Graduate Texts in Physics Dietrich Stauffer H. Eugene Stanley Annick Lesne From Newton to Mandelbrot A Primer in Theoretical Physics Third Edition Graduate Texts in Physics Series editors Kurt H. Becker, Polytechnic School of Engineering, Brooklyn, USA Jean-Marc Di Meglio, Université Paris Diderot, Paris, France Sadri Hassani, Illinois State University, Normal, USA Bill Munro, NTT Basic Research Laboratories, Atsugi, Japan Richard Needs, University of Cambridge, Cambridge, UK William T. Rhodes, Florida Atlantic University, Boca Raton, USA Susan Scott, Australian National University, Acton, Australia H. Eugene Stanley, Boston University, Boston, USA Martin Stutzmann, TU München, Garching, Germany Andreas Wipf, Friedrich-Schiller-Universität Jena, Jena, Germany Graduate Texts in Physics GraduateTextsinPhysicspublishescorelearning/teachingmaterialforgraduate-and advanced-levelundergraduatecoursesontopicsofcurrentandemergingfieldswithin physics, both pure and applied. These textbooks serve students at the MS- or PhD-levelandtheirinstructorsascomprehensivesourcesofprinciples,definitions, derivations,experimentsandapplications(asrelevant)fortheirmasteryandteaching, respectively.Internationalinscopeandrelevance,thetextbookscorrespondtocourse syllabisufficientlytoserveasrequiredreading.Theirdidacticstyle,comprehensive- nessandcoverageoffundamentalmaterialalsomakethemsuitableasintroductions orreferencesforscientistsentering,orrequiringtimelyknowledgeof,aresearchfield. More information about this series at http://www.springer.com/series/8431 Dietrich Stauffer H. Eugene Stanley (cid:129) Annick Lesne From Newton to Mandelbrot A Primer in Theoretical Physics Third Edition 123 Dietrich Stauffer Annick Lesne Institute for Theoretical Physics Laboratoire PhysiqueThéorique dela CologneUniversity MatièreCondensée(LPTMC) Cologne UniversitéPierre etMarie Curie Germany Paris France H.Eugene Stanley Department ofPhysics—Center forPolymer Studies BostonUniversity Boston, MT USA ISSN 1868-4513 ISSN 1868-4521 (electronic) Graduate Textsin Physics ISBN978-3-662-53683-4 ISBN978-3-662-53685-8 (eBook) DOI 10.1007/978-3-662-53685-8 LibraryofCongressControlNumber:2016958466 ©Springer-VerlagGmbHGermany1990,1996,2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringer-VerlagGmbHGermany Theregisteredcompanyaddressis:HeidelbergerPlatz3,14197Berlin,Germany Preface to the Third Edition It’s very simple: This English edition is an updated translation of our Cours de Physique, Springer, Paris 1999, which was an expanded French translation of Stauffer & Stanley, From Newton to Mandelbrot, Springer, New York 1990 and 1996, which in turn was an expanded translation of Stauffer, Theoretische Physik, Springer,Heidelberg1989(in German language).Thefirstexpansionwas Chap.5 on Fractals, the second expansion Chap. 6 on Dynamical Systems and Chaos. The present version omits the diskettes added to the earlier version. Chapters1–4containthestandardmaterialofcoursesintheoreticalphysicsand are supposed to accompany lectures at the university; thus they are rather con- densed. Theyaresupposedtofill1year ofteaching. Chapters5and6,incontrast, are written less condensed since this material may not be part of standard lectures andthuscouldbestudiedwithoutthehelpofauniversityteacher.Anappendixon elementary particles lies somewhere in between: It could be a summary of a much more detailed course, or studied without such a course. Cologne, Germany Dietrich Stauffer Boston, Massachusetts H. Eugene Stanley Paris, France Annick Lesne December 2015 v Preface to the Second Edition With increasing age, some authors gain more and more weight, scientifically and gravitationally, and so do their books. Thus a new section on elementary particle physics has been added. Its emphasis on computer simulation and phase transition connectsitwiththeendoftheStatisticalPhysicschapter.Incontrasttothefirstfour chapters, it does not lead to complicated exercises and may be more suited to self-study; thus it is put into an appendix. The first four chapters, thought to accompanyacourseortosummarizepreviouslectures,nowalsoanswerthemany questions at the end of each chapter; instructors may get solutions of the more complicated problems by internet ([email protected]). For the interested reader, we added to the four chapters recent literature references wherever modern research aspects are touched upon in the text. SomecomputerprogramsforthefractalsinChap.5areincludedinthediskette that accompanies this book. More on the general subject of teaching fractals can be found in the book Fractals in Science, edited by H.E. Stanley, E.F. Taylor, and P.A.Trunfio(Springer,NewYork1994,ISBN0-387-94361-7and3-540-94361-7). The programs on the IBM diskette were constructed primarily by S.V. Buldyrev, F. Caserta, A. Chandra, K. Shakhnovich, and E.F. Taylor while those for the MacintoshdiskettewerewrittenmainlybyJ.Blandey,S.V.Buldyrev,T.Mekonen, R.L. Selinger, P. Trunfio, and B. Volbright. We thank these individuals for their contribution,andalsothankH.Rollnik,F.-W.Eicke,F.W.Hehl,E.W.Mielke,and J. Potvin for their help with the additions to the book. We hope readers who note further imperfections, or in any way wish to make constructive suggestions, will communicate their thoughts to the authors. Cologne, Germany Dietrich Stauffer Boston, Massachusetts H. Eugene Stanley June 1995 vii Preface to the First Edition This is nota book for theoretical physicists. Rather it is addressedto professionals fromotherdisciplines,aswellastophysicsstudentswhomaywishtohaveinone slimvolumeaconcisesurveyofthefourtraditionalbranchesoftheoreticalphysics. Wehaveaddedafifthchapter,whichemphasizesthepossibleconnectionsbetween basic physics and geometry. Thus we start with classical mechanics, where Isaac Newton was the dominating force, and end with fractal concepts, pioneered by Benoit Mandelbrot.Just asreadingareviewarticle shouldnotreplacethestudyof originalresearchpublications,soalsoperusingthepresentshortvolumeshouldnot replace systematic study of more comprehensive texts for those wishing a firmer grounding in theoretical physics. The opening paragraphs of Chap. 5 benefitted from input by B. Jorgensen. We wishtothankG.DaccordforprovidinguswithPlates7and8,F.FamilyforPlates 1and15,A.D.FowlerforPlate3,R.LenormandforPlate11,P.MeakinforPlate 14aswellasthecoverillustration,J.NittmannforPlate13,U.OxaalforPlate10, A.SkjeltorpforPlates4,9and16,K.R.SreenivasanforPlate5,R.H.R.Stanleyfor Plate 2, and P. Trunfio for Plates 6 and 12. We also thank A. Armstrong, A. Coniglio, J. Hajdu, F.W. Hehl, K.W. Kehr, J. Kertesz, A. Margolina, R. Selinger, P. Trunfio, and D.E. Wolf as well as many students—particularly L. Jaeger—who offered their feedback at appropriate occasions and A. Armstrong fortranslatingChaps.1–4fromtheoriginalGermaneditionpublishedbySpringer. Jülich and Boston D. Stauffer July 1990 H.E. Stanley ix Contents 1 Mechanics.. .... .... .... .... .... ..... .... .... .... .... .... 1 1.1 Point Mechanics. .... .... .... ..... .... .... .... .... .... 1 1.1.1 Basic Concepts of Mechanics and Kinematics .... .... 1 1.1.2 Newton’s Law of Motion.... .... .... .... .... .... 3 1.1.3 Simple Applications of Newton’s Law.. .... .... .... 6 1.1.4 Harmonic Oscillator in One Dimension . .... .... .... 13 1.2 Mechanics of Point Mass Systems.... .... .... .... .... .... 17 1.2.1 The Ten Laws of Conservation.... .... .... .... .... 17 1.2.2 The Two-Body Problem..... .... .... .... .... .... 19 1.2.3 Constraining Forces and d’Alembert’s Principle... .... 20 1.3 Analytical Mechanics. .... .... ..... .... .... .... .... .... 24 1.3.1 The Lagrange Function. ..... .... .... .... .... .... 24 1.3.2 The Hamilton Function. ..... .... .... .... .... .... 26 1.3.3 Harmonic Approximation for Small Oscillations .. .... 28 1.4 Mechanics of Rigid Bodies .... ..... .... .... .... .... .... 33 1.4.1 Kinematics and Inertia Tensor .... .... .... .... .... 33 1.4.2 Equations of Motion... ..... .... .... .... .... .... 36 1.5 Continuum Mechanics.... .... ..... .... .... .... .... .... 42 1.5.1 Basic Concepts... .... ..... .... .... .... .... .... 42 1.5.2 Stress, Strain and Hooke’s Law ... .... .... .... .... 47 1.5.3 Waves in Isotropic Continua.. .... .... .... .... .... 49 1.5.4 Hydrodynamics... .... ..... .... .... .... .... .... 50 2 Electricity and Magnetism. .... .... ..... .... .... .... .... .... 61 2.1 Vacuum Electrodynamics.. .... ..... .... .... .... .... .... 61 2.1.1 Steady Electric and Magnetic Fields.... .... .... .... 61 2.1.2 Maxwell’s Equations and Vector Potential... .... .... 66 2.1.3 Energy Density of the Field .. .... .... .... .... .... 68 2.1.4 Electromagnetic Waves. ..... .... .... .... .... .... 68 2.1.5 Fourier Transformation. ..... .... .... .... .... .... 69 2.1.6 Inhomogeneous Wave Equation ... .... .... .... .... 70 xi xii Contents 2.1.7 Applications . .... .... ..... .... .... .... .... .... 71 2.2 Electrodynamics in Matter. .... ..... .... .... .... .... .... 76 2.2.1 Maxwell’s Equations in Matter.... .... .... .... .... 76 2.2.2 Properties of Matter ... ..... .... .... .... .... .... 77 2.2.3 Wave Equation in Matter .... .... .... .... .... .... 79 2.2.4 Electrostatics at Surfaces..... .... .... .... .... .... 80 2.3 Theory of Relativity.. .... .... ..... .... .... .... .... .... 83 2.3.1 Lorentz Transformation. ..... .... .... .... .... .... 84 2.3.2 Relativistic Electrodynamics.. .... .... .... .... .... 87 2.3.3 Energy, Mass and Momentum .... .... .... .... .... 89 3 Quantum Mechanics.. .... .... .... ..... .... .... .... .... .... 93 3.1 Basic Concepts . .... .... .... ..... .... .... .... .... .... 93 3.1.1 Introduction . .... .... ..... .... .... .... .... .... 93 3.1.2 Mathematical Foundations ... .... .... .... .... .... 94 3.1.3 Basic Axioms of Quantum Theory. .... .... .... .... 96 3.1.4 Operators ... .... .... ..... .... .... .... .... .... 98 3.1.5 Heisenberg’s Uncertainty Principle. .... .... .... .... 100 3.2 Schrödinger’s Equation ... .... ..... .... .... .... .... .... 101 3.2.1 The Basic Equation.... ..... .... .... .... .... .... 101 3.2.2 Penetration .. .... .... ..... .... .... .... .... .... 102 3.2.3 Tunnel Effect .... .... ..... .... .... .... .... .... 104 3.2.4 Quasi-classical WKB Approximation ... .... .... .... 105 3.2.5 Free and Bound States in the Potential Well . .... .... 106 3.2.6 Harmonic Oscillators .. ..... .... .... .... .... .... 107 3.3 Angular Momentum and the Structure of the Atom... .... .... 110 3.3.1 Angular Momentum Operator. .... .... .... .... .... 110 3.3.2 Eigenfunctions of L2 and Lz.. .... .... .... .... .... 111 3.3.3 Hydrogen Atom .. .... ..... .... .... .... .... .... 112 3.3.4 Atomic Structure and the Periodic System ... .... .... 115 3.3.5 Indistinguishability.... ..... .... .... .... .... .... 116 3.3.6 Exchange Reactions and Homopolar Binding. .... .... 118 3.4 Perturbation Theory and Scattering ... .... .... .... .... .... 120 3.4.1 Steady Perturbation Theory... .... .... .... .... .... 120 3.4.2 Unsteady Perturbation Theory. .... .... .... .... .... 122 3.4.3 Scattering and Born’s First Approximation... .... .... 124 4 Statistical Physics .... .... .... .... ..... .... .... .... .... .... 129 4.1 Probability and Entropy... .... ..... .... .... .... .... .... 129 4.1.1 Canonical Distribution . ..... .... .... .... .... .... 129 4.1.2 Entropy, Axioms and Free Energy. .... .... .... .... 132 4.2 Thermodynamics of the Equilibrium .. .... .... .... .... .... 135 4.2.1 Energy and Other Thermodynamic Potentials. .... .... 135 4.2.2 Thermodynamic Relations ... .... .... .... .... .... 138
Description: