ebook img

Fuel Rod Thermal-Mechanical Methodology for Boiling Water Reactors and Pressurized Wa PDF

409 Pages·2013·8.39 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Fuel Rod Thermal-Mechanical Methodology for Boiling Water Reactors and Pressurized Wa

A AREVA Fuel Rod Thermal-Mechanical ANP-10323NP Revision 0 Methodology for Boiling Water Reactors and Pressurized Water Reactors Topical Report July 2013 AREVA NP Inc. (c) 2013 AREVA NP Inc. 11 77 ]r o- c. Vr~ Copyright © 2013 AREVA NP Inc. All Rights Reserved tor~~ TflTj0h,t 1Ofl AREVA NP Inc. ANP-10323NP Fuel Rod Thermal-Mechanical Methodology for Boiling Water Reactors Revision 0 and Pressurized Water Reactors Paaei Nature of Changes Section(s) Item or Page(s) Description and Justification 1t All This is a new document. AREVA NP Inc. ANP-10323NP Fuel Rod Thermal-Mechanical Methodology for Boiling Water Reactors Revision 0 and Pressurized Water Reactors Page ii Contents Page 1.0 INTRODUCTION ............................................................................................... 1-1 2.0 ME THODOLOGY ROADMAP ........................................................................... 2-1 2.1 Requirements and Capabilities ............................................................... 2-1 2.1.1 Fuel Rod Criteria ....................................................................... 2-1 2.1.2 Reactor Operation Scenarios .................................................... 2-1 2.1.3 GALILEO Fuel Rod Code .......................................................... 2-3 2.1.4 Fuel Rod Evaluation Methodology ............................................. 2-5 2.1.5 Documentation .......................................................................... 2-7 2.1.6 Standard Review Plan (SRP) Com pliance ................................ 2-7 2.2 GALILEO Calibration, Validation, and Range of Parameters ................ 2-11 2.2.1 Fuel Performance Database .................................................... 2-11 2.2.2 GALILEO Calibration and Validation ....................................... 2-12 2.2.3 Assessment of Biases ............................................................. 2-13 2.2.4 Validation Ranges ................................................................... 2-14 2.2.5 Range of Applicability .............................................................. 2-14 2.3 Uncertainty Analyses ............................................................................ 2-14 2.3.1 PIRT Process .......................................................................... 2-14 2.3.2 Reactor Operation Uncertainties ............................................. 2-15 2.3.3 Fuel Rod Manufacturing Uncertainties .................................... 2-15 2.3.4 Model Parameter Uncertainties ............................................... 2-16 2.4 Application Exam ples ............................................................................ 2-16 2.4.1 BW R Application Exam ples ..................................................... 2-16 2.4.2 PW R Application Exam ples ..................................................... 2-19 2.4.3 Sensitivity Studies ................................................................... 2-21 2.5 MOX Fuel .............................................................................................. 2-21 2.5.1 Requirements and Capabilities ................................................ 2-22 2.5.2 GALILEO Calibration and Validation and Range of Parameters .............................................................................. 2-23 2.5.3 Uncertainty Analyses ............................................................... 2-25 2.5.4 Application Examples .............................................................. 2-25 3.0 REQUIREM ENTS AND CAPABILITIES ............................................................ 3-1 3.1 Fuel Rod Criteria ..................................................................................... 3-1 3.1.1 Criteria for Normal Operation .................................................... 3-1 3.1.2 Criteria for AOOs ....................................................................... 3-6 Foar ]niforTm'a"flYP AREVA NP Inc. ANP-10323NP Fuel Rod Thermal-Mechanical Methodology for Boiling Water Reactors Revision 0 and Pressurized Water Reactors Page iii 3.2 Reactor Operations Scenarios ................................................................ 3-8 3.2.1 Scenarios for Normal Operation ................................................ 3-8 3.2.2 Scenarios for AOO Transients ................................................. 3-10 3.3 GALILEO Fuel Rod Code ..................................................................... 3-13 3.3.1 Code Requirements ................................................................ 3-13 3.3.2 Code Applicability .................................................................... 3-14 3.3.3 GALILEO Summary ................................................................. 3-15 3.4 Fuel Rod Evaluation Methodology ........................................................ 3-21 3.4.1 Evaluation Objectives .............................................................. 3-21 3.4.2 Statistical Process ................................................................... 3-22 3.4.3 Methodology for Normal Operation ......................................... 3-26 3.4.4 Methodology for AOO Transients ............................................ 3-36 4.0 GALILEO CODE CALIBRATION, VALIDATION, AND RANGE OF MODEL PARAM ETERS .................................................................................... 4-1 4.1 Principle of Calibration and Validation .................................................... 4-1 4.2 Fuel Performance Database ................................................................... 4-5 4.2.1 Global Description of the Database ........................................... 4-5 4.2.2 Separate Effect Tests .............................................................. 4-10 4.2.3 Integral Test Programs ............................................................ 4-10 4.2.4 Commercial Irradiation ............................................................ 4-13 4.3 Calibration and Validation ..................................................................... 4-15 4.3.1 Principle of the Calibration and Validation Process ................. 4-15 4.3.2 Thermal Models ....................................................................... 4-16 4.3.3 Fission Gas Release ............................................................... 4-26 4.3.4 Helium Behavior ...................................................................... 4-39 4.3.5 Densification and Solid Swelling .............................................. 4-45 4.3.6 Fuel Creep ............................................................................... 4-49 4.3.7 Dish Filling ............................................................................... 4-49 4.3.8 Gaseous Swelling .................................................................... 4-52 4.3.9 Rod Diameter Change during Power Transients ..................... 4-55 4.3.10 Clad Creep .............................................................................. 4-67 4.3.11 Clad Collapse .......................................................................... 4-79 4.3.12 Ridge Induced Clad Diameter Correction ................................ 4-84 4.3.13 Cladding Ridging ..................................................................... 4-86 4.3.14 Rod Axial Elongation ............................................................... 4-88 4.3.15 Rod Free Volume and Internal Pressure ................................. 4-95 4.3.16 Cladding Corrosion and Hydrogen Uptake ............................ 4-102 4.4 Assessment of Biases ......................................................................... 4-114 4.4.1 Centerline Temperature ......................................................... 4-114 4.4.2 Fission Gas Release ............................................................. 4-114 nic~ ~ r~ ~ i=(~~P .1 C AREVA NP Inc. ANP-10323NP Fuel Rod Thermal-Mechanical Methodology for Boiling Water Reactors Revision 0 and Pressurized Water Reactors Page iv 4 .4.3 He lium B alance .................................................................... 4-115 4 .4 .4 C lad C reep ........................................................................... 4 -115 4.4.5 C lad C reep O vality ............................................................... 4-116 4.4.6 C lad R am p Strain ................................................................. 4-116 4.4.7 Rod Axial Elongation ............................................................ 4-116 4.4.8 Rod Free Volum e ................................................................. 4-117 4 .4 .9 C lad O xidation ...................................................................... 4-117 4 .5 V alidatio n R anges ............................................................................... 4-118 4 .6 R ange of A pplicability ......................................................................... 4-119 5.0 UNCERTAINTY ANALYSES ............................................................................. 5-1 5 .1 P IR T P ro ce ss .......................................................................................... 5 -1 5.2 Reactor Operation Uncertainties ............................................................. 5-7 5.2.1 PIRT Reactor Operation Uncertainty Summary ......................... 5-7 5.2.2 Implementation of Power Uncertainties ................................... 5-16 5.3 Fuel Rod Manufacturing Uncertainties .................................................. 5-21 5.3.1 PIRT Manufacturing Uncertainties Summary .......................... 5-21 5.3.2 Statistical Analyses of Manufacturing Uncertainties ................ 5-23 5.3.3 Implementation of Manufacturing Uncertainties ...................... 5-24 5.4 GALILEO Model Parameter Uncertainties ............................................ 5-25 5.4.1 FGR Model Parameter Uncertainty ......................................... 5-29 5.4.2 Helium Balance Uncertainty .................................................... 5-35 5.4.3 Pellet Solid Swelling Uncertainty ............................................. 5-39 5.4.4 MOX Pellet Densification Uncertainty ...................................... 5-41 5.4.5 Creep Parameter Uncertainty .................................................. 5-43 5.4.6 Oxidation Parameter Uncertainty ............................................ 5-59 5.4.7 Creep Collapse Uncertainty ..................................................... 5-61 5.4.8 Transient Model Uncertainties ................................................. 5-62 5.4.9 PIRT Model Parameter Uncertainty Summary ........................ 5-64 6.0 A PPLICATIO N EXA MP LES ............................................................................... 6-1 6.1 BWR Reactor Application Examples ....................................................... 6-2 6.1.1 BWR/4 Reactor, 24-Month Cycles, EPU, ATRIUM 1OXM Design, SR Zircaloy-2 Cladding ................................................ 6-2 6.1.2 BWR/4 Reactor, 24-Month Cycles, EPU, ATRIUM 1OXM Design, RX Zircaloy-2 Cladding .............................................. 6-25 6.1.3 BWR/4 Reactor, 24-Month Cycles, MOX ATRIUM 1OXM Design, RX Zircaloy-2 Cladding .............................................. 6-29 6.1.4 BWR/6 Reactor, 18-Month Cycles, ATRIUM-10 Design, SR Z ircaloy-2 C ladding .................................................................. 6-39 6.2 PWR Reactor Application Examples ..................................................... 6-44 AREVA NP Inc. ANP-10323NP Fuel Rod Thermal-Mechanical Methodology for Boiling Water Reactors Revision 0 and Pressurized Water Reactors Page v 6.2.1 Representative 14x14 Fuel Rod Design .................................. 6-44 6.2.2 Representative 15x15 Fuel Rod Design .................................. 6-48 6.2.3 Representative 17x17 Fuel Rod Design .................................. 6-52 6.2.4 Representative 17x17 MOX Fuel Rod Design ......................... 6-61 6.2.5 Representative 17x17 High Burnup Fuel Rod Design ............. 6-66 6 .3 S e nsitivity S tud ies ................................................................................. 6-70 7.0 R E F E R E NC E S ............................................................................................ . . 7-1 APPENDIX A APPLICABILITY OF GALILEO TO WEAPONS-GRADE MO X F UE L ................................................................................................ . . A -1 A .1 Introd uctio n ..................................................................................... . . A -1 A.2 Expected Performance of WG-MOX Fuel .......................................... A-1 A.3 U.S. WG MOX Experience Feedback ..................................................... A-2 A.4 Galileo Benchmarking of WG MOX ........................................................ A-3 A .5 R efe re nce s ............................................................................................. A -6 APPENDIX B METHODOLOGY FOR [ ............................................................... . . B -1 APPENDIX C DETERMINATION OF THE MAXIMUM ALLOWABLE ROD INTERNAL PRESSURE TO AVOID HYDRIDE R EO R IE NT A T IO N ....................................................................................... C -1 C .1 Hydride Reorientation ....................................................................... C-1 C.2 Experim ental Data Review ................................................................. C-1 C.2.1 Stress-Relieved Zircaloy-4 Stress Threshold ........................ C-1 C .2.2 M5 8 Stress Threshold .............................................................. C -2 C.2.3 Recrystallization Annealed Zircaloy-2 Stress Threshold ........... C-2 C.2.4 Stress-Relief Annealed Zircaloy-2 Stress Threshold ................ C-3 C.3 Pressure Limits Corresponding to Hydride Reorientation S tre ss Li m its .......................................................................................... C -3 C .4 R efe re nce s ............................................................................................ C -6 APPENDIX D DIFFERENCES IN MANUFACTURING POWDER PROCESSING - DRY CONVERSION PROCESS VERSUS AMMONIUM DIURANATE MOX FUEL ....................................................... D-1 D .1 Introd uctio n ..................................................................................... . . D -1 D.2 Influence of the Powder Origin on the Fuel Pellet Irradiation P erform ance ..................................................................................... . . D -1 D.3 Expected Performance of MIMAS DCP MOX Fuel ................................ D-6 For iri~ormation Only AREVA NP Inc. ANP-10323NP Fuel Rod Thermal-Mechanical Methodology for Boiling Water Reactors Revision 0 and Pressurized Water Reactors Page vi D.3.1 DCP MOX LTAs Program and PIE Results .............................. D-7 D.4 Conclusion ........................................................................................... D-1 1 i *.) f ~~ fC~ ~ y AREVA NP Inc. ANP-10323NP Fuel Rod Thermal-Mechanical Methodology for Boiling Water Reactors Revision 0 and Pressurized Water Reactors Paae vii List of Tables Table 2-1 SRP Compliance Matrix ............................................................................ 2-26 Table 2-2 MOX Fuel Other Validation Results .......................................................... 2-34 Table 2-3 MOX Fuel Modeling Description and Results ............................................ 2-35 Table 4-1 Description of the AREVA Integral Test Database .................................... 4-12 Table 4-2 Description of the AREVA Commercial Database ..................................... 4-14 Table 4-3 GALILEO U0 Fuel Thermal Validation Database, Halden Tests ............. 4-18 2 Table 4-4 GALILEO U0 Fuel Thermal Validation Database, Other Tests ................ 4-19 2 Table 4-5 GALILEO MOX Fuel Thermal Validation Database ................................... 4-20 Table 4-6 GALILEO Gadolinia-Bearing Fuel Thermal Validation Database .............. 4-21 Table 4-7 Fuel Melt Ramp Validation Database ........................................................ 4-21 Table 4-8 Commercial FGR Validation Database ..................................................... 4-27 Table 4-9 Bilateral Program FGR Validation Database ............................................. 4-28 Table 4-10 International Test Program FGR Validation Database ............................ 4-29 Table 4-11 GLOVD Model Calibration Database ...................................................... 4-56 Table 4-12 List of R am p Tests .................................................................................. 4-57 Table 4-13 Summary of Rod Volume and Pressure Data ......................................... 4-97 Table 4-14 M5® Corrosion Calibration Database .................................................... 4-107 Table 4-15 M5® Hydrogen Pick-up Validation Database ........................................ 4-109 Table 4-16 Zircaloy-2 Corrosion Validation Database ............................................. 4-111 Table 4-17 Overview of the Lift-off Corrosion Validation Database ......................... 4-113 Table 4-18 Average Value of Log (Predicted Rod Diameter Change / Me asured V a lue ) ................................................................................ 4 -116 Table 4-19 Average Value of (Predicted Elongation) / (Measured Rod E lo n g a tio n ) .......................................................................................... 4 -1 17 Table 4-20 GALILEO Range of Validation ............................................................... 4-121 Table 5-1 PIRT for Reactor Operations ....................................................................... 5-3 Table 5-2 PIRT for Fuel Rod Definition ....................................................................... 5-4 Table 5-3 PIRT for Fuel Rod GALILEO Model Parameters ......................................... 5-5 Table 5-4 Typical Core Simulator Code Measured Power Distribution U n ce rta inty ............................................................................................ 5 -17 AREVA NP Inc. ANP-10323NP Fuel Rod Thermal-Mechanical Methodology for Boiling Water Reactors Revision 0 and Pressurized Water Reactors Page viii Table 5-5 Manufacturing Uncertainty Application in GALILEO Calculation ............... 5-22 Table 5-6 SR Zircaloy-2 Cladding - Creep Model Parameter Uncertainty B o und ing V a lue s ................................................................................... 5-55 Table 5-7 RX Zircaloy-2 Cladding - Creep Model Parameter Uncertainty Bounding Values ..................................... 5-57 Table 5-8 Steady-State Model Parameter Uncertainties ........................................... 5-75 Table 5-9 Transient Model Parameter Uncertainties ................................................. 5-76 Table 6-1 Core Parameters for BWR/4 Equilibrium Design and Cycle Licensing A n a ly s is .................................................................................................. 6 -7 Table 6-2 ATRIUM 1O XM Fuel Rod Design Parameters for the BWR/4 A pplication E xam ple ............................................................................... 6-8 Table 6-3 Normal Operation and Slow Transient Results Summary, BWR/4 Reactor, Equilibrium Cycle Design, ATRIUM 1OXM, SR Zircaloy-2 C la d d in g .................................................................................................. 6 -9 Table 6-4 Normal Operation and Slow Transient Results Summary, BWR/4 Reactor, Cycle Licensing Analysis, Fresh Batch, ATRIUM 1OXM, S R Z ircaloy-2 C ladding ......................................................................... 6-10 Table 6-5 Summary of BWR-4 Sample GALILEO Fast Transient Results for FW C F Events, SR C ladding ................................................................. 6-19 Table 6-6 Normal Operation and Slow Transient Results Summary, BWR/4 Reactor, Equilibrium Cycle Design, ATRIUM 1OXM, RX Zircaloy-2 C la d d ing ................................................................................................ 6 -2 6 Table 6-7 Summary of BWR-4 Sample GALILEO Fast Transient Results for FW C F Events, RX C ladding ................................................................. 6-29 Table 6-8 Core Parameters for BWR/4 MOX Equilibrium Cycle Design .................... 6-32 Table 6-9 MOX ATRIUM 1OXM Fuel Rod Design Parameters for a BWR/4 A pplication E xam ple ............................................................................. 6-33 Table 6-10 Normal Operation and Slow Transient Results Summary, BWR/4 Reactor, MOX Equilibrium Cycle Design, MOX ATRIUM 1OXM, R X Z ircaloy-2 C ladding ......................................................................... 6-34 Table 6-11 Summary of BWR-4 Sample GALILEO Fast Transient Results for FWCF Events, MOX Fuel and RX Cladding ......................................... 6-37 Table 6-12 Core Parameters for BWR/6 Equilibrium Cycle Design ........................... 6-41 Table 6-13 ATRIUM-10 Fuel Rod Design Parameters for the BWR/6 A pplication E xam ple ............................................................................. 6-42

Description:
The GALILEO documentation consists of the topical report, theory manual Fo r I' n-fo, rý -J) calio n' C) T-,' IV Fr .1n f0r~mi no,0 d0n (I'~.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.