A AREVA Fuel Rod Thermal-Mechanical ANP-10323NP Revision 0 Methodology for Boiling Water Reactors and Pressurized Water Reactors Topical Report July 2013 AREVA NP Inc. (c) 2013 AREVA NP Inc. 11 77 ]r o- c. Vr~ Copyright © 2013 AREVA NP Inc. All Rights Reserved tor~~ TflTj0h,t 1Ofl AREVA NP Inc. ANP-10323NP Fuel Rod Thermal-Mechanical Methodology for Boiling Water Reactors Revision 0 and Pressurized Water Reactors Paaei Nature of Changes Section(s) Item or Page(s) Description and Justification 1t All This is a new document. AREVA NP Inc. ANP-10323NP Fuel Rod Thermal-Mechanical Methodology for Boiling Water Reactors Revision 0 and Pressurized Water Reactors Page ii Contents Page 1.0 INTRODUCTION ............................................................................................... 1-1 2.0 ME THODOLOGY ROADMAP ........................................................................... 2-1 2.1 Requirements and Capabilities ............................................................... 2-1 2.1.1 Fuel Rod Criteria ....................................................................... 2-1 2.1.2 Reactor Operation Scenarios .................................................... 2-1 2.1.3 GALILEO Fuel Rod Code .......................................................... 2-3 2.1.4 Fuel Rod Evaluation Methodology ............................................. 2-5 2.1.5 Documentation .......................................................................... 2-7 2.1.6 Standard Review Plan (SRP) Com pliance ................................ 2-7 2.2 GALILEO Calibration, Validation, and Range of Parameters ................ 2-11 2.2.1 Fuel Performance Database .................................................... 2-11 2.2.2 GALILEO Calibration and Validation ....................................... 2-12 2.2.3 Assessment of Biases ............................................................. 2-13 2.2.4 Validation Ranges ................................................................... 2-14 2.2.5 Range of Applicability .............................................................. 2-14 2.3 Uncertainty Analyses ............................................................................ 2-14 2.3.1 PIRT Process .......................................................................... 2-14 2.3.2 Reactor Operation Uncertainties ............................................. 2-15 2.3.3 Fuel Rod Manufacturing Uncertainties .................................... 2-15 2.3.4 Model Parameter Uncertainties ............................................... 2-16 2.4 Application Exam ples ............................................................................ 2-16 2.4.1 BW R Application Exam ples ..................................................... 2-16 2.4.2 PW R Application Exam ples ..................................................... 2-19 2.4.3 Sensitivity Studies ................................................................... 2-21 2.5 MOX Fuel .............................................................................................. 2-21 2.5.1 Requirements and Capabilities ................................................ 2-22 2.5.2 GALILEO Calibration and Validation and Range of Parameters .............................................................................. 2-23 2.5.3 Uncertainty Analyses ............................................................... 2-25 2.5.4 Application Examples .............................................................. 2-25 3.0 REQUIREM ENTS AND CAPABILITIES ............................................................ 3-1 3.1 Fuel Rod Criteria ..................................................................................... 3-1 3.1.1 Criteria for Normal Operation .................................................... 3-1 3.1.2 Criteria for AOOs ....................................................................... 3-6 Foar ]niforTm'a"flYP AREVA NP Inc. ANP-10323NP Fuel Rod Thermal-Mechanical Methodology for Boiling Water Reactors Revision 0 and Pressurized Water Reactors Page iii 3.2 Reactor Operations Scenarios ................................................................ 3-8 3.2.1 Scenarios for Normal Operation ................................................ 3-8 3.2.2 Scenarios for AOO Transients ................................................. 3-10 3.3 GALILEO Fuel Rod Code ..................................................................... 3-13 3.3.1 Code Requirements ................................................................ 3-13 3.3.2 Code Applicability .................................................................... 3-14 3.3.3 GALILEO Summary ................................................................. 3-15 3.4 Fuel Rod Evaluation Methodology ........................................................ 3-21 3.4.1 Evaluation Objectives .............................................................. 3-21 3.4.2 Statistical Process ................................................................... 3-22 3.4.3 Methodology for Normal Operation ......................................... 3-26 3.4.4 Methodology for AOO Transients ............................................ 3-36 4.0 GALILEO CODE CALIBRATION, VALIDATION, AND RANGE OF MODEL PARAM ETERS .................................................................................... 4-1 4.1 Principle of Calibration and Validation .................................................... 4-1 4.2 Fuel Performance Database ................................................................... 4-5 4.2.1 Global Description of the Database ........................................... 4-5 4.2.2 Separate Effect Tests .............................................................. 4-10 4.2.3 Integral Test Programs ............................................................ 4-10 4.2.4 Commercial Irradiation ............................................................ 4-13 4.3 Calibration and Validation ..................................................................... 4-15 4.3.1 Principle of the Calibration and Validation Process ................. 4-15 4.3.2 Thermal Models ....................................................................... 4-16 4.3.3 Fission Gas Release ............................................................... 4-26 4.3.4 Helium Behavior ...................................................................... 4-39 4.3.5 Densification and Solid Swelling .............................................. 4-45 4.3.6 Fuel Creep ............................................................................... 4-49 4.3.7 Dish Filling ............................................................................... 4-49 4.3.8 Gaseous Swelling .................................................................... 4-52 4.3.9 Rod Diameter Change during Power Transients ..................... 4-55 4.3.10 Clad Creep .............................................................................. 4-67 4.3.11 Clad Collapse .......................................................................... 4-79 4.3.12 Ridge Induced Clad Diameter Correction ................................ 4-84 4.3.13 Cladding Ridging ..................................................................... 4-86 4.3.14 Rod Axial Elongation ............................................................... 4-88 4.3.15 Rod Free Volume and Internal Pressure ................................. 4-95 4.3.16 Cladding Corrosion and Hydrogen Uptake ............................ 4-102 4.4 Assessment of Biases ......................................................................... 4-114 4.4.1 Centerline Temperature ......................................................... 4-114 4.4.2 Fission Gas Release ............................................................. 4-114 nic~ ~ r~ ~ i=(~~P .1 C AREVA NP Inc. ANP-10323NP Fuel Rod Thermal-Mechanical Methodology for Boiling Water Reactors Revision 0 and Pressurized Water Reactors Page iv 4 .4.3 He lium B alance .................................................................... 4-115 4 .4 .4 C lad C reep ........................................................................... 4 -115 4.4.5 C lad C reep O vality ............................................................... 4-116 4.4.6 C lad R am p Strain ................................................................. 4-116 4.4.7 Rod Axial Elongation ............................................................ 4-116 4.4.8 Rod Free Volum e ................................................................. 4-117 4 .4 .9 C lad O xidation ...................................................................... 4-117 4 .5 V alidatio n R anges ............................................................................... 4-118 4 .6 R ange of A pplicability ......................................................................... 4-119 5.0 UNCERTAINTY ANALYSES ............................................................................. 5-1 5 .1 P IR T P ro ce ss .......................................................................................... 5 -1 5.2 Reactor Operation Uncertainties ............................................................. 5-7 5.2.1 PIRT Reactor Operation Uncertainty Summary ......................... 5-7 5.2.2 Implementation of Power Uncertainties ................................... 5-16 5.3 Fuel Rod Manufacturing Uncertainties .................................................. 5-21 5.3.1 PIRT Manufacturing Uncertainties Summary .......................... 5-21 5.3.2 Statistical Analyses of Manufacturing Uncertainties ................ 5-23 5.3.3 Implementation of Manufacturing Uncertainties ...................... 5-24 5.4 GALILEO Model Parameter Uncertainties ............................................ 5-25 5.4.1 FGR Model Parameter Uncertainty ......................................... 5-29 5.4.2 Helium Balance Uncertainty .................................................... 5-35 5.4.3 Pellet Solid Swelling Uncertainty ............................................. 5-39 5.4.4 MOX Pellet Densification Uncertainty ...................................... 5-41 5.4.5 Creep Parameter Uncertainty .................................................. 5-43 5.4.6 Oxidation Parameter Uncertainty ............................................ 5-59 5.4.7 Creep Collapse Uncertainty ..................................................... 5-61 5.4.8 Transient Model Uncertainties ................................................. 5-62 5.4.9 PIRT Model Parameter Uncertainty Summary ........................ 5-64 6.0 A PPLICATIO N EXA MP LES ............................................................................... 6-1 6.1 BWR Reactor Application Examples ....................................................... 6-2 6.1.1 BWR/4 Reactor, 24-Month Cycles, EPU, ATRIUM 1OXM Design, SR Zircaloy-2 Cladding ................................................ 6-2 6.1.2 BWR/4 Reactor, 24-Month Cycles, EPU, ATRIUM 1OXM Design, RX Zircaloy-2 Cladding .............................................. 6-25 6.1.3 BWR/4 Reactor, 24-Month Cycles, MOX ATRIUM 1OXM Design, RX Zircaloy-2 Cladding .............................................. 6-29 6.1.4 BWR/6 Reactor, 18-Month Cycles, ATRIUM-10 Design, SR Z ircaloy-2 C ladding .................................................................. 6-39 6.2 PWR Reactor Application Examples ..................................................... 6-44 AREVA NP Inc. ANP-10323NP Fuel Rod Thermal-Mechanical Methodology for Boiling Water Reactors Revision 0 and Pressurized Water Reactors Page v 6.2.1 Representative 14x14 Fuel Rod Design .................................. 6-44 6.2.2 Representative 15x15 Fuel Rod Design .................................. 6-48 6.2.3 Representative 17x17 Fuel Rod Design .................................. 6-52 6.2.4 Representative 17x17 MOX Fuel Rod Design ......................... 6-61 6.2.5 Representative 17x17 High Burnup Fuel Rod Design ............. 6-66 6 .3 S e nsitivity S tud ies ................................................................................. 6-70 7.0 R E F E R E NC E S ............................................................................................ . . 7-1 APPENDIX A APPLICABILITY OF GALILEO TO WEAPONS-GRADE MO X F UE L ................................................................................................ . . A -1 A .1 Introd uctio n ..................................................................................... . . A -1 A.2 Expected Performance of WG-MOX Fuel .......................................... A-1 A.3 U.S. WG MOX Experience Feedback ..................................................... A-2 A.4 Galileo Benchmarking of WG MOX ........................................................ A-3 A .5 R efe re nce s ............................................................................................. A -6 APPENDIX B METHODOLOGY FOR [ ............................................................... . . B -1 APPENDIX C DETERMINATION OF THE MAXIMUM ALLOWABLE ROD INTERNAL PRESSURE TO AVOID HYDRIDE R EO R IE NT A T IO N ....................................................................................... C -1 C .1 Hydride Reorientation ....................................................................... C-1 C.2 Experim ental Data Review ................................................................. C-1 C.2.1 Stress-Relieved Zircaloy-4 Stress Threshold ........................ C-1 C .2.2 M5 8 Stress Threshold .............................................................. C -2 C.2.3 Recrystallization Annealed Zircaloy-2 Stress Threshold ........... C-2 C.2.4 Stress-Relief Annealed Zircaloy-2 Stress Threshold ................ C-3 C.3 Pressure Limits Corresponding to Hydride Reorientation S tre ss Li m its .......................................................................................... C -3 C .4 R efe re nce s ............................................................................................ C -6 APPENDIX D DIFFERENCES IN MANUFACTURING POWDER PROCESSING - DRY CONVERSION PROCESS VERSUS AMMONIUM DIURANATE MOX FUEL ....................................................... D-1 D .1 Introd uctio n ..................................................................................... . . D -1 D.2 Influence of the Powder Origin on the Fuel Pellet Irradiation P erform ance ..................................................................................... . . D -1 D.3 Expected Performance of MIMAS DCP MOX Fuel ................................ D-6 For iri~ormation Only AREVA NP Inc. ANP-10323NP Fuel Rod Thermal-Mechanical Methodology for Boiling Water Reactors Revision 0 and Pressurized Water Reactors Page vi D.3.1 DCP MOX LTAs Program and PIE Results .............................. D-7 D.4 Conclusion ........................................................................................... D-1 1 i *.) f ~~ fC~ ~ y AREVA NP Inc. ANP-10323NP Fuel Rod Thermal-Mechanical Methodology for Boiling Water Reactors Revision 0 and Pressurized Water Reactors Paae vii List of Tables Table 2-1 SRP Compliance Matrix ............................................................................ 2-26 Table 2-2 MOX Fuel Other Validation Results .......................................................... 2-34 Table 2-3 MOX Fuel Modeling Description and Results ............................................ 2-35 Table 4-1 Description of the AREVA Integral Test Database .................................... 4-12 Table 4-2 Description of the AREVA Commercial Database ..................................... 4-14 Table 4-3 GALILEO U0 Fuel Thermal Validation Database, Halden Tests ............. 4-18 2 Table 4-4 GALILEO U0 Fuel Thermal Validation Database, Other Tests ................ 4-19 2 Table 4-5 GALILEO MOX Fuel Thermal Validation Database ................................... 4-20 Table 4-6 GALILEO Gadolinia-Bearing Fuel Thermal Validation Database .............. 4-21 Table 4-7 Fuel Melt Ramp Validation Database ........................................................ 4-21 Table 4-8 Commercial FGR Validation Database ..................................................... 4-27 Table 4-9 Bilateral Program FGR Validation Database ............................................. 4-28 Table 4-10 International Test Program FGR Validation Database ............................ 4-29 Table 4-11 GLOVD Model Calibration Database ...................................................... 4-56 Table 4-12 List of R am p Tests .................................................................................. 4-57 Table 4-13 Summary of Rod Volume and Pressure Data ......................................... 4-97 Table 4-14 M5® Corrosion Calibration Database .................................................... 4-107 Table 4-15 M5® Hydrogen Pick-up Validation Database ........................................ 4-109 Table 4-16 Zircaloy-2 Corrosion Validation Database ............................................. 4-111 Table 4-17 Overview of the Lift-off Corrosion Validation Database ......................... 4-113 Table 4-18 Average Value of Log (Predicted Rod Diameter Change / Me asured V a lue ) ................................................................................ 4 -116 Table 4-19 Average Value of (Predicted Elongation) / (Measured Rod E lo n g a tio n ) .......................................................................................... 4 -1 17 Table 4-20 GALILEO Range of Validation ............................................................... 4-121 Table 5-1 PIRT for Reactor Operations ....................................................................... 5-3 Table 5-2 PIRT for Fuel Rod Definition ....................................................................... 5-4 Table 5-3 PIRT for Fuel Rod GALILEO Model Parameters ......................................... 5-5 Table 5-4 Typical Core Simulator Code Measured Power Distribution U n ce rta inty ............................................................................................ 5 -17 AREVA NP Inc. ANP-10323NP Fuel Rod Thermal-Mechanical Methodology for Boiling Water Reactors Revision 0 and Pressurized Water Reactors Page viii Table 5-5 Manufacturing Uncertainty Application in GALILEO Calculation ............... 5-22 Table 5-6 SR Zircaloy-2 Cladding - Creep Model Parameter Uncertainty B o und ing V a lue s ................................................................................... 5-55 Table 5-7 RX Zircaloy-2 Cladding - Creep Model Parameter Uncertainty Bounding Values ..................................... 5-57 Table 5-8 Steady-State Model Parameter Uncertainties ........................................... 5-75 Table 5-9 Transient Model Parameter Uncertainties ................................................. 5-76 Table 6-1 Core Parameters for BWR/4 Equilibrium Design and Cycle Licensing A n a ly s is .................................................................................................. 6 -7 Table 6-2 ATRIUM 1O XM Fuel Rod Design Parameters for the BWR/4 A pplication E xam ple ............................................................................... 6-8 Table 6-3 Normal Operation and Slow Transient Results Summary, BWR/4 Reactor, Equilibrium Cycle Design, ATRIUM 1OXM, SR Zircaloy-2 C la d d in g .................................................................................................. 6 -9 Table 6-4 Normal Operation and Slow Transient Results Summary, BWR/4 Reactor, Cycle Licensing Analysis, Fresh Batch, ATRIUM 1OXM, S R Z ircaloy-2 C ladding ......................................................................... 6-10 Table 6-5 Summary of BWR-4 Sample GALILEO Fast Transient Results for FW C F Events, SR C ladding ................................................................. 6-19 Table 6-6 Normal Operation and Slow Transient Results Summary, BWR/4 Reactor, Equilibrium Cycle Design, ATRIUM 1OXM, RX Zircaloy-2 C la d d ing ................................................................................................ 6 -2 6 Table 6-7 Summary of BWR-4 Sample GALILEO Fast Transient Results for FW C F Events, RX C ladding ................................................................. 6-29 Table 6-8 Core Parameters for BWR/4 MOX Equilibrium Cycle Design .................... 6-32 Table 6-9 MOX ATRIUM 1OXM Fuel Rod Design Parameters for a BWR/4 A pplication E xam ple ............................................................................. 6-33 Table 6-10 Normal Operation and Slow Transient Results Summary, BWR/4 Reactor, MOX Equilibrium Cycle Design, MOX ATRIUM 1OXM, R X Z ircaloy-2 C ladding ......................................................................... 6-34 Table 6-11 Summary of BWR-4 Sample GALILEO Fast Transient Results for FWCF Events, MOX Fuel and RX Cladding ......................................... 6-37 Table 6-12 Core Parameters for BWR/6 Equilibrium Cycle Design ........................... 6-41 Table 6-13 ATRIUM-10 Fuel Rod Design Parameters for the BWR/6 A pplication E xam ple ............................................................................. 6-42
Description: