ebook img

From Suns to Life: A Chronological Approach to the History of Life on Earth PDF

371 Pages·2006·5.893 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview From Suns to Life: A Chronological Approach to the History of Life on Earth

FROM SUNS TO LIFE: A CHRONOLOGICAL APPROACH TO THE HISTORY OF LIFE ON EARTH From Suns to Life: A Chronological Approach to the History of Life on Earth Edited by MURIEL GARGAUD PHILIPPE CLAEYS PURIFICACIO´ N LO´ PEZ-GARCI´A HERVE´ MARTIN THIERRY MONTMERLE ROBERT PASCAL JACQUES REISSE Reprintedfrom Earth Moon,andPlanets Volume98, Nos. 1–4,2006 123 AC.I.P catalogue recordforthisbook isavailable fromthe libraryof Congress ISBN0-387-45082-7 ISBN978-0-387-45082-7 PublishedbySpringer, P.O. Box17, 3300AA,Dordrecht, TheNetherlands www.springer.com Printed onacid-freepaper Cover image: Persistence of Memory, 1931, (cid:1) Salvadore Dali, Fundactio´n Gala-Salvador Dali,c/o Beeldrecht Amsterdam 2006 AllRights Reserved (cid:1)2006Springer No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise,withoutwrittenpermissionfromthePublisher,withtheexceptionofanymaterial suppliedspecificallyforthepurposeofbeingenteredandexecutedonacomputersystem,for exclusiveusebythe purchaser of the work. Printedin the Netherlands TableofContents 1 FromtheArrowofTimetotheArrowofLife/M.GARGAUDandJ.REISSE......... 1–9 1.1 TheNotionofTimeinAstrobiology...................................................................... 1 1.2 Why,Where,WhenandHow:HerearetheQuestions........................................... 3 1.2.1 WHY?.................................................................................................... 3 1.2.2 WHERE?............................................................................................... 4 1.2.3 WHEN(ANDHOW)?........................................................................... 4 1.3 OurModestContributionstothe‘‘When’’(and‘‘How’’?)Answers....................... 5 1.3.1 THE‘‘WHENANDWHERE’’MAKING-OF..................................... 5 1.3.2 THE‘‘WHY’’MAKING-OF................................................................. 5 1.3.3 THE‘‘HOW’’MAKING-OF................................................................. 6 2 DatingMethodsandCorrespondingChronometersinAstrobiology/M.GARGAUD, F.ALBARE`DE,L.BOITEAU,M.CHAUSSIDON,E.DOUZERYand T.MONTMERLE................................................................................................... 11–38 2.1 Astronomy:DatingStellarAgeswiththe‘‘Herzsprung–RussellDiagram’’........... 11 2.2 Geochemistry:PrinciplesofRadioactiveDating.................................................... 16 2.2.1 LONG-LIVEDCHRONOMETERS..................................................... 19 2.2.2 SHORT-LIVEDCHRONOMETERS:EXTINCT RADIOACTIVITIES............................................................................ 20 2.2.3 THELIMITSOFTHEMETHOD........................................................ 22 2.3 Chemistry:TheImpossibleuseofChemicalClocksinaPrebioticScope................ 23 2.3.1 SOMECHEMICALCLOCKSANDTHEIRLIMITS......................... 25 2.3.2 CONCLUSIONS................................................................................... 26 2.4 Biology:TheMolecularClocks............................................................................. 27 2.4.1 HISTORICALPERSPECTIVEONTHEMOLECULARCLOCK..... 27 2.4.2 THEGLOBALMOLECULARCLOCK:ASINGLERATE APPROACH.......................................................................................... 29 2.4.3 THELOCALMOLECULARCLOCKS:AFEWRATEAPPROACH 30 2.4.4 THE RELAXED MOLECULAR CLOCKS: A MULTIPLE RATE APPROACH.......................................................................................... 31 2.4.5 THE FUTURE MOLECULAR CLOCKS: ACCURACY AND PRECISION.......................................................................................... 32 2.5 TheTripleClockofLifeintheSolarSystem.......................................................... 32 2.5.1 ISTHEREABEGINING?THEPROBLEMOF‘‘TIMEZERO’’AND THELOGARITHMICCLOCK............................................................. 32 2.5.2 ASTRONOMYVS.GEOLOGICALANDBIOLOGICAL CHRONOLOGIES:THELINEARCLOCKS..................................... 35 3 SolarSystemFormationandEarlyEvolution:theFirst100MillionYears/ T.MONTMERLE,J.-C.AUGEREAU,M.CHAUSSIDON, M.GOUNELLE,B.MARTYandA.MORBIDELLI.............................................. 39–95 3.1 TheFirstMillionYears:The‘‘StellarEra’’............................................................ 40 3.1.1 THESUN’SBIRTHPLACE.................................................................. 40 3.1.2 THESUNASAFORMINGSTAR...................................................... 46 3.1.3 ASTELLARVIEWOFTHE‘‘PRIMITIVESOLARNEBULA’’........ 50 3.2 TheFirst10MillionYears:The‘‘DiskEra’’.......................................................... 54 3.2.1 THEEVOLUTIONOFCIRCUMSTELLARDISKSAROUND YOUNGSTARSANDIMPLICATIONSFORTHEEARLYSOLAR SYSTEM................................................................................................ 54 3.2.2 THEFIRSTFEWMILLIONYEARSASRECORDEDBY METEORITEDATA............................................................................ 63 3.2.3 INTERMEZZO..................................................................................... 73 3.2.4 THEFIRSTSTAGESOFPLANETARYFORMATIONINTHE SOLARSYSTEM.................................................................................. 74 3.3 TheFirst100MillionYears:The‘‘TelluricEra’’.................................................... 83 3.3.1 FORMATIONOFTHETERRESTRIALPLANETSAND PRIMORDIALSCULPTINGOFTHEASTEROIDBELT................ 83 3.3.2 THEFORMATIONOFTHEMOON.................................................. 85 3.3.3 TOWARDS1GYR:THEEARLYEVOLUTIONOF THEEARTH......................................................................................... 87 4 BuildingofaHabitablePlanet/H.MARTIN,F.ALBARE`DE,P.CLAEYS, M.GARGAUD,B.MARTY,A.MORBIDELLIandD.L.PINTI........................... 97–151 4.1 TerrestrialDifferentiation..................................................................................... 98 4.1.1 BULKCOMPOSITIONOFTHEEARTH((cid:1)4.568GA)...................... 99 4.1.2 ENERGETICOFPLANETARYDIFFERENTIATION PROCESSES.......................................................................................... 100 4.1.3 THECHRONOMETERSOFACCRETIONAND DIFFERENTIATION........................................................................... 102 4.1.4 PETROLOGYOFPLANETARYDIFFERENTIATION................... 103 4.1.5 PLANETARYMAGMAOCEANSANDTHESURFACEOFTHE PLANETSATTHEENDOFACCRETION((cid:1)4.56TO(cid:1)4.45GA).... 105 4.1.6 THEEARLYCRUST:TOWARDPLATETECTONICSAND CONTINENTS(4.5-4.4GA).................................................................. 106 4.2 LateContributions................................................................................................ 107 4.2.1 ATMOSPHERE.................................................................................... 107 4.2.2 OCEAN................................................................................................. 119 4.3 TheFirstContinents.............................................................................................. 128 4.3.1 THE3.8–3.9GAARCHAEANCRUST................................................ 129 4.3.2 THE4.0GAARCHAEANCRUST...................................................... 132 4.3.3 THEPRE-4.GAHADEANCRUST.................................................... 132 4.4 LateHeavyBombardment(LHB)......................................................................... 137 4.4.1 THELATEHEAVYBOMBARDMENT(LHB).................................. 137 4.4.2 ORIGINOFTHELHB......................................................................... 143 5 PrebioticChemistry–Biochemistry–EmergenceofLife(4.4-2Ga)/R.PASCAL, L.BOITEAU,P.FORTERRE,M.GARGAUD,A.LAZCANO,P.LO´ PEZ- GARCI´A,D.MOREIRA,M.-C.MAUREL,J.PERETO´ ,D.PRIEURand J.REISSE................................................................................................................ 153–203 5.1 AWordofCautionAboutChronology................................................................. 154 5.2 AScenarioStartingFromtheFirstChemicalBuildingBlocks............................... 157 5.2.1 AVAILABILITYOFORGANICMATTERANDENERGY............. 158 5.2.2 FAVOURABLEAREASFORPREBIOTICCHEMICAL PROCESSES.......................................................................................... 159 5.2.3 CHEMICALEVOLUTIONTHROUGHASTEPWISEPROCESS.... 159 5.2.4 CHEMICALEVOLUTIONTHROUGHADYNAMICPROCESS... 160 5.2.5 CATALYTICACTIVITYANDINFORMATIONSTORAGE.......... 161 5.3 HypothesisaboutEarlyMetabolisms.................................................................... 167 5.3.1 PRELIMINARYDEFINITIONS......................................................... 168 5.3.2 HOWTHEFIRSTENTITIESPRESUMABLYGAINEDTHEIR ENERGYANDCARBON?.................................................................. 168 5.4 OriginandEvolutionofCompartments................................................................ 171 5.4.1 AMPHIPHILICVERSUSNON-AMPHIPHILIC COMPARTMENTS.............................................................................. 171 5.4.2 SELF-ASSEMBLYANDEARLYEVOLUTIONOF COMPARTMENTS.............................................................................. 173 5.5 TheHypothesisofanRNAWorld........................................................................ 174 5.5.1 THERNAWORLDSCRIPT................................................................ 175 5.5.2 THECASEOFADENINE................................................................... 178 5.5.3 PROVISIONALCONCLUSIONS........................................................ 179 5.6 TheRNA/DNATransitionandtheOriginoftheGeneticCode............................ 180 5.6.1 THEORIGINOFTHEGENETICCODE........................................... 180 5.6.2 DATINGGENETICTAKEOVERS:HOWOLDARECELLULAR DNAGENOMES?................................................................................. 184 5.7 TheLastCommonAncestor.................................................................................. 187 5.7.1 PROTEINSYNTHESISINTHECENANCESTOR............................ 189 5.7.2 THECENANCESTOR’SGENOME:DNAORRNA?........................ 189 5.7.3 ENERGYANDCARBONMETABOLISMINTHE CENANCESTOR.................................................................................. 190 5.7.4 THEMEMBRANEOFTHECENANCESTOR.................................. 191 5.7.5 OTHERUNRESOLVEDQUESTIONS............................................... 192 5.8 TheOriginofViruses............................................................................................. 193 5.8.1 VIRALPROPERTIES.......................................................................... 194 5.8.2 HYPOTHESESONTHEORIGINOFVIRUSES................................ 195 6 EnvironmentalContext/H.MARTIN,P.CLAEYS,M.GARGAUD,D.L.PINTI andF.SELSIS.......................................................................................................... 205–245 6.1 EvolutionofGeologicalMechanisms:The2.5GaTransition................................ 206 6.1.1 EPISODICCRUSTALGROWTH....................................................... 206 6.1.2 GLOBALEVOLUTIONANDCHANGES((cid:1)2.5GAAGO)............... 208 6.1.3 CONCLUSION..................................................................................... 213 6.2 AtmosphereandOceanPhysico-chemicalEvolution............................................. 214 6.2.1 ATMOSPHEREEVOLUTION............................................................ 214 6.2.2 CHEMICALEVOLUTIONOFTHEOCEANS................................... 223 6.3 DisturbingEvents.................................................................................................. 232 6.3.1 SPHERULELAYERS:THERECORDOFARCHAEANAND PROTEROZOICIMPACTEVENTS................................................... 233 6.3.2 THEPALEOPROTEROZOICGLACIATIONS,THEFIRSTSNOW- BALLEARTH....................................................................................... 238 7 AncientFossilRecordandEarlyEvolution(ca.3.8to0.5Ga)/P.LO´ PEZ-GARCI´A, P.CLAEYS,E.DOUZERY,P.FORTERRE,D.MOREIRA, D.PRIEUR andM.VANZUILEN.............................................................................................. 247–290 7.1 TheFirstTracesofLife......................................................................................... 248 7.1.1 THETRACERS.................................................................................... 250 7.1.2 EXAMPLESFROMTHEFIELD........................................................ 255 7.1.3 THECHALLENGESAHEAD............................................................. 264 7.2 MicrobialandMetabolicDiversification............................................................... 265 7.2.1 HOWDOCONTEMPORARYCELLSGAINTHEIRENERGY?..... 265 7.2.2 WHATWERETHEMOSTPROBABLEMILESTONES?.................. 267 7.3 TheOriginofEukaryotes...................................................................................... 269 7.3.1 DIFFERENTHYPOTHESESFORTHEORIGINOF EUKARYOTES.................................................................................... 270 7.3.2 THELASTCOMMONANCESTOROFCONTEMPORARY EUKARYOTES.................................................................................... 274 7.3.3 WHENDIDEUKARYOTESAPPEARANDDIVERSIFY?.............. 275 7.4TheNeoproterozoic–CambrianTransition((cid:1)1000to542Ma)............................... 279 8 ASyntheticInterdisciplinary‘‘ChronologicalFrieze’’:anAttempt/D.DESPOIS andM.GARGAUD.................................................................................................. 291–297 8.1 GeneralDescription.............................................................................................. 291 8.2 HowtoInterprettheDataofthe‘‘ChronologicalFrieze’’?.................................... 293 8.2.1 EONANDPHASE................................................................................ 293 8.2.2 AGE,ERRORBARS,TIMEANDDURATION................................. 293 8.2.3 REFERENCETIMES........................................................................... 293 8.2.4 EVENTS................................................................................................ 293 8.2.5 DATINGMETHODS........................................................................... 294 8.2.6 RELEVANTOBSERVATIONS........................................................... 294 8.2.7 RELIABILITY...................................................................................... 294 8.2.8 CONSEQUENCESFORLIFE’SORIGINANDEVOLUTION......... 294 8.2.9 REFERENCES..................................................................................... 294 8.2.10NOTES.................................................................................................. 294 9 LifeOnEarth...AndElsewhere?/T.MONTMERLE,P.CLAEYS,M.GARGAUD, P.LO´ PEZ-GARCI´A,H.MARTIN,R.PASCAL,J.REISSEandF.SELSIS......... 299–312 9.1 TheChronologyofLifeintheSolarSystem:Highlights........................................ 300 9.1.1 FROMTHEBIRTHOFTHESUNTOTHEBIRTHOFTHE EARTH.................................................................................................. 300 9.1.2 THEHISTORYOFTHEEARLYEARTHANDGEOLOGICAL CONSTRAINTSONTHEORIGINOFLIFE..................................... 302 9.1.3 FACTSOFLIFE................................................................................... 304 9.2 OurWorldinPerspective:IsLifeUniversal?.......................................................... 306 10 Authors’CVs.......................................................................................................... 313–317 11 Glossary................................................................................................................. 319–370 Earth,Moon,andPlanets(2006)98:1–9 (cid:1)Springer2006 DOI10.1007/s11038-006-9085-7 1. From the Arrow of Time to the Arrow of Life MURIEL GARGAUD Observatoire Aquitain des Sciences del’Univers, Universite´Bordeaux1, Bordeaux, France (E-mail: [email protected]) JACQUES REISSE Faculte´desSciencesApplique´es(CP165/64),Universite´LibredeBruxelles,Brussels,Belgium (E-mail: [email protected]) (Accepted4 April2006) Abstract. Astrobiology, like many (but not all) sciences, must take into account questions of the ‘‘Why?’’, ‘‘Where?’’, ‘‘How?’’ and ‘‘When?’’ type. In this introductory chapter, we explain why, in this book,wewillonlyconsidertwoofthesequestionsthatare,moreover,deeplyinterrelated.Chronologyis bydefinitionrelatedtothe‘‘when?’’questionbutassoonasweareinterestedinthehistoryofEarthorthe historyoflife,itisimpossibletotreatthesequestionsandtheiranswerswithoutexplicitreferencestothe ‘‘how?’’questions.Wealsopresentinthischapterthegenesisandtheaimofthebook. Keywords: Time,dating 1.1. The Notion of Time in Astrobiology Scientists are trained to ask questions about Nature. As is well known in dialectics, the quality of the question determines the quality of the answer. Questions that remain unanswered for a long time are probably questions that must be formulated in a different way. Each chapter (from the ‘‘Dating methods and corresponding chronometers in astro- biology’’chapter2tothefinal‘‘LifeonEarthandelsewhere’’chapter9)hasbeensubmittedtoa verysevereinternalrefereeing,eachauthorhavingreadmany,ifnotall,contributionstomake comments, criticisms and advice. As a general rule these comments/remarks were discussed amongsttheauthorsandwereincludedintheoriginaltext.Ideally,alltheauthorscouldhave signed together all the contributions but we have preferred to ‘‘render to Caesar the things whichareCaesar’s’’andthespecialistwhofirstwroteitsignedeachsubchapter.Forfurther information on the contributing authors, please refer to CVs’, included at the end of this volume. All subchapters devoted to the same general field have been gathered together as a chapterunderageneraltitle.Consequently,eachchapterisalphabeticallyco-signedbyallthe authorsofthesubchapters,andthefirstauthoristhecoordinator whosuperviseditshomo- geneityandcompleteness.Inallcases,eachauthordidhis(orher)besttogivetothereaderthe most accurate and recent data, along with the evidence, but also assumptions, on which the dataisfoundedand,whennecessary,thecautionrequiredforitsinterpretation.Aglossaryof terminologyusedinallchaptersisavailableattheendofthisvolume. 2 MURIELGARGAUDANDJACQUESREISSE Among the numerous questions scientists are interested in, those related to time are probably the most fascinating because time is a very peculiar dimension. From Einstein’s work, we learnt that, for physics, time is ‘‘just’’ the fourthdimension but, on theother hand, weare also aware thatthe time dimension, as we perceive it, is qualitatively different from the space dimensions. Time ‘‘flows’’; time is irreversible and associated with past, present and future. ‘‘Why is time different from the other dimensions?’’ remains an open question, and this is one major reason why many scientists are fascinated by problems related to time. Of course, not all sciences are historical, i.e. not all sciences focus their study on similarities or differences occurring between past, present and future events. For example, a chemist studying the evolu- tion of a reaction as a function of time certainly knows that if pressure, temperature and all other experimental conditions are kept the same, the reactionwillevolvetomorrowinadeterministicway,exactlyasitdoestoday. For this chemist, time is a parameter easily measurable with a chronometer. Even if the reaction under study is irreversible, chemists (as all scientists) know that the physical laws do not change with time. As Noether showed, this time translation independence is related to the energy conservation law (Zee, 1986) The situation is completely different for a geologist or a biologist inter- ested in evolutionary problems. They must take into account the historical time and, therefore, the irreversible flow of time, the so-called ‘‘arrow of time’’ (e.g. Klein and Spiro, 1997). For these scientists, a chronometer is useless: they need to measure time with respect to a conventional reference time. Their situation can be compared to that of a historian who, in Western countries, uses as reference time the birth of Christ, even though its date is still debated among historians, being uncertain by several years. All of them, historians, geologists or biologists have in common their need to apply to a time reference chosen by convention. Cosmologists are the only scientists who could claim to use a time scale basedonanabsolutezeroevenif,today,itisdiscussedwhethertheBigBang itself could be considered as the origin of our time. Planetologists and geol- ogists use different reference times depending on the problem they are inter- ested in. They know from cosmologistsand astronomers thatthe Universe is probably13.7billionyearsold,buttheydonotusetheBigBangasreference time: they use the age of the oldest meteorites instead. Frequently, but not always, they use a time scale that takes as reference time the ‘‘present time’’ defined as 1950 AD1, which is the reference used for 14C dating. Any time is thus expressed in ‘‘years before present’’ (yr BP). On this scale and just as examples, the accretion of the solar system took place approximately 1AD = Anno Domini = AfterJesus-Christ.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.