ebook img

Full jet tomography of high-energy nuclear collisions PDF

1.8 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Full jet tomography of high-energy nuclear collisions

NuclearPhysicsA00(2011)1–8 Full jet tomography of high-energy nuclear collisions Ben-WeiZhang InstituteofParticlePhysics,CentralChinaNormalUniversity,Wuhan430079,China KeyLaboratoryofQuark&LeptonPhysics(CentralChinaNormalUniversity),MinistryofEducation,China 1 1 0 2 Abstract n a Parton energy loss in the hot QCD medium will manifest itself not only in leading hadron spectra but also in J reconstructedjetproductionsinhigh-energynucleus-nucleuscollisions. Inthispaperwereportonrecenttheoretical 5 effortsinstudyingfulljetobservablesinrelativisticheavy-ioncollisionsbydiscussingthemodificationsofjetshapes, ] inclusive jet cross section and the vector boson accompanied jet production in the presence of the QGP-induced jet h quenching. t - l Keywords: jetquenching,reconstructedjet,perturbativeQCD c u n [ 1. Introduction 1 v Inhigh-energynucleus-nucleuscollisionsadeconfinedmatter,thequark-gluonplasma(QGP)istobeformedand 9 when an energetic parton produced by the initial hard scattering propagates in this hot and dense QCD medium, it 5 will interact with other partons in the hot nuclear medium and be quenched substantially[1, 2, 3, 4, 5]. This parton 8 energy loss mechanism, or jet quenching, has been proposed to be an excellent probe of the QGP and predicted 0 thesuppressionofsinglehardonproductionsandthedisappearanceofaway-sidedihadroncorrelationsinheavy-ion . 1 collisions(HIC),whichlaterhavebeenconfirmedbytheexperimentalmeasurementsatRHICandgivencompelling 0 evidenceoftheexistenceofanewkindofmatterinhigh-energynuclearcollisionsatRHIC[6]. Notsurprisingly,the 1 findingofjetquenchinginheavy-ioncollisionshasbeenregardedasoneofthemostimportantdiscoveriesmadeat 1 : RHICandinitiatedmanytheoreticalexplorationsandverypreciseexperimentalmeasurements[7]. v Sofarthedominantexperimentalmeasurementsofjetquenchingisabouttheproductionofoneortwohadrons i X withalargetransversemomentum,whichareonlytheleadingfragmentsofajet. Thepartonenergylossmechanism r willnotonlymanifestitselfinleadingparticleproductions,butmoreinterestinglyinfulljetobservables. Recentlyin a heavy-ioncommunityalargeamountofefforthasbeeninvestedinmeasuringreconstructedjetsinhigh-energynuclear collisions for the first time[8, 9, 10], and theories to address the novel features of full jet tomography in relativistic heavy-ioncollisionshaveemerged. Inthisarticlewereviewourtheoreticalstudiesonjetobservablesofhigh-energy nucleus-nucleus collisions in perturbative Quantum Chromodynamics (pQCD) by focusing on the intra-jet energy flow,theinclusivejetcrosssectionandZ0/γ∗-taggedjetproduction[11,12,13]aswellaspossiblenon-perturbative effectsinjetproductions. B.W.Zhang/NuclearPhysicsA00(2011)1–8 2 √ Figure1: Comparisonofnumericalresultsfromourtheoreticalcalculationtoexperimentaldataondifferentialjetshapesat s=1960GeVby CDFII[18](leftpanel). Numericalsimulationofjetshapesinvacuum,medium-inducedjetshapes,andtotaljetshapesinmediumforPb+Pb √ with sNN =5.5TeVatLHC(rightpanel). 2. JetshapesinHIC Oneofthemostcommonobesevablesofresolvingtheinternaljetstructureisthejetshape,whichdescribesthe energydistributioninajetas[14]: (cid:80)(E )Θ(r−R ) Ψint(r;R)= (cid:80)i(ET)iΘ(R−Ri,jet). (1) i T i i,jet (cid:113) Herer,RareLorentz-invariantopeningangles,R = (y −y )2+(φ −φ )2 givesthedistancebetweenaparton i,jet i jet i jet iandthejetinthespaceofrapidityyandazimuthalφ. Inleadingorderwecanderivethedifferentialjetshapeas[11] dΨ (r;R) (cid:88) α 2(cid:90) 1−Z ψ(r;R)= int = s dzzP (z), (2) dr 2πr a→bc b zmin where (cid:26) r (cid:27) Z = max z , if r<(R −1)R, min r+R sep (cid:40) (cid:41) r Z = max z , if r>(R −1)R. min R R sep sep Here1 ≤ R ≤ 2isintroducedtotakeintoaccountfeaturesofexperimentalconealgorithms,employedtoimprove sep infraredsafety. InEq.(2)r=(1−z)ρisrelatedtotheopeningangleρbetweenthefinal-statepartons,P (z)isthe a→bc splittingkernelinDGLAPevolutionequation,zisthemomentumfractionoftheradiatedpartonrelativetotheparent parton, z = Emin/E with E representing the transverse momentum of a jet, and Emin the minimum transverse min T T T T momentumofapartoninthisjet. CarryingouttheintegrationofzwegetthejetshapesatLO.Forinstance,thejetshapeforaquarkgives: (cid:32) (cid:33) C α 2 1−z 3(cid:104) (cid:105) ψ (r)= F s 2log min − (1−Z)2−z2 , (3) q 2π r Z 2 min B.W.Zhang/NuclearPhysicsA00(2011)1–8 3 √ Figure2: Themeanrelativejetradii(cid:104)r/R(cid:105)inthevacuum,withcompleteenergyloss,andintheQGPmediumfor s=5.5TeVcentralPb+Pb collisionsattheLHC(leftpanel);Theratiosoftotaljetshapeinheavy-ioncollisionsatLHCtothejetshapeinthevacuum(rightpanel). Eq.(3)iscollineardivergentwhenr → 0. Togetridofthisdivergence,weneedtomakeSudakovresummation. Also we could improve the prediction power of our analysis by estimating the non-perturbative effect and include contributionsoftheinitial-stateradiationandcorrespondingSudakovresummation[14].Takingintoaccountallthese contributions,wedonumericalsimulationandshowthecomparisonofthetheoreticalresultsforjetshapesin p+ p¯ √ collisionswith s =1960GeVatTevatronwithCDFIIdatainFig.1. Itcouldbeseenthatthetheoreticalmodel NN describesCDFIIdataverywell,especiallyjetshapesawayfromr=0[11]. In a hot and dense QCD medium, a propagating fast parton may lose a large amount of energy by medium- inducedgluonradiation,andsomelostenergycarriedawaybyradiatedgluonmayberecapturedbythejetandthus gives additional contributions to jet shapes. In our studies, we calculate the radiated gluon angular distribution in medium within the GLV formalism [4] and compute the medium-induced jet shapes as well as the in-medium jet crosssections(seeSec.3andSec.4)usingfullnumericalevaluationofthemedium-inducedcontributiontotheparton showers. In the model energetic inclusive jet production and tagged jet production are rare processes that follow binarycollisionscaling∼ d2N /d2xwithd2xrepresentingtheareainthetransverseplane;incontrast,themedium bin isdistributedaccordingtothenumberofparticipantsdensity∼ d2N /d2xandthelongitudinalBjorkenexpansion part oftheQGPincorporated. ThetotaljetshapesinHICthenisgivenby[11]: ψtot.(cid:18)Rr(cid:19)∝(cid:90)(cid:15)=10d(cid:15) (cid:88)q,g (1−P(1q,g−((cid:15)f,qE,g))·(cid:15))3 (1−(cid:15))ψqva,gc.(cid:18)Rr;E(cid:48)(cid:19)+ fq,g·(cid:15) ψqm,ged.(cid:18)Rr;E(cid:48)(cid:19), (4) where(1− f )·(cid:15) givesthefractionoftheenergyoftheparentpartonfallingoutsideofjetareawitharadiusR. In q,g therightpanelofFig.1weillustratejetshapesinvacuumψ (r/R),medium-inducedjetshapesψ (r/R),andtotal √ vac. med. jet shapes in HIC ψ (r/R) in Pb+Pb collisions with s = 5.5 TeV. It is observed that though medium-induced tot. NN jet shapes are quite distinct from jet shapes in vacuum, the difference between jet shapes in p+p collisions and that inPb+Pbisnotverylarge. Theunderliningreasonforthissurprisingresultisthatalthoughmedium-inducedgluon radiationproducesabroaderψ (r/R), thiseffectisoffsetbythefactthatjetsloseafiniteamountoftheirenergy, med. which will shift jet shapes in vacuum to higher E with steeper profile. The left panel of Fig. 2 shows the mean T relative jet radii (cid:104)r/R(cid:105) in the vacuum and in the QGP medium created at the LHC for two different cone selections R=0.4andR=0.7.Wecanfindthatthebroadeningofradii(cid:104)r/R(cid:105)ofjetshapesinHICismodest,whichimpliesonly afractionofenergyofjetslostinthehotmediumandtheQGPisrather’gray’insteadof’black’[11]. Thedeviation of ψ (r/R) from ψ (r/R) is pronounced in the tail of jet shapes for small cone size R = 0.4, as illustrated in the tot. vac. rightpanelofFig.2. B.W.Zhang/NuclearPhysicsA00(2011)1–8 4 Figure3: TransverseenergydependentnuclearmodificationfactorRjet fordifferentconeradiiRatNLOinb = 3fmAu+Aucollisionsat √ AA √sNN = 200 GeV (left panel). The ratio of jet yields at R = 0.2 and R = 0.4 in p+p, central Cu+Cu and Central Au+Au collisions with sNN =200GeVatRHIC(rightpanel). 3. InclusivejetcrosssectionsinHIC Parton energy loss in the QGP not only changes the energy distribution in a jet, but also alters the inclusive jet spectruminhigh-energynucleus-nucleusreactions.AfirststudyofinclusivejetproductionsinHICwascarriedoutin theleadingorder(LO)[11],andrecentlytotakefulladvantageofjetphysicsinreactionswithultra-relativisticnuclei anext-to-leading(NLO)calculationsatO(α3)havebeenmade[12]. s Inhadron-hadroncollisionstheinclusivejetcrosssectionatNLOcanbegivenas [15]: (cid:90) (cid:90) dσjet 1 dσ[2→2] 1 dσ[2→3] = d{E ,y,φ} S ({E ,y,φ} )+ d{E ,y,φ} S ({E ,y,φ} ), (5) dE dy 2! T 2d{E ,y,φ} 2 T 2 3! T 3d{E ,y,φ} 3 T 3 T T 2 T 3 whereE ,y,φ arethetransverseenergy,rapidity,andazimuthalangleofthei-thparticle(i = 1,2,3),respectively, Ti i i andσ[2→2],σ[2→3]standforthepartoniccrosssections. InEq.(5)S ,S givethespaceconstraintsandcontain 2 3 the information of the jet-finding algorithm. At leading order, a jet is equivalent to a parton and we always have S = (cid:80)2 S(i) = (cid:80)2 δ(E −E )δ(y −y). AtNLOduetohigherordercorrectionsS hastwocontributions: one 2 i=1 i=1 Ti T i 3 comingfromthepossibilitythateachjetstillcontainsoneparton;anotherresultingfromthechancethatajetcontains twopartonsimposedbythejetfindingalgorithm[21]. Numericalsimulationshowsthattheinclusivejetspectrumin √ p+pcollisionswith s = 200GeVatRHICisdescribedverywellbyaNLOcodeofjetproductioninhadronic NN collisions[15],whichwilllaterbeextendedtostudyinclusivejetproductionsatNLOinHIC. In the same spirit of Eq. (4) for jet shapes in HIC, we derive the related medium-modified jet cross section as follows[12]: 1 dσAA(R) (cid:90) 1 (cid:88) 1 dσCNM,NLO(R) = d(cid:15) P ((cid:15),E) q,g . (6) (cid:104)TAA(cid:105)σgAeAo d2ETdy (cid:15)=0 q,g q,g (1−(1− fq,g)·(cid:15))2 d2ET(cid:48)dy HereT isthenuclearoverlapfunction,andσgeothegeometricalA+Acrosssection[16].Themeasuredcrosssection AA AA isthenaprobabilisticsuperpositionofthecrosssectionsofprotojetsofinitiallylargerenergyE(cid:48) = E /(1−(1−f )·(cid:15)). T T q,g Now we are ready to compute the nuclear modification factor of jet cross section Rjet defined as the ratio of jet AA crosssectioninHICtothatinp+prescaledbythenumberofbinarycollisions. Thenumericalresultsforthenuclear √ modificationfactorofinclusivejetsRjet incentralAu+Auwith s = 200GeVatRHICarepresentedintheleft AA NN panelofFig.3[12], wherethebandoftheoreticalcalculationsshowsacalculationfora∼ 20%increaseintherate ofpartonenergylossrelativetoourdefaultsimulation. AcontinuousvariationofRjet withthejetradiusRisfound, AA which demonstrates a unique feature of jet production as compared to the single curve of R for pion production AA inHIC.Inthecalculationsseveralcoldnuclearmatter(CNM)effectssuchasnuclearshadowing, Cronineffectand B.W.Zhang/NuclearPhysicsA00(2011)1–8 5 √ Figure4: ExperimentalmeasurementsoffulljetproductioninHICwith sNN =200GeVatRHIC[8,10]:thenuclearmodificationfactorofjet productioninAu+Aucollisionsatdifferentjetradii(leftpanel);ratiosofjetcrosssectionswithR=0.2tothatwithR=0.4inp+pandAu+Au collisions(rightpanel). EMCeffecthavebeentakenintoaccount[19,20]. WeobservethatforR ≤ 0.2thequenchingofjetsapproximates thealreadyobservedsuppressionintheproductionrateofinclusivehigh-p particles. Inourtheoreticalcalculation T CNMeffectscontributesignificantlytotheobservedattenuationatlarge E . WecouldsuppresstheeffectsofCNM T by taking the ratios of jet cross sections at different cone radii, which are plotted in the inserts of the left panel of Fig.3. Toseethedistinctionofjetproductionsindifferentsystemsmoreclearlyweplottheratio dσAA(R=0.2)/dσAA(R=0.4) forp+pcollisions, centralCu+CuandcentralAu+Aucollisionswith √s = 200GeVatRHICdEinTdtyherighdtEpTdaynel NN ofFig.3. Itshowsthattheratiodecreasesasthesystembecomeslarger,andtheratioinAu+AuatRHICissmaller thanthoseinp+pandCu+Cucollisionatthesamecollidingenergy,whichimpliesinHICmorecontributionsofjet yieldscomefromlargeangularradiationascomparedtop+pcollisions. RecentlyPHENIXandSTARhavemeasuredreconstructedjetsinhigh-energynucleus-nucleuscollisionsatRHIC andsomepreliminaryresults[8,10]areillustratedinFig.4. FromtheleftpanelofFig.4onecanseethatmeasured Rjet changeswiththejetradiusandatsmallerradiusthenuclearmodificationfactorofjetsissmaller,whichagrees AA withourtheoreticalprediction[11,12]shownintheleftpanelofFig.3. Moreovertheexperimentalmeasurements alsodemonstratetheratioofjetyieldsatdifferentradiiinAu+Auissmallerthantheoneinp+p(seetherightpanel ofFig.4)whichconfirmstheinterestingfeatureshowntherightpanelofFig.3withourtheoreticalstudy. Wenotice thatthoughourtheoreticalpredictionsofinclusivejetsdescribeverywelltheoveralltrendsofthejetmeasurements atRHIC,somedeviationsexistifwecomparetheresultsinFig.3withthedatainFig.4. Toconfrontthetheoretical studies with the experimental data on a more solid base, we should include the correction from non-perturbative effects of jet productions [21, 22, 23] in our theoretical investigation (please see Sec.5 for more discussions), and preciseexperimentalmeasurementsofjetsinHICwithlargestatisticswillalsobeneeded. 4. TaggedjetproductionsinHIC A natural way to extend the study of the inclusive jet production in high-energy nucleus-nucleus reactions is to consider tagged jet productions in HIC, especially the jet production accompanied with a vector boson ( γ or Z0 ) in nuclear collisions. In the leading order, the vector boson and the accompanied jet are produced back-to-back in thecenter-of-massframeandthetransversemomentumofthevectorbosonEVB isthesameasthatofthetaggedjet T Ejet beforetheytravelintheQGP.Becausethevectorbosondoesn’tinteractwiththemediumstronglyitstransverse T momentumofthevectorbosonisintact. BymeasuringEVBandEjetinthefinalstageofheavy-ioncollisionswemay T T knowexactlytheenergylossofthejetbyassessingEVB−Ejet. Thereforethevectorboson+jetproductionhasbeen T T consideredasanoptimalchanneltopinpointthepartonenergylossintheQGPandrevealthedetailedinformationof B.W.Zhang/NuclearPhysicsA00(2011)1–8 6 Figure5: ComparisonofthetheoreticalcalculationofZ0/γ∗ taggedjetproductioninLOandNLOwithMCFMtoexperimentalresultsfrom √ theFermiLabTevatronCollider[26]forthecrosssectionofjetsassociatedwithZ0/γ∗ → µ++µ− in p+p¯ collisionsat s = 1.96TeV(left panel). TheNLO pT-differentialcrosssectionpernucleonpairforjetstaggedwithZ/γ∗ → µ++µ−inp+pandcentralPb+Pbreactionswhen 92.5GeV<pjet<112.5GeV(rightpanel). T thehotanddenseQCDmediumformedinrelativisticHIC.However,higherordercorrectionswillbreakthemomenta balancebetweentaggedjetandthevectorbosonduetoadditionalradiation. Herewewillreviewourrecentstudyof Z0/γ∗+jetproductioninPb+PbreactionsatNLOandforamoredetaileddiscussionwereferto[13,24]. ForthebaselineevaluationoftaggedjetcrosssectionsatNLOinhadron-hadronreactionsweusetheMonteCarlo forFeMtobarn(MCFM)numericalcode[25]. TheconfrontationoftheoreticalcomputationoftaggedjetatMCFM NLO against the experiment measurement for p+ p¯ collisions at Tevatron in the left panel of Fig. 5 attests to the validityofpQCDcalculations. Inheavy-ioncollisionsthemedium-inducedpartonenergylosswillmodifythetagged jetspectrumandthequenchedjetcrosssectionisgivenasfollows: (cid:90) (cid:32) (cid:33) dσAA (cid:88) 1 dσq,g p = d(cid:15) P ((cid:15)) Q , (7) d2p d2p q,g [1−(1− f (ω ,R))(cid:15)]2d2p d2p [1−(1− f )(cid:15))] (Z) Q q,g q,g min (Z) (jet) q,g with p = p (1−(1− f )(cid:15)). Eq. (7) implies that the observed tagged jet cross section in A+A reactions is a Q (jet) q,g probabilistic superposition of cross sections for jets of higher initial transverse energy. This excess energy is then redistributedoutsideofthejetduetostrongfinal-stateinteractions. Heredσq,g/d2p d2p arethedifferentialcross (Z) (jet) sectionsforaway-sidequarkandgluonjets,respectively. InsomeexperimentstheZ0/γ∗+jetfinal-statechannelismeasuredwithoutplacingrestrictionsonthemomentum ofthevectorboson[26]. Inthiscase,wecanintegrateoverp inEq.(7)andderive: (Z) (cid:90) (cid:32) (cid:33) dσAA (cid:88) 1 dσq,g p = d(cid:15) P ((cid:15)) Q . (8) d2p q,g [1−(1− f (ω ,R))(cid:15)]2d2p [1−(1− f )(cid:15))] Q q,g q,g min (jet) q,g WenoticethattheintegratedtaggedjetcrosssectiondσAA/d2p usuallyunravelsthesamephysicsasthesuppression Q ofthecrosssectionininclusivejetproductiondiscussedinSec.3. TodemonstratenucleareffectsfortaggedjetcrosssectionsinHICwedefineIjet fortaggedjetas: AA (cid:44) 1 dσ dσ Ijet(R,ω )= AA pp . (9) AA min (cid:104)T (cid:105)σgeodp dp dp dp AA AA T(Z) T(Q) T(Z) T(jet) WhileatLOIjet islimitedtotheZ0/γ∗triggermomentumrange,atNLOitwillshowrichfeaturesaswewilldiscuss AA below. √ A numerical simulation of Z0/γ∗ tagged jet productions in p+p and Pb+Pb with s = 4 TeV for a cone size NN R = 0.2 is provided in the right panel of Fig. 5 . It is found because part of the jet energy is redistributed outside B.W.Zhang/NuclearPhysicsA00(2011)1–8 7 Figure6: MagnitudeofthehadronizationandunderlyingeventeffectsusedtocorrecttheinclusivejetcrosssectionmeasuredbyCDFwithjet radiusR=0.7[21](leftpanel).ModificationofpT ofjetsduetonon-perturbativeeffectsinp+pcollisionsatRHICwithPythia8.142[27](right panel).Hereforallplotsthecorrectionsaretakenfromhadrontopartonlevel. ofthejetconethe p spectrumoftaggedjetproductioninHICisdownshiftedtowardsmallertransversemomenta. T Moreinterestinglyonecanobserveasharptransitionof Ijet fromtaggedjetenhancementbelow p totaggedjet AA T(Z) suppressionabovep .Thisstrikingfeatureprovidesauniquepredictionofjetquenchingfortaggedjetsandwillbe T(Z) experimentalevidenceforstrongfinal-stateinteractionsandpartonenergylossintheQGP.Pleasenotethatwhilethe sameenergyredistributionoccursforinclusivejetproductiondiscussedinSec.3,themonotonicallyfallingspectrum preventstheobservationofsuchinclusivejetenhancement. 5. Non-perturbativeeffectsinjetproductions InperturbativeQCDcalculationsofinclusivejetyieldandtaggedjetproduction,ajetisthecombinationofafew partonsdefinedbyjetalgorithmsandwhatwecalculateistheparton-jet. However,inexperimentswhatwemeasured isthehadron-jetsincethefinal-stateparticlesarehadrons. Forjetproductionathightransversemomentuminahard processwithalargemomentumtransfer,thedifferencebetweenparton-jetsandhadron-jetsmaybesmallduetolocal parton-hadronduality(LPHD)[15,21]. Nevertheless, tomakeamorereliablecomparisonbetweenQCDtheoryof jetproductionsandthejetmeasurements,thetheoreticalresultofjetcrosssectionswithpQCDshouldbecorrected tohadronlevel,oronthecontrarytheexperimentaldatashouldbecorrectedtopartonlevel[21,27,28]. Toincludethesecorrectionstwoimportantnon-perturbativeeffectsshouldbetakenintoaccount:thehadronization effectwhichresultsintheenergylossofajetbecausewhenpartonsinaparton-jethadronize,somehadronsmayfall outsideofthejet(a”splashing-out”effect);theunderlyingeventeffectswhichgivestheenergygainofajetdueto interactionofbeam-beamremnantsnotassociatedwiththehardscattering(a”splash-in”effect). Thegoodnewsis that the hadronization effect and the underlying event effect go in opposite direction and their contributions will be partiallycancelled. TheleftpanelofFig.6givesthemagnitudeofnon-perturbativeeffectsusedtocorrectthe p spectrawithacone √ T size R = 0.7 for p+ p¯ collisions with s = 1960 GeV by CDF at Tevatron. We find that when p > 200 GeV NN T thefractionalcorrectionsduetonon-perturbativeeffectsarewithinfewpercent. However,thisobservationholdstrue √ onlyforthisspecialcaseandcorrectionsfromthenon-perturbativeeffectsmayvarywiththecollidingenergy s , NN jettransversemomenta p andthe jetradiusR [23,27]. AtRHICwith collidingenergy200GeV themeasuredjet T doesnothaveaverylarge p , andwithsmalljetradii(R = 0.2, 0.4formeasurementsinFig.4)thecontributions T fromnon-perturbativeeffectsmaybeconsiderable. IntherightpanelofFig.6weshowanumericalsimulationofthe jet p shifting[27]toinclusivejetproductionduetothehadronizationeffectandtheunderlyingeventeffectsin p+p T collisionsatRHICwithPythia8.142[29]. Itcouldbeseenthatwhen p ∼ 12GeVtherelativeshiftingδp/p due T t T tohadronizationcouldbeabout8%,anditseffectwillbesignificantlyamplifiedbythesteeplyfalling p spectrumof T B.W.Zhang/NuclearPhysicsA00(2011)1–8 8 jetswhenwestudyingthejetcrosssection. Thusitisimportanttotakeintoaccountcorrectionsofnon-perturbative effectstojetproductionsinHICatRHICandseehowjetspectrawillbemodifiedbythesecorrections[27]. Acknowledgments: The work is finished in collaboration with I. Vitev, S. Wicks and B. Neufeld. I thank X. N. Wang, J. W. Qiu and G. Soyez for illuminating discussions. This research is supported by the Ministry of EducationofChinawiththeProgramNCET-09-0411,byNationalNaturalScienceFoundationofChinawithProject No. 11075062,andCCNUwithProjectNo. CCNU09A02001. References [1] X.-N.Wang,M.Gyulassy,Phys.Rev.Lett.68,1480-1483(1992). [2] M.Gyulassy,I.Vitev,X.N.WangandB.W.Zhang,arXiv:nucl-th/0302077. [3] R.Baier,Y.L.Dokshitzer,A.H.Mueller,S.PeigneandD.Schiff,Nucl.Phys.B484,265(1997);B.G.Zakharov,JETPLett.73,49(2001) [PismaZh.Eksp.Teor.Fiz.73,55(2001)];N.Armesto,C.A.SalgadoandU.A.Wiedemann,Phys.Rev.D69,114003(2004). [4] M.Gyulassy,P.LevaiandI.Vitev,Phys.Rev.Lett.85,5535(2000);I.Vitev,Phys.Rev.C75,064906(2007). [5] X.N.WangandX.F.Guo,Nucl.Phys.A696,788(2001);B.W.ZhangandX.N.Wang,Nucl.Phys.A720,429(2003);B.W.Zhang, E.k.WangandX.N.Wang,Nucl.Phys.A757,493(2005). [6] RHICWHITEREPORT,Nucl.Phys.A757,1-283(2005). [7] D.d’Enterria,[arXiv:0902.2011[nucl-ex]]. [8] S.Salur,Nucl.Phys.A830,139C(2009);M.Ploskon,Nucl.Phys.A830,255C(2009);Y.-S.Lai[PHENIXCollaboration],Nucl.Phys. A830,251C-254C(2009). [9] N.Grau,Nucl.Phys.A830,797C(2009);D.d’Enterriaetal.,J.Phys.G34(2007)2307. [10] J. Putschke,thisproceedings;J. Jia,thisproceedings;M. Ploskon,A. Morsch,Y.Lai,etal,RoundTableII:Jetreconstructioninhigh backgroundenvironmentatRHICandLHC,HardProbe2010. [11] I.Vitev,S.WicksandB.W.Zhang,JHEP0811,093(2008);I.Vitev,B.W.ZhangandS.Wicks,Eur.Phys.J.C62,139(2009);B.W.Zhang, Nucl.Phys.A830,259C-262C(2009). [12] I.Vitev,B.-W.Zhang,Phys.Rev.Lett.104,132001(2010).[arXiv:0910.1090[hep-ph]]. [13] R.B.Neufeld,I.Vitev,B.-W.Zhang,[arXiv:1006.2389[hep-ph]]. [14] M.H.Seymour,Nucl.Phys.B513,269(1998). [15] S.D.Ellis,Z.Kunszt,D.E.Soper,Phys.Rev.Lett.64,2121(1990);Z.KunsztandD.E.Soper,Phys.Rev.D46,192(1992). [16] D.G.d’Enterria,[nucl-ex/0302016]. [17] B.I.Abelevetal.[STARCollaboration],Phys.Rev.Lett.97,252001(2006). [18] D.E.Acostaetal.[CDFCollaboration],Phys.Rev.D71,112002(2005). [19] I.Vitev,B.W.Zhang,Phys.Lett.B669,337(2008);R.Sharma,I.Vitev,B.Zhang,Phys.Rev.C80,054902(2009). [20] R.B.Neufeld,I.Vitev,B.W.Zhang,[arXiv:1010.3708[hep-ph]]. [21] J.M.Campbell,J.W.HustonandW.J.Stirling,Rept.Prog.Phys.70,89(2007);S.D.Ellisetal.Prog.Part.Nucl.Phys.60,484(2008). [22] F.I.OlnessandD.E.Soper,arXiv:0907.5052[hep-ph]. [23] M.Dasgupta,L.Magnea,G.Salam,JHEP0802,055(2008). [24] R.B.Neufeld,thisproceedings. [25] J.M.CampbellandR.K.Ellis,Phys.Rev.D65,113007(2002). [26] V.M.Abazovetal.[D0Collaboration],Phys.Lett.B669,278(2008). [27] H.Li,B.W.Zhang,I.Vitev,andE.Wang,inpreparation. [28] G.P.Salam,Eur.Phys.J.C67,637-686(2010). [29] T. Sjostrand,etal,Comput.Phys.Commun.178,852-867(2008).

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.