid:3). 0.9 -HOS4 The pore-water composition is approximately at the O(g) SO24(cid:3)=HS(cid:3)=H2S frontier point (Fig. 1). Although the H2O 2 most stable aqueous sulfur species - those bolded on Pourbaix’ diagrams - are sulfide (HS(cid:3)) and sulfate 0.6 ðSO2(cid:3)Þ, some other sulfoxy-anions are often detected 4 S SO2- in natural environments, typically as thiosulfate O2 4 ðS2O23(cid:3)Þ and sulfite ðSO23(cid:3)Þ ions. For example, about S2O62- 25% of the total S content has been reported to be 0.3 S2O23(cid:3) in a reducing groundwater [11], and even in SHE) SS4O62- HS S2O82- amlsooresuospxeidcitzeidntgofcoornmdiitniotnhsec[o1u2r]s.eSofultfhoexoyx-aidnaiotinvsedairse- E(V/ O3- solutionofpyrite(FeS2)[13],amineraloftenassociated 0 S SO32- with the redox regulation of ground-waters. For this HO 2O32- 2 reason, we focus on sulfoxy-anion ligands, specially onS O2(cid:3). H2(g) H2S 2 3 -0.3 Grenthe et al. have selected complexing constants for U(VI) complexes with these anions [2], but they wrote in their review that confirmation is needed: ‘‘Theonlyquantitativeinformationaboutaqueousura- HS- -0.6 nium thiosulfate complexes is the study by Melton and Amis[.]Thisreviewtentativelyaccepts[their]value, 25 °C I = 0 S2- (althoughconfirmationoftheresultsfromanotherstudy 4 mM S would be useful)’’. Furthermore: ‘‘The solid formed -0.9 seemstobeamixtureindicatingdecompositionofthio- 0 5 10 sulfate into sulfite and elemental sulfur. This review pH findsnoreliableevidencefortheformationofsolidura- (b) 0 nium thiosulfate compounds.’’ This decomposition SO2- H 4 mightverywellbetheresultofredoxreactions(dispro- H SO4- portionation), since both uranium and sulfur have 2S O awiderangeofpossibleoxidationstates,andtheirsta- 4 -5 bility domains are not well established in mixtures of 0 5 10 uranium and sulfur. This might in fact be a problem pH forotheruraniumcompoundsandcomplexeswithsul- fur-containing ligands. Unfortunately the NEA-TDB (c) 0 H2SO3 HSO3- SO32- reviews could notvalidatesuch data for the Th and Zr S S2O32- asoennlaeelcomtgeiudgehsdta[tv1ae4rf,yo1r5w]a.eltSlhiienoxcspeuelcftahtteethNicooEsmuAlpf-laTetDxeBcoofmrUepv(liVeewxI)es[h2ao]sf, HH2SS22OO3-3 -5 4O62-S2O62- HS- S2- U(IV)inmorereducingconditionseunlessthiosulfate 0 5 10 is strongly reduced, when U(IV) is formed e because pH the U4þ hard cation is usually more reactive (than Fig.1. Pourbaixdiagramofsulfur.(a)Thenamesofthemajorspe- UO2þ) toward oxygen-donor ligands. Based on the cies(HS(cid:3),HS,SO2(cid:3); HSO(cid:3)andsolidS)areinbold,andtheirpre- 2 2 4 4 same hardness rule, thiosulfate should bind to hard dominance domains are drawn with thick lines. The domains (thin cationsviatheOratherthantheSatomofthesulfoxy- dashedlines)oftheother(minorsulfur)speciesareobtainedbysup- anionligands.ThesameproblemholdsfortheU=SO2(cid:3) pressing SO24(cid:3); HSO(cid:3)4 and H2SO4. (b and c) The speciation system:theNEA-TDBreviewhasselecteddataforsulfi3te ðnamely log½HiSjOzk(cid:5)=½S(cid:5)totalÞofeachspeciesðHiSjOzkÞisrepresented for two kinetic assumptions (see text) in redox conditions corre- complexes of U(VI); but not for U(IV): ‘‘Formation of spondingtolineBofFig.6. P.Vitorgeetal./C.R.Chimie10(2007)978e993 981 aqueous uranium(IV) sulfite complexes was reported in comparisonwillbebasedonlyonhydrolysisdata,since a qualitative study by Rosenheim and Kelmy. However, thereareveryfewotherpublishedequilibriumconstants no experimental chemical thermodynamic data on these forPa(V)aqueouscomplexes.Priortothiscomparison, speciesareavailable.’’Asaprobeforligandcompetition weshallexaminetheimpactofourestimatedcomplex- (betweenS O2(cid:3) or SO2(cid:3) andtypicallyOH(cid:3)orCO2(cid:3)), ingconstantsonthegeochemicalbehaviourofU(IV). 2 3 3 3 we shall estimate the formation constants of the corre- sponding 1:1 An(IV) complexes, namely AnS2O23þ 2. Methods and AnSO2þ. 3 Various methods are commonly used for estimating 2.1. Equilibrium constants equilibrium constants, typically as empirical correla- tions with physical (or phenomenological) parameters For consistency, we used reaction data e i.e. DG(cid:2) r (atomic radii and charges, solvent interactions.). (equivalentlystandardequilibriumconstantsandpoten- They can also be obtained from molecular modelling tialsofredoxcouples)etheywerepreferredtoforma- methods. Indeed we recently estimated an uncertainty tiondata(DG(cid:2))[2]. f of10kJmol(cid:3)1onDrGforPa(V)hydrolysis[16],which (cid:2)(cid:2)MLzMþzL(cid:2)(cid:2) isabout20timeshigherthantheuncertaintyoftheexpe- K(cid:2) ¼ ð1Þ rimental determinations of equilibrium constants and 1 jMzMjjLzLj standardredoxpotentialsinaqueoussolutions.Further- wherejAjistheactivityofspeciesA. more,suchmethodsneedcaution,whenusingcalculated (cid:2) (cid:2)(cid:2) (cid:2) energies[17]. Afterothers[18,19](witha commentin (cid:2)Hþ(cid:2)(cid:2)LzL(cid:2) Ref. [7]) we also tested empirical correlations, which Ka(cid:2) ¼ (cid:2)(cid:2)HL1þzL(cid:2)(cid:2) ð2Þ appear to work surprisingly well for some of them: theyactuallyhelpinputtingnumbersforquiteencyclo- pK(cid:2) ¼(cid:3)logK(cid:2) is pH , the pH at the half-point reac- a a 1/2 pedic qualitative knowledge. It is also a way to check tion (where jLzLj¼jHL1þzLj). pK(cid:2) appears to be the a such knowledge and corresponding chemical intuition. ionicproductofwater,whenLzL ¼OH(cid:3) andwhenus- Weusesuchcorrelationshere,hopingthisspecialissue ing jH Oj¼1; but when comparing the complexing 2 willhelpsuchrulesofthumbusedbyactinidechemistry strengths of various ligands we used the concentration specialists to become less mysterious. The rough esti- ofliquidwater:jH Oj¼C (55.34molkg(cid:3)1).Super- 2 H2O matesareonlyguidelines,whichneedexperimentalcon- script (cid:2) stands for infinite dilution (ionic strength, firmation. They often originate in geometrical and I¼0),thestandardconditions(seeSection2.2). electrostaticsreasoning.Indeed,thechemicalstabilities logK(cid:2) valueswere plottedasafunctionofpK(cid:2),for 1 a ofhardcationsareoftencorrelatedwiththecharge2/ra- example when K(cid:2) is the formation constant of 1 dius ratios of the reactants. Nevertheless, we shall see AmCO2þ, 1=K(cid:2) is the protonation constant of CO2(cid:3). 3 a 3 thatthebestcorrelationsarenotspeciallywiththeatomic Weobserved charges; correlations between measured equilibrium logK(cid:2) ¼a þb pK(cid:2) ð3Þ constantswilloftenappeartofitbetter:severalphysical 1;x x x a contributionsprobablycanceloutinthosecases. linear correlations, where we fitted the a and b pa- Thepresentpaperisorganisedasfollows.First,def- x x rameters for a series of actinides (or analogues) of the initions are given, together with features and explana- same oxidation number X: AnðXÞ¼MzM ¼An3þ; tions of methodologies from the NEA-TDB reviews. An4þ; AnOþ or AnO2þ. 10a ¼K(cid:2)ðK(cid:2)Þb ¼ Results are first reported for correlations between jMLzMþzLjjHþ2jb=ðjMzMj2jLzLj1(cid:3)bjHL1þzLjbÞ is 1obtaained U(VI)(oranalogousAn(VI))1:1(1cationwith1ligand) from Eqs. (1)e(3): it is actually an equilibrium complexes and protonation of the corresponding li- constant. When b¼1, it simplifies into the 10að1Þ ¼ gands,twotypesofreactionsforwhichmanypublished K(cid:2)K(cid:2) ¼jMLzMþzLjjHþj=ðjMzMjjHL1þzLjÞ,the data are available. In a nextstep, such correlations are 1 a extendedtoAn(III)andAn(V).Therearevirtuallynore- MzMþHL1þzL#MLzMþzLþHþ ð4Þ liable published 1:1 complexing constants of An(IV), sinceAn4þhydrolysisusuallyovercomescomplexation. exchange equilibrium constant: jLzLj cancels out in ConsequentlyweshallestimateAn(IV)1:1complexing K(cid:2) K(cid:2) (¼10að1Þ),whichisnowthesameforallthereac- 1 a constants.WeshallalsoconsiderthepositionofPa(V)in tions; it also only depends on a, not on each K(cid:2) (or a ourcorrelations,sinceitschemicalbehaviourisanex- equivalently K(cid:2)). In that case, the half-point reaction 1 ception as compared to that of the other An(V): this definition is ½jHþj=jMzMj(cid:5) ¼K(cid:2)K(cid:2): a solution of 1=2 1 a 982 P.Vitorgeetal./C.R.Chimie10(2007)978e993 activityjHþjhasthesamereactivity(fortheLzL ligand) In most cases, the summation could here be restricted as a solution of activity jMzMj10að1Þ. Conversely, when to the ClO(cid:3) and Naþ (dominating) counter-ions (¼ j). 4 the (b) slope is not 1, this simple equivalent solution m isj(molal)concentration(molperkgofpurewater). j definition is no longer relevant: the general half-point Molar (M¼molL(cid:3)1) to molal conversion coefficients reaction definition is 10a ¼K(cid:2)ðK(cid:2)Þb ¼½ðjHþjjLzLjÞb= are tabulated in Handbooks (including the cited NEA- 1 a ðjMzMjjLzLjÞ(cid:5) , whose interpretation is less intuitive. TDBbooks): 1=2 Furthermore the constant of the exchange equilibrium p (Eq. (4)) is now specific for each reaction: K(cid:2)K(cid:2) ¼ A ffiIffiffiffiffi 10aðKa(cid:2)Þ1(cid:3)b ¼10a=bðK1(cid:2)Þ1(cid:3)1=b depends on each K1a(cid:2)a(or D¼1þBrpmffiIffimffiffiffi ð11Þ equivalentlyK(cid:2)),notonlyonaandb. 1 Since b did not seem to strongly depend on X, we is a DebyeeHu¨ckel term, where I is molal I, x m finallyusedthesameb (¼b)valueforalltheoxidation A¼0:509½2983 =T3 (cid:5)1:5½d =d (cid:5)0:5 kg1=2 mol(cid:3)1=2, x 298 r;T 298 T states; in that case, for comparing An(X) complexes and B¼3.28(cid:7)109 ½2983 d =ðT3 d Þ(cid:5)0:5 kg1=2 298 T r;T 298 withAn(VI)ones,weused: mol(cid:3)1=2 m(cid:3)1 are calculated from physical constants, K(cid:2) (cid:2)(cid:2)MLzMþzL(cid:2)(cid:2)(cid:2)(cid:2)AnO2þ(cid:2)(cid:2) and 3r,T the relative dielectric constant of the solvent 10aX(cid:3)aVI ¼K1(cid:2)1;;VXI¼KX(cid:2)=VI ¼(cid:2)(cid:2)AnO2L2þzL(cid:2)(cid:2)(cid:2)(cid:2)M2zM(cid:2)(cid:2) ð5Þ (rwaactceoru)natnsdfodrTgtehoemdeetrnisciteyxcaltuasibosnolaubteouttemiopneir.artuirseaTs-. sumed to be constant, Br¼1.5kg1/2mol(cid:3)1/2 at 25(cid:2)C, theconstantofthe anapproximationthatenablesmanymeasuredmeanac- AnO L2þzLþMzM#MLzMþzLþAnO2þ ð6Þ tivity coefficients of strong inorganic aqueous electro- 2 2 lytes to be fitted [2]; it corresponds to r¼4.57(cid:7) exchange equilibrium. This AnO22þ=MzM exchange 10(cid:3)10m, which appears to be of the correct order of equilibrium is similar to the Hþ/MzM one (Eq. (4)), magnitude for most inorganic hydrated ions including where now the half-point reaction definition is their first hydration sphere (by definition if a counter- ½jAnO22þj=jMzMj(cid:5)1=2 ¼Kx(cid:2)=VI: a solution of activity ion stays in the first hydration sphere, it is treated as jAnO22þjhas thesamereactivity(fortheLzL ligand)as copmplex formation, not non-ideality). Furthermore, asolutionofactivityjMzMjKx(cid:2)=VI.Similarly,forcompar- B ffiIffi¼1=lD, where lD is the Debye distance, the dis- inghydrolysisequilibria,weusedthe tance between an ion and its counter-ion atmosphere: AnO OHþþMzM#MOHzM(cid:3)1þAnO2þ ð7Þ 3.05(cid:7)10(cid:3)10m (at 25(cid:2)C and I¼1M) in the SITap- 2 2 proximation. The DebyeeHu¨ckel formula is valid for hydrolysiscompetitionequilibriumofconstant largel namelyforl >>r:Br¼1.5kg1/2mol(cid:3)1/2cor- D D p ffiffiffiffiffi (cid:6)K(cid:2) (cid:2)(cid:2)MOHzM(cid:3)1(cid:2)(cid:2)(cid:2)(cid:2)AnO2þ(cid:2)(cid:2) respondstor=lD¼1:5 Im<< 1.IndeedtheDebyee (cid:6)K(cid:2)11;V;xI¼(cid:6)K(cid:2)X=VI¼ (cid:2)(cid:2)AnO2OHþ(cid:2)(cid:2)jMzM2j ð8Þ Hstru¨ecnkgetlhsfolremssutlhaa(nD10teromr1amloMne,)wishiolenltyhevaSlIiTd faotrmiounlica is usually a good approximation for aqueous solutions where with ionic strength up to 4molkg(cid:3)1 [2]. The use of (cid:6)K(cid:2) ¼(cid:2)(cid:2)MðOHÞizM(cid:3)i(cid:2)(cid:2)(cid:2)(cid:2)Hþ(cid:2)(cid:2) ð9Þ 3ij empirical coefficients certainly partly compensates i;X (cid:2)(cid:2)MðOHÞzM(cid:3)iþ1(cid:2)(cid:2) systematicerrors(ofDintheSITformula),whichmight i(cid:3)1 verywellexplainwhythenumericalvaluesfor3 arecor- ij relatedwiththesizeandthechargesoftheions(Fig.2). is a classical stepwise standard equilibrium constant. (cid:3)log(cid:6)K(cid:2) ispH Unknown 3ij numerical values can be estimated by i;x 1/2. analogy with ions of same charge and similar sizes [3,4]. In that case it was proposed to increase the 3 2.2. Activity coefficients ij uncertainties by (cid:4)0.05kgmol(cid:3)1 [4]. Moreover, we Forionicstrengthcorrections,weusedg,themolal observed a reasonable linear correlation between in- i teraction coefficients and the charge/radius ratios activitycoefficientofionicalculatedwiththe‘‘Specific (Fig. 2(a)). For this correlation we used the formal InteractionTheory’’,theSITformula[2,4].Thecorre- sponding 3 empirical (pair interaction) coefficients charge of the cation (or the complex), which is indeed ij thechargeseenbythe(ClO(cid:3))counter-anionatlargedis- aretakenfromtheNEA-TDBreviews[4]: 4 tance. Unfortunatelythis assumptiondoes notholdfor X log g ¼(cid:3)z2Dþ 3 m ð10Þ high ionic strengths, the only conditions where the 3 i i ij j ij j m term cannot be neglected. Indeed some data for j P.Vitorgeetal./C.R.Chimie10(2007)978e993 983 (a) s figure), when using the atomic charge (Section 2.3) of e -)4 ons plex ons. An(inAnO2X(cid:3)4,forthisreason,wealsoplottedothercor- 0.8 z+,ClO ard cati eir com her cati relationswithoutusingthecharges(Fig.2(b)and(c))). 0.6 ε (M H th ot M+ 2.3. Quantum calculations MO+ 0.4 M2+2 Inourhydrolysiscorrelationstudy,weusedthefor- MO2+ mal charges of An3þ (3) and An4þ (4), while we used 2 0.2 M3+ the atomic charge of An(X) in AnOX(cid:3)4 (X¼5 or 6). 2 z/r M4+ This latter was deduced from quantum (DFT) calcula- 0 tions performed at the same calculation levels (ECP 0 1 2 3 4 andbasissets)asinourrecentpreviousworks[17,20], + fromwhichweextractedNPAatomiccharges[21,22]. O 2 Np Note that in Gaussian98 and 03, these NPA charges + H (b) 0.2 + arecalculatedwiththeNBOsoftware,whichisknown Li toconsidertheUO2þ6dorbitalsasRydbergorbitals,de- 0.1 NCa+Ks++ ARg+ b+NH+4 sr0ap.5tiit0oenet.hleeTcfithrnoisanl.orFevsoeurrle2ttshgtiiismvreaestaetshsoent7hwse5efU6redcaeatlloeccmutlriaoctneidcchtcahoregneNfigPbuAy- ) -1ol 0 charge assuming the 6d to be valence orbitals for all m theoxyactinidecations. g. Fortheligands(alone)closed-shellabinitiocalcula- k -0.1 ) ( H+ tions were performed at the MP2/6-311þg(2df,2p) -X Tl+ Li+ level; open-shell calculations are not needed, as + , K+ M -0.2 Rb+ checkedattheB3LYP/6-31þg(d,p)level.Allthequan- ( Cs+ tumcalculationsweredonewiththeGaussian98and03 Tl+ suitesofprograms[23,24]. -0.3 Ag+ NH+ DrE,theabinitioenergy,wascalculatedforthepro- 4 NpO+ tonationreactioncorrespondingtothepK equilibrium 2 a -0.4 (Fig. 3). pKa represents pH1/2; similarly, when adding -0.1 0 0.1 (Na+,X-) (kg.mol-1) 2050 CO32- (c) Th U Pu Cm Cf 1) Ac Pa Np Am Bk 2000 -kg.mol 0.5 -1ol) 1950 SO32- -) (4 J.m HPO42- O k 3,Cl rE ( 1900 SO42- + M ( 0.45 1850 La Pr Pm Eu Tb Ho Tm Lu SO2- Ce Nd Sm Gd Dy Er Yb 2 3 Fig. 2. Empirical correlations for estimating SIT ion pair 1800 0 50 coefficients. G(pKa) (kJ.mol-1) r AnOX(cid:3)4 cationsarenotinthemiddleofthecorrelation Fig.3. ProtonationreactionsofRO2(cid:3)ligandsinthegasphaseandin 2 2 cloud, indicating that the relevant phenomenological aqueoussolutions.ThepKa(inpureliquidwaterat25(cid:2)C)arecon- vertedtokJmol(cid:3)1(DG¼(cid:3)RTpK)andcomparedtotheenergyof charge might be higher (than the formal one). Con- r a thecorrespondingreactionabinitiocalculated(withneithermatrix versely,thecorrespondingpointsaremovedtotheother nortemperaturecorrection),wheretheprotonationisonanO(black side of this correlation plot (not represented on the points)orS(whitepoints)atom. 984 P.Vitorgeetal./C.R.Chimie10(2007)978e993 (a) the entropic contribution to DrE, it represents PHþ , 1134 lgK°1 SO32- CO32- ltahteeHdþtoptahretiaslloppreessiunreth:ethDerhEydprlaottioanseanefrugnyctoiofnHþofisp1rK=e2-a 12 H2PO4- F- HPO42- OPHO-43- e(Fniegr.g3y),cwhahnilgeethbeeitnwteerecneptthreathreearcrteaflnetsctsatnhdehpyroddrautciotsn. 11 Since the slope is much greater than 1, the E scale 10 SO2- M4+ hadtobecontracted,whichmeansthatthefinalcorre- 4 9 lation is quite poor. Slopes1 also means it is not 8 S2O32- + equivalenttousepK orDEforourestimatesofcom- M 3 a r 7 2+ plexingconstants:pKaappearedtobebettercorrelated 6 M O 2 withmeasuredcomplexingconstants.FurthermorepKa represents a marginal value of DE, which already is 5 + r MO 2 amarginalpartoftheDFTcalculatedelectronicenergy: 4 the experimental pK values are more reliable for our 3 a purposeandmoreaccuratethantheDEonesobtained r 2 fromquantumcalculationsinthegasphase. HCO- 1 3 pKa° 0 3. Results and discussions 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 3.1. Comparing the affinities of hard (b) 8 aX anions for Hþ and AnO22þ 67 gK° - 1 WefirstexaminedU(VI)aqueouscomplexationand l 5 hydrolysisdata,sinceasufficientlylargesetofcomplex- 4 ing constants is available. Positive logK(cid:2) vs pK(cid:2) 1 a 3 correlations are observed, and even linear correlations 2 appeartofitthedatareasonablywell.Theplotappeared 1 tobelessscatteredwhenrestrictedtotheconsistentset 0 M4+ MO22+ M3+ MO2+ pKa° ofdataselectedbytheNEA-TDBreviews(Fig.4):we -1 finally used these (NEA-TDB) consistent sets of data 1 2 3 4 5 6 7 8 9 10 11 for the figures and numerical correlations given in the present paper with the following exceptions. For (c) AnO+ << AnO2+ <An3+ << An4+ 2 2 An(VI)wedidnotusetheNEA-TDBPuO CO (aq)for- 6 2 3 zAn mation constant based ononly(logK(cid:2) ¼13:8þ0:8 [26] 5 1 (cid:3)0:6 and 9.3(cid:4)0.5 [27]) two experimental determinations 4 thatarenotconsistent(withinuncertainties).Thelatter 3 Fig.4.Protonandothercationaffinitiesforligands.K(cid:2) isthestan- X 2 1 a dardformationconstantoftheMLzMþzL complex,andK(cid:2) isthepro- a 1 tonation constant of the LzL ligand written on the figure (Table 1). 0 Since all the (log K1(cid:2);X¼aXþbXpKa(cid:2)) lines are virtually parallel for all the (X) oxidation states (a). We also used the same -1 (b ¼0.62(cid:4)0.16)slopeinlogK(cid:2) ¼ðð0:62(cid:4)0:16ÞpK(cid:2)Þregres- -2 AnO2+ << An3+< AnO22+ << An4+ sioxns for the RO22(cid:3) ligands, a1n;Xd(cid:3)asXhifted the curves bya ax (b): -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 aX(cid:3)aVI¼ðlog K1(cid:2);X(cid:3)logK1(cid:2);VIÞ¼log KX(cid:2)=VI (Eq. (5)), where (d) lg*K1° KriuX(cid:2)=mVI(iEsqt.h(e6cao))nsftoarnMtfzoMr¼theAAn3nþO,2ARnO4þ2=oMrRAOn2zOMþ(cid:3)2FeoxrchAanngaettehqeuiolxibi-- 2 -1 dation state X;aXð¼log K1(cid:2);X(cid:3)0:62pKa(cid:2)Þ can be used as a definition of a quantitative scale for the (up to now qualitative) O z pKa° An4þ>AnO2þzAn3þ>AnOþseries(yaxisof(c)).Itiscompared 2 2 -1.5 (blackfilledsymbols)withthehydrolysisconstant(*K )scaleonthe 1 2 3 4 5 6 7 8 9 10 11 1 xaxis(of(c)),andz ,theAnatomiccharge(blueopensymbolscor- An respondingtothetopscale).z ,theatomicchargeofOinRO2(cid:3) is O 2 not specially correlated with its pK (d).The x-axes are the same a for(a),(b)and(d):thenamesoftheligandsareonlywrittenon(a). P.Vitorgeetal./C.R.Chimie10(2007)978e993 985 value(thatwepublishedourselves)isclosertotheU(VI) FortheM3þ/CO2(cid:3)systems,weusedourowncomplex- 3 andNp(VI)ones(Table1)[2,4],butitisratheramaxi- ing constants (Table 1) [28], AmHCOþ is an outlier, 3 mumpossiblevaluecorrespondingtothedetectionlimit in part due to the stabilisation of H CO as CO (aq): 2 3 2 ofoursolubilitymeasurements.Forthisreason,wealso the measured pK (of the HCO(cid:3)=CO ðaqÞ couple) a 3 2 donotrelyonthe9.5(cid:4)0.5similarvaluemorerecently is not the relevant parameter for our correlations. updatedbytheNEA-TDBreview[16]. For LzL ¼RO2(cid:3) we found K(cid:2) values in the order 2 1 The PO3(cid:3) tri-anion is out of the correlation, while An4þ >AnO2þzAn3þ >AnOþ, a classical order for 4 2 2 the F(cid:3) mono anion could probably be included into the reactivity of actinide cations toward hard anions. thecorrelation,butHO(cid:3)cannot(Fig.4).Whenrestrict- However, AnO2þ (cid:8)An3þ is often written (instead of 2 ingthecorrelationstoLzL ¼RO2(cid:3)potentiallybidentate AnO2þzAn3þ). Here the available data for An3þ 2 2 oxygen-donor ligands, virtually the same logK(cid:2) value appeartobewithinthecorrelationlinesofAnO2þ.The 1 2 is observed for a given ligand with AnO2þ for atomicchargeofUinUO2þis2.8electron,whichcom- 2 2 An¼U,Np,PuorAm:thevariationsalongthisseries pares with the charge of Am3þ. Nevertheless, using areonlyslightlyhigherthanexperimentaluncertainties. atomic charges in the correlations gave poorer results log K(cid:2) ¼ðð2:0(cid:4)0:3Þþð0:66 (cid:4)0:08 Þ pK(cid:2)Þ is (seebelowandFig.4(c)).WeobtainedlogK(cid:2) z2:2þ 1;VI 5 5 a 1;III obtained for these ðAnO22þÞ cations. Adding not criti- 0:55 pKa(cid:2) for An3þ and logK1(cid:2);vz(cid:3)0:7þ0:54 pKa(cid:2) cally reviewed ðlogK(cid:2) Þ values gives similar regres- forAnO2þ. 1;VI 2 sion coefficients with increased uncertainties, namely Therearetoofewdataforastatisticalevaluationof (2.6(cid:4)0.8)insteadof(2.0(cid:4)0.3),and(0.58(cid:4)0.08)in- alltheuncertainties.Nevertheless,itseemsthatb ,the x steadof(0.66 (cid:4)0.08 ). slopes (of every logK(cid:2) vs pK(cid:2) correlations) are the 5 5 1 a same within uncertainties. Indeed a reasonable fit is 3.2. AnO RO /MROzM(cid:3)2 exchanges for obtained when fixing b ¼b (¼0.66 ), namely 2 2 2 x VI 5 MzM¼An3þ, An4þ or AnOþ2 logK1(cid:2);X ¼ðaXþ0:665 pKa(cid:2)Þ for all the oxidation states. We finally fitted the slope (and a ) on all the x SimilarlogK(cid:2) vs pK(cid:2) correlationsandobservations data, and obtained logK(cid:2) ¼ða þð0:61 (cid:4)0:05 Þ 1 a 1;X X 6 5 (asforAnO2þ,Section3.1)aremadefortheAn3þand pK(cid:2)Þ with a ¼2.25 (cid:4)0.07 , a ¼5.44 (cid:4)0.24 , 2 a III 3 5 IV 4 9 AnOþ, cations, while there are too few data for M4þ. a ¼(cid:3)1.23 (cid:4)0.48 and a ¼2.40 (cid:4)0.45 fitted 2 V 6 9 VI 8 3 Table1 FormationconstantsusedtodrawFig.4:pK(cid:2) ofRO2(cid:3) ligandsandcorrespondingK(cid:2) formationconstantscwithcationsoff-blockelements a 2 1;X [2e4,16] RO2(cid:3) pKb logK(cid:2) c logK(cid:2) c logK(cid:2) c logK(cid:2) c 2 a 1;III 1;IV 1;V 1;VI S O2(cid:3) 1.59 6.6(cid:4)0.8a 2.8(U) 2 3 6.58(U) 3.15(U) SO2(cid:3) 1.98 3.85(Am) 6.85(Np) 0.44(Np) 3.28(Np) 4 3.91(Pu) 6.89(Pu) 3.38(Pu) HPO2(cid:3) 7.21 9. (cid:4)2.a 2.95(Np) 7.24(U) 4 2 5 3 6.2(Np) SO2(cid:3) 7.22 9. (cid:4)2.a 6.6(U) 3 5 3 CO2(cid:3) 10.32 7.7(cid:4)0.3(Am) 11. (cid:4)3.a 4.96(Np) 9.67(U) 3 9 1 2 2 7.8(cid:4)0.2(Eu) 5.12(Pu) 9.32(Np) 5.1(Am) ad 2.2 5.8(cid:4)0.4 (cid:3)0.7 2.0(cid:4)0.3 bd 0.55 0.5 (cid:4)0.2 0.54 0.66 (cid:4)0.08 1 7 5 5 ae 2.25 (cid:4)0.07 5.44 (cid:4)0.24 (cid:3)1.23 (cid:4)0.48 2.40 (cid:4)0.45 x 3 5 4 9 6 9 8 3 logK(cid:2) (cid:3)0.1 (cid:4)0.5 3.0 (cid:4)0.5 (cid:3)3.6 (cid:4)0.5 0 X=VI 6 4 4 log (cid:6)K(cid:2) (cid:3)1.7 4.81 (cid:3)6.2 0 X=VI a Valueestimatedinthepresentwork. b pK oftheRO2(cid:3)ligand. a 2 c K(cid:2) isthestandardconstantofequilibriumMzþþRO2(cid:3)#MROðz(cid:3)2ÞþforMzþ¼Anxþ(X¼3or4)orAnOðX(cid:3)4Þþ(X¼5or6)frompublished 1;X 2 2 2 data(seetext)[2e4,7]. d aandb,thecoefficientsofthelogK(cid:2) ¼ðaþbpK(cid:2)Þlinearregressionarefittedforagivenoxidationstate,X. 1;X a e while a is the (fitted) intercept of a similar regression, but with the same (0.62(cid:4)0.16) slope for all the oxidation states: x logK1(cid:2);X(cid:3)ax¼ðð0:62(cid:4)0:16ÞpKa(cid:2)Þ: 986 P.Vitorgeetal./C.R.Chimie10(2007)978e993 values,whereuncertaintiesare1.96s(themaximumer- constant has been published for only one type of 1:1 rors on logK(cid:2) was þ0.9 for UO CO and (cid:3)0.8 for An(IV)complexes,namelyfortheMSO2þ complexes: 1;X 2 3 4 AnCOþ).Sincetherearenotenoughdataforameaning- logK(cid:2) ¼6:58 ðUSO2þÞ [2], 6.85 ðNpSO2þÞ [4], 3 1;IV 4 4 fulstatisticalanalysis,wefinallyincreasedtheuncertai- 6.89ðPuSO2þÞ[4]and7.04ðZrSO2þÞ[15].Whenusing 4 4 nties: logK(cid:2) (cid:3)a ¼ð0:62(cid:4)0:16ÞpK(cid:2) (Fig. 4(b)). this single datum and the (0.62(cid:4)0.16) slope value 1;X X a The standard deviation of the fit is 0.5 (it represents estimated above, the (logK(cid:2) ¼ðð5:6(cid:4)0:2Þþ 1;IV less than 3kJmol(cid:3)1), a value only a little higher than ð0:62(cid:4)0:16Þ pK(cid:2)Þ line is drawn, from which a that of many direct experimental determinations in logK(cid:2) ¼ð12:0(cid:4)1:9Þ, (10.1(cid:4)1.4), (6.8(cid:4)0.5) and 1;IV aqueous solutions, and of the order of magnitude of (6.6(cid:4)0.5)are calculatedforthe An(IV) complexesof thevariations of the logK(cid:2) values among the series of CO2(cid:3), SO2(cid:3);SO2(cid:3) and S O2(cid:3), respectively. Thevalue 1 3 3 4 2 3 the analogous cations considered here. However, ofa ¼5.6(cid:4)0.2waschosentofitthe6.58ðUSO2þÞ, IV 4 when a slope is fitted for each oxidation state, a small 6.85 ðNpSO2þÞ and 6.89 ðPuSO2þÞ data by giving 4 4 systematicdeviationcanbeinferred,namelytheslopes less weight to USO2þ, because the þ4 oxidation state 4 seem slightly different for each type of central cation is more difficult to stabilise for uranium, even if more (AnO2þ,An3þandAnOþ).Ontheotherhand,thisdif- experimental studies of U(IV) are available. However, 2 2 ferenceissmallascomparedtothescatterintheavail- the logK(cid:2) (¼6.6(cid:4)0.5) MS O2þ value is close to 1;IV 2 3 able data, and it is not specially correlated with the the MSO2þ fixed point (of the correlation). Therefore 4 chargeofthecation. it does not depend sensitively on the value estimated Sincethe(0.62(cid:4)0.16)slopedoesnotdependonX, for the slope (of the logK(cid:2) vs pK(cid:2) linear correla- 1;IV a ða (cid:3)a Þ¼logK(cid:2) (Eq. (5)), the shift between the tion). Consequently the uncertainties are relatively X VI X;VI linesinFig.4(a)isrelatedtothefollowingequation: small for (the logK(cid:2) estimate of) MS O2þ. Con- 1;IV 2 3 verselythe biggest uncertainty is for MCO2þ the most AnO RO þMzM#MROzM(cid:3)2þAnO2þ ð6aÞ 3 2 2 2 2 stablecomplex,sinceCO2(cid:3)appearedtobethemostre- 3 AnO2RO2=MROz2M(cid:3)2 exchange equilibrium (Eq. (5)) activeRO22(cid:3)ligandwestudied:itisoneoftheendpoints whose equilibrium constant is K(cid:2) . For such anions ofthecorrelationlines.Forthisreason,weestimatedan the order of their reactivity towXa=rVdI Hþ and actinide upperboundforthevalueoflogK1(cid:2);IVfromexperimen- tal data: we re-interpreted available published experi- ionsisfoundtobe mental solubilities of actinides(IV) by using the same CO2(cid:3)>HPO2(cid:3)zSO2(cid:3)>SO2(cid:3)(cid:8)S O2(cid:3) 3 4 3 4 2 3 methodology as in Refs. [4,5,29]. We obtained forma- tionconstantsconsistentwiththeoriginalinterpretation alsocorrespondingtotheirpK(cid:2) values,butnotspecially a (by the authors of Ref. [9]). However, for consistency toz ,theatomicchargeofO(Fig.4(d)). O we added the known stabilities of An(CO )4(cid:3)2i (i¼4 Wealsoattemptedtoforceb¼1inthefits,butwith- 3 i and 5), and we tested many possible complexes for out success: the correlations cannot simply be inter- which we also estimated maximum possible stabilities pretedwithEq.(4). (Table 2) for sensibility analysis; our purpose was es- Similarly,hydrolysisequilibriawerecomparedusing sentially to estimate avalue for AnCO2þ. As expected (cid:6)K(cid:2) (Eq.(8)),theconstantofahydrolysiscompetition 3 X=VI from pH vs log½CO2(cid:3)(cid:5) predominance diagrams equilibrium(Eq.(7))betweenactinideionsatoxidation 3 [7,26,28], the most restrictive conditions were found statesXandþ6:log(cid:6)K(cid:2) ¼(cid:3)1:7,log(cid:6)K(cid:2) ¼4:81 III=VI IV=VI for published solubilities of An(IV) measured at low and log(cid:6)K(cid:2) ¼(cid:3)6:2 for Np [4]. These results give V=VI pH and high CO partial pressure, namely in Refs. nearly the same An4þ >>AnO2þ >An3þ >>AnOþ 2 2 2 [9,30]. In both cases we obtained virtually the same qualitative scale (Fig. 4(c)), and the log(cid:6)K(cid:2) ¼ X=VI values: logK(cid:2) (cid:9)11:1 or 11:5 for the ThCO2þ ð0:36þ0:60Þlog(cid:6)K(cid:2) linearcorrelation. 1;IV 3 X=VI complex. Using this value (and the sulfate data), logK(cid:2) ¼ð5:8þ0:51pK(cid:2)Þ is calculated, from which 1;IV a 3.3. Estimating the stabilities of logK(cid:2) ¼ 11:1, 9.5, 6.8 and 6.6 are calculated for 1;IV AnðIVÞRO2þ complexes the An(IV) complexes CO2(cid:3), SO2(cid:3), SO2(cid:3) and S O2(cid:3), 2 3 3 4 2 3 respectively. These values are within the uncertainties We now want to estimate missing complexing con- ofthepreviousestimatesabove.TheAnCO2þ valueof 3 stantsforU(IV),namelywiththeSO2(cid:3) andS O2(cid:3) an- 11.1 is identical as, or slightly smaller (by 0.9(cid:4)1.9) 3 2 3 ions. For this we could not use the same type of than the central value (12.0(cid:4)1.9) of the above esti- correlations as those observed for UO2þ and the other mate, and the same trend was observed for AmCOþ: 2 3 cations (Section 3.2), because reliable formation it was overestimated by 0.8log unit when using the 10 P.Vitorgeetal./C.R.Chimie10(2007)978e993 987 Table2 for the SO2(cid:3) (quasi-) planar ligand (Fig. 5), which is 3 StabilitiesofAn(IV)carbonatocomplexes not specially confirmed (Fig. 4). For consistency with AnðCO ÞðOHÞ4(cid:3)2i(cid:3)j logK(cid:2)ðPuÞa, logK(cid:2)ðThÞa, logK(cid:2)ðThÞa,b our estimate, logK(cid:2) (cid:9)11:1, we prefer the last cor- 3 i j i;j i;j i;j 1;IV [5] [9] relation logK(cid:2) ¼ð5:8þ0:51 pK(cid:2)Þ, where we in- 1;IV a AnOH3þ 13.2 creased the uncertainties to encompass the previous AAnnCCOO233þOHþ (cid:9)<1211..11 tlioognK: 1(cid:2);IVlo¼gðKð5(cid:2):6(cid:4)¼0ð:ð25Þ:8þ(cid:4)ð00::642Þ(cid:4)þ0ð0:1:56Þp(cid:4)K0a(cid:2)Þ:2cÞorpreKla(cid:2)Þ- An(CO) <20.8 1;IV 1 7 a 32 from which we obtain log K(cid:2) (cid:9)11: (cid:4)3: for AAnn(COOH3()O4H)2 <<<<4427.9 27.0 <3308..15 AnCO23þ;¼9:5(cid:4)2:3 for AnS1O;IV23þ, 9.51(cid:4)2.32 for An(CO) OH(cid:3) <<40. <29.4 AnHPO2þ and 6.6(cid:4)0.8 for AnS O2þ, where uncer- 32 5 4 2 3 AnCO3ðOHÞ(cid:3)3 <<47.7 34.8 (cid:9)38.5 tainties are increased take into account the lack of ex- AnðCO Þ2(cid:3) <<37. <27.5 3 3 6 perimentaldata. AnðCO Þ ðOHÞ2(cid:3) <<46. 33.3 (cid:9)36.8 AAnnðCCOO33ð3OÞ23HOÞH24(cid:3)3(cid:3)2 <<<<5412.28 37.4 (cid:9)(cid:9)3394.9 AnlSo2gO23Kþ1(cid:2);iIsVq¼uit6e:6si(cid:4)mi0la:8r,totthheosevfaolruetheeAstniSmOat24eþdcofmo-r AnðCO Þ ðOHÞ3(cid:3) <<50. <39.2 plexes: 6.58 ðUSO2þÞ, 6.85 ðNpSO2þÞ and 6.89 3 2 3 5 4 4 AAnnððCCOO33ÞÞ443(cid:3)ðOHÞ42(cid:3) <4317 <3279..69 tðuPrueSsOof24þthÞ.esTehliisgaisndcso:nSsiOst2e(cid:3)ntanwditSh tOh2e(cid:3)mbooltehchualavresatrtuect-- AnðCO Þ ðOHÞ5(cid:3) <40. <37.9 4 2 3 3 3 3 5 rahedralstructure(Fig.5)eanOatom(ofSO2(cid:3))being AAnnððCCOO33ÞÞ465(cid:3)OH5(cid:3) <3395.6 34.4 3258..44 replaced by an S atom (in S2O23(cid:3)) and sim4ilar pKa AnðCO Þ ðOHÞ6(cid:3) <37 <36.4 values. SO2(cid:3) has a different structure, a higher pK , 3 4 2 3 a AnðCO3Þ3ðOHÞ64(cid:3) <38.5 <39.3 anda higher estimated value ofthe complexationcon- AnðCO Þ8(cid:3) <36 3 6 stant. Unfortunately, it does not seem easy to draw jHaOK(cid:3)i(cid:2)#;j iAsntðhCeOs3tÞaiðnOdaHrdÞ4j(cid:3)c2oi(cid:3)njs.tant of equilibrium An4þþiCO23(cid:3)þ oanfythseimfrpeleeleigxapnladniantiovancjuuusmtfr(oFmig.zO4,(dth))e.atomiccharge b MaximumpossiblevaluesfromtheexperimentaldataofRef.[9]; theseestimationsareconsistentwiththeoriginalinterpretation(bythe authorsofRef.[9]),buttheknownstabilitiesofAnðCO3Þi4(cid:3)2iarehere 3.4. Uranium geochemistry addedinthefitsfori¼4and5;ourpurposewasessentiallytoesti- mateavalueforAnCO23þ(seetext)andtooutlinesensitivityanalysis. Innon-complexingaqueoussolutions,thesolubility ofuraniumiscontrolledbyuraninite(UO (s))inreduc- sameslope(0.62)foralloxidationstates.Thiscorrela- 2 ingconditions, and by schoepite (UO (s)) inoxidizing tionpredictsunder- 3 and neutral conditions, as illustrated in Fig. 6(a) for stabilisationoftheAnCOX(cid:3)2complexes(X¼3or4)as 3 1mM[U].Besidesthoseminerals,aqueousU(VI)spe- compared to the AnO COX(cid:3)6 systems (X¼5 or 6): it t 2 3 cies are predominant in a large EepH domain, while might be attributed to the planar structure of CO2(cid:3), 3 aqueous U(IV) is stable only in reducing conditions, which offers a better fit to the geometry of the coordi- andismostlyhydrolysed. nating equatorial plane of the AnOX(cid:3)4 actinyl cations. 2 Onaddingcarbonateionsatatypical concentration Unfortunately, such an explanation would also hold ofundergroundwaters,aqueousU(VI)carbonatecom- plexesprevailbetweenpH4and12(Fig.6(b)),UO (s) 3 is totally dissolved, and the UO (s) stability domain is 2 reduced.Wehaveignoredthereductionofthecarbon- 1.54 1.31 CO2- SO2- ateions,sincethisreactionisusuallyveryslow.Never- 3 3 106 theless,nocarbonatecomplexofU(IV)appearsonthe Pourbaix diagrams. These complexes would predomi- zO= -1.06 zO= -1.24 nateonlyathighercarbonateconcentrationsthanthose 74 studiedhere.RaiandRyanhavealreadyproposedthat 9 1. 1.50 1.492.0 1.54 carbonatecomplexationofactinide(IV)ionsinenviron- 109 SO42- S2O32- 114 HPO42- meAntmalocnogndthiteiomnasicnasnublfeurnesgpleecciteesd, S[8O]2.(cid:3) prevails over zO= -1.20 z 1=0 -81.16 zO= -1.36 a large (EepH) domain in oxidizing to4slightly reduc- O ingequilibriumconditions.ForhighpHvalues,thisdo- Fig.5. GeometryofRO2(cid:3)ligandsoptimizedinthegasphase.ReO bond distances (A˚), ang2les ((cid:2)) and zO, the atomic charge of O are mainevenextendstoreducingconditions(Fig.1).H2S, writtenonthefigure. HS(cid:3) and S2(cid:3) prevail in reducing conditions, but their

Description:
Estimating the stabilities of actinide aqueous species. Influence of sulfoxy-anions on uranium(IV) geochemistry and 2007 Acade´mie des sciences.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.