ebook img

From Natural to Arti cial Life: Biomimetic Mechanisms in Animat Designs PDF

26 Pages·2010·0.26 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview From Natural to Arti cial Life: Biomimetic Mechanisms in Animat Designs

From Natural to Arti(cid:2)cial Life(cid:3) Biomimetic Mechanisms in Animat Designs Jean(cid:2)Arcady Meyer AnimatLab Ecole Normale Sup(cid:3)erieure (cid:4)(cid:5) rue d(cid:6)Ulm (cid:7)(cid:8)(cid:9)(cid:10)(cid:11) Paris cedex (cid:11)(cid:8)(cid:12) France E(cid:2)mail(cid:13) meyer(cid:2)wotan(cid:3)ens(cid:3)fr Abstract This paper describes several models that incorporate some biomimetic mechanisms into the control architecture of an animat that has to survive in a changing environment(cid:2) The adaptive capacities of these mechanisms are compared to engineering solutions(cid:3) in applica(cid:4) tion domains that involve navigation(cid:3) action selection(cid:3) and evolutionary design(cid:2) It is argued that(cid:3) although impressive adaptive capacities are already a(cid:5)orded by such biomimetic mech(cid:4) anisms(cid:3) these capacities are nevertheless limited by the shortcomings of current biological knowledge(cid:2) It is also argued that these shortcomings could be remedied were biologists will(cid:4) ing to take advantage of the bottom(cid:4)up and synthetic point of view with which arti(cid:6)cial life might complement their traditional top(cid:4)down and analytic approach(cid:2) Keywords Animats (cid:2) Navigation (cid:2) Action Selection (cid:2) Evolution (cid:2) Development (cid:0) Introduction In its endeavor to unravel the mechanisms and processes that sustain natural life(cid:2) traditional Biology usually seeks to decompose a system into its constituent sub(cid:3)systems and then to study these sub(cid:3)systems in isolation from one another(cid:2) according to a top(cid:2)down(cid:2) analytical and reductionist approach(cid:4) In contrast(cid:2) scientists involved in arti(cid:5)cial life research attempt to synthesize behaviors characteristic of natural living systems with man(cid:3)made artifacts like computersorrobots(cid:4) Ideally(cid:2) their approachis bottom(cid:3)upandstartswithacollection ofentities ormodules exhibiting behaviorsthataresimple andwellunderstood(cid:2) organizingthemintomore complex systems in which internal interactions generate emergent life(cid:3)like properties (cid:6)Langton(cid:2) (cid:7)(cid:8)(cid:9)(cid:8)(cid:10) Taylor(cid:2) (cid:7)(cid:8)(cid:8)(cid:11)(cid:12)(cid:4) Research in arti(cid:5)cial life (cid:6)Langton(cid:2) (cid:7)(cid:8)(cid:9)(cid:8)(cid:10) Langton et al(cid:4)(cid:2) (cid:7)(cid:8)(cid:8)(cid:11)(cid:10) Varela and Bourgine(cid:2) (cid:7)(cid:8)(cid:8)(cid:11)(cid:10) Langton et al(cid:4)(cid:2) (cid:7)(cid:8)(cid:8)(cid:13)(cid:10) Brooks and Maes(cid:2) (cid:7)(cid:8)(cid:8)(cid:14)(cid:10) Moran et al(cid:4)(cid:2) (cid:7)(cid:8)(cid:8)(cid:14)(cid:12) has given rise to a num(cid:3) ber of applications(cid:2) notably regarding computer viruses(cid:2) autocatalytic nets(cid:2) cellular automata(cid:2) arti(cid:5)cial nucleotides(cid:2) immune systems(cid:2) market simulations(cid:2) etc(cid:4) In particular(cid:2) it has been concerned with the conception and construction of animats (cid:3) that is(cid:2) of simulated animals or autonomous robots (cid:3) whose structures and functionalities are as much inspired from current biological knowledge aspossible(cid:2) in thehope thatthese animatswill exhibit atleast some ofthe adaptive capacities of real animals and provecapable ofsurviving in unpredictable and possibly threatening environments (cid:6)Meyer and Wilson(cid:2) (cid:7)(cid:8)(cid:8)(cid:7)(cid:10) Meyer et al(cid:4)(cid:2) (cid:7)(cid:8)(cid:8)(cid:15)(cid:10) Cli(cid:16) et al(cid:4)(cid:2) (cid:7)(cid:8)(cid:8)(cid:13)(cid:10) Maes et al(cid:4)(cid:2) (cid:7)(cid:8)(cid:8)(cid:17)(cid:12)(cid:4) (cid:7) The main problem facing any animat designer is that of (cid:5)guring out what sensors and what actuatorsshould be connected through whatcontrolarchitecture in ordertosolve whatsurvival problem in whatenvironment(cid:4) Although theobjectives(cid:2) methods and results ofanimatresearch have been extensively reviewed elsewhere(cid:2) the corresponding papers have mostly emphasized theirsimilarities anddi(cid:16)erenceswithrespecttothoseoftraditionalArti(cid:5)cialIntelligence (cid:6)Meyer and Guillot(cid:2) (cid:7)(cid:8)(cid:8)(cid:7)(cid:2)Wilson(cid:2) (cid:7)(cid:8)(cid:8)(cid:7)(cid:10) Maes(cid:2) (cid:7)(cid:8)(cid:8)(cid:15)(cid:10) Meyer and Guillot(cid:2)(cid:7)(cid:8)(cid:8)(cid:13)(cid:10) Steels and Brooks(cid:2) (cid:7)(cid:8)(cid:8)(cid:14)(cid:10) Meyer(cid:2) (cid:7)(cid:8)(cid:8)(cid:14)(cid:2) (cid:7)(cid:8)(cid:8)(cid:17) (cid:12)(cid:4) Within the framework of such comparisons(cid:2) the biological roots of the animat approach haven(cid:18)t been granted special attention(cid:4) This paper will be centered on these rootsandwill arguethatadaptivebehaviorsgeneratedbybiomimetic mechanismsarepromising solutions to various survival problems(cid:2) and that such behaviors are likely to provide e(cid:19)cient substitutesforthepurelyengineering solutionstotheseproblemsthatarewidelyusedatpresent(cid:4) Current research e(cid:16)orts representing three domains of application will illustrate this point(cid:2) and will dealsuccessively withproblemsofnavigation(cid:2)ofaction selection(cid:2)andofevolutionary design(cid:4) (cid:2) Navigation The ability to navigate (cid:3) i(cid:4)e(cid:4)(cid:2) to reach any goal place from any starting place(cid:2) while avoiding passing through other places (cid:3) is probably the most basic requisite for an animat(cid:18)s survival(cid:4) Indeed(cid:2) without such an ability(cid:2) the animat wouldn(cid:18)t be able to reach energy sources(cid:2) to avoid bumpingintodamagingobstacles(cid:2)ortoescapefromdangeroushazards(cid:4) Engineeringsolutionsto thenavigationproblem usually resorttointernal geometricalrepresentationsoftheenvironment (cid:6)Schwartz and Yeap(cid:2) (cid:7)(cid:8)(cid:9)(cid:20)(cid:10) Canny(cid:2) (cid:7)(cid:8)(cid:9)(cid:9)(cid:10) Latombe(cid:2) (cid:7)(cid:8)(cid:8)(cid:7)(cid:10) Hwang and Ahuja(cid:2) (cid:7)(cid:8)(cid:8)(cid:11)(cid:12) that are confronted with various implementation di(cid:19)culties(cid:2) due to memory or time requirements(cid:2) as well as sensory and motor errors (cid:6)Nehmzow(cid:2) (cid:7)(cid:8)(cid:8)(cid:14)(cid:12)(cid:4) Therefore(cid:2) as many animals are very good at navigating in apparently simpler and more robust ways(cid:2) it is not surprising that several research e(cid:16)orts have already been aimed at incorporating the corresponding current biological knowledge into animat navigation models (cid:6)for a review(cid:2) see Trullier et al(cid:4)(cid:2) (cid:7)(cid:8)(cid:8)(cid:17)(cid:12)(cid:4) The work of Franceschini (cid:6)Franceschini et al(cid:4)(cid:2) (cid:7)(cid:8)(cid:9)(cid:8)(cid:10) Franceschini(cid:2) (cid:7)(cid:8)(cid:8)(cid:11)(cid:12)(cid:2) for example(cid:2) calls upon knowledge gained about the compound eye of the (cid:21)y and upon the development of an on(cid:3)board electro(cid:3)optical system for the guidance of a mobile robot(cid:4) This robot moves about and(cid:2) from its relative motion between itself and the environment(cid:2) evaluates the distance to any potential obstacle(cid:4) The control system of the robot includes a main visual system with compound optics and a panoramic (cid:5)eld that calls upon a circular network of motion detectors(cid:4) Each such detector measures the relative angular velocity of any contrast point that passes across its receptive (cid:5)eld as a result of the robot(cid:18)s own motion and makes use of the motion parallax to evaluate the radial distance to that point (cid:6)Figure (cid:7)(cid:12)(cid:4) The information relayed by the motion detectors is then input to an analog parallel neural network designed to implement an obstacle(cid:3)avoidance algorithm(cid:4) This network transforms the polar map of the environment delivered by the detectors into two analog signals that modulate the speed of the drive and steering motorsof the robot(cid:4) The control architecture is also equipped with an accessory visual systemthatconstantlysurveysthe horizon and informsthe robotaboutthe bearings ofa target lamp(cid:4) Likewise(cid:2) the navigation system described by Cartwrightand Collett (cid:6)(cid:7)(cid:8)(cid:9)(cid:15)(cid:12)is inspired from the way bees use nearby landmarks to return to an already known food source(cid:4) This ability relies upon the use of the remembered image of what was present on their retina when they were at the food source(cid:22) bees seem to adjust their (cid:21)ight path by continuously comparing their retinal image of the landmark con(cid:5)guration with their memorized snapshot and to lessen the (cid:11) (cid:2) (cid:4) (cid:2) (cid:3) (cid:3) (cid:5)(cid:6) (cid:4) (cid:4) (cid:5)(cid:6) (cid:7) (cid:8)(cid:9)(cid:10)(cid:11)(cid:3) (cid:2) Figure (cid:2)(cid:3) Principle of motion parallax(cid:2) The distance D to a point P located at azimuth (cid:3) can be calculated by an animat translating at speed V(cid:0)(cid:4) if it is equipped with sensors measuringthe angular speed (cid:5) of P(cid:2) discrepancy between the two (cid:6)Figure (cid:11)(cid:12)(cid:4) Other models involve spatial representations that seem to be encoded in the hippocampus and para(cid:3)hippocampal formations in the brain of some animals (cid:6)O(cid:18)Keefe and Nadel(cid:2) (cid:7)(cid:8)(cid:20)(cid:9)(cid:12) and to involve so(cid:3)called place cells and head direction cells(cid:4) In relation to the spatial layout of surrounding landmarks(cid:2) the activity of the former depends on the animal(cid:18)s current location(cid:2) whatever the direction faced (cid:6)for a review(cid:2) see Muller et al(cid:4)(cid:2) (cid:7)(cid:8)(cid:8)(cid:7)(cid:12)(cid:2) whereas the activity of the latter depends upon the absolute orientation of the head(cid:2) whatever the animal(cid:18)s location (cid:6)Taube et al(cid:4)(cid:2) (cid:7)(cid:8)(cid:8)(cid:23)a(cid:2) (cid:7)(cid:8)(cid:8)(cid:23)b(cid:12)(cid:4) Various more or less realistic equivalents of place cells and head direction cells have been used in several navigation systems(cid:4) For example(cid:2) when the animat of (cid:0) Zipser (cid:6)(cid:7)(cid:8)(cid:9)(cid:17)(cid:12)explores its environment(cid:2) it recruits atregular time intervals a so(cid:3)called view cell whose activity is tuned to the distance and bearings of given landmarks seen from the current position(cid:4) If the animat moves slightly from this position(cid:2) the activity of the corresponding view cell diminishes according to a Gaussian law so that(cid:2) when the distances and bearings of the landmarks signi(cid:5)cantly di(cid:16)er from those to which the view cell has been tuned(cid:2) the cell will no longer be activated(cid:4) Likewise(cid:2) every time a view cell is recruited(cid:2) a so(cid:3)called goal cell is also recruited(cid:2) whose output codes the direction of the goal from the current position (cid:6)Figure (cid:15)(cid:12)(cid:4) After exploration(cid:2) when the animat moves in its environment(cid:2) the degree of activation of each view cell it has previously recruited will depend upon the position and orientation of the animat relative to the landmarks(cid:4) Such an activity pattern uniquely characterizes the place the animat is currently situated in and(cid:2) therefore(cid:2) constitutes what(cid:2) since Tolman (cid:6)(cid:7)(cid:8)(cid:13)(cid:9)(cid:12)(cid:2) has comed to be called a cognitive map(cid:4) Insofar as the activity level of each view cell is used to weight the direction information provided by its associated goal cell(cid:2) the direction in which the animat should movein order toreach its goal fromthe current position is given by the weighted average of the directions coded by each goal cell (cid:6)Figure (cid:13)(cid:12)(cid:4) Such an implementation endows an animat with minimal adaptive capacities(cid:4) In partic(cid:3) ular(cid:2) its ability to self(cid:3)estimate its position in the environment relies upon information that (cid:0) It is not called a place cell because its activity also depends upon the current orientation ofthe animat(cid:2) (cid:15) (b) (a) (c) Figure (cid:4)(cid:3) Cartwright and Collett(cid:6)s snapshot model(cid:2) The model bee is represented by two concentric circles(cid:4) the outer circle represents its current retinal image and the inner one represents itsmemorizedsnapshot(cid:2) (cid:7)a(cid:8)Atfoodlocation(cid:4)the imagesofthe landmarks(cid:7)(cid:9)lled circles(cid:8) project onto the retina and the snapshot(cid:4) as shown(cid:2) To return to the feeding site (cid:7)b(cid:8)(cid:4) the modelbee tries to match its retinal image (cid:7)dark areas on the outer circle(cid:8) and the remembered snapshot (cid:7)dark areas on the inner circle(cid:8)(cid:2) Each dark area on the snapshot is pairedwiththeclosestdarkareaontheretinalimage(cid:7)dashedlines(cid:8)(cid:2) Eachpairyieldsaradial vector(cid:7)forward(cid:10)backwardmotion(cid:8)forthesizeadjustmentandatangentialvector(cid:7)left(cid:10)right rotation(cid:8) for the orientation adjustment (cid:7)un(cid:9)lled arrows(cid:8)(cid:2) The resulting movement(cid:4) which globallyreduces the discrepancy between the snapshots(cid:4) is computed (cid:7)c(cid:8) fromthe summed vector (cid:7)(cid:9)lled arrow(cid:8)(cid:2) (cid:13) b Animat’s position and orientation a 4 c Landmark 2 G Goal location 1 G Oriented view-field 3 Orientation of the field (local reference direction) 5 Direction to the goal associated to the field Computed direction to the goal Figure (cid:5)(cid:3) Zipser(cid:6)s view(cid:11)(cid:9)eld model(cid:2) Each view(cid:11)cell in the modelis associated with a view(cid:11) (cid:9)eld(cid:4) de(cid:9)ned by the distances from the center of the (cid:9)eld to three landmarks and by an orientation(cid:2) This orientation(cid:4) which serves as a local reference direction(cid:4) corresponds to the orientation the animat had at its (cid:9)rst visit to the place(cid:4) and is de(cid:9)ned by where the three landmarksare with respect to the animat(cid:6)shead(cid:11)direction (cid:7)left(cid:4)ahead(cid:4) or right(cid:8)(cid:2) The direction to the goal from the view(cid:11)(cid:9)elds is coded as vectors(cid:4) oriented with respect to each local reference direction(cid:2) The direction to the goal is interpolated from the activities and the vectors associated with all the view(cid:11)cells (cid:7)see text and Figure (cid:12)(cid:8)(cid:2) is distributed across numerous place cells in its cognitive map(cid:2) and the accidental destruction ofafewsuchplacecells wouldcauseagracefuldegradationoftheanimat(cid:18)snavigationcapacities(cid:4) The spatial representations built by other navigation systems also encode the topological links that characterize the animat(cid:18)s environment(cid:4) During exploration(cid:2) when the animat moves fromone given place to another(cid:2)a link is drawn between the place cells thatare associated with these places(cid:2) and this link is indexed by the associated move(cid:4) Thus(cid:2) subsequently(cid:2) because the animat knows which moves are likely to lead to which place from which other place(cid:2) it can plan a trajectory to the goal(cid:4) This(cid:2) for example(cid:2) is the case with Matari(cid:24)c(cid:18)s robot (cid:6)Matari(cid:24)c(cid:2) (cid:7)(cid:8)(cid:8)(cid:23)(cid:12) that explores the environment by following walls(cid:4) This robot uses the information provided by its sensors and its e(cid:16)ectors to characterize di(cid:16)erent places in its environment and builds a topological cognitive map that records the possible moves from place to place(cid:4) Thus(cid:2) while the robot explores the environment shown on Figure (cid:14)(cid:2) it records in its map thatplace C(cid:13)is passed through while it moves in the direction indicated by its compass and while its sonars detect similar nearby obstacles on its right and on its left (cid:3) thus suggesting that place C(cid:13) is actually a corridor(cid:4) Likewise(cid:2) it records that a right turn leads from C(cid:13) to another place(cid:2) RW(cid:17)(cid:2) which is passed throughwhile therobotmovesin a given direction and while it detectsa nearbyobstacle on its right (cid:3) thus suggesting that place RW(cid:17) is adjacent to a right wall(cid:4) In other words(cid:2) places like C(cid:13) and RW(cid:17) on the robot(cid:18)scognitive map play the role of place cells thatbecome activated when the robot passes through the corresponding places in the environment(cid:2) and such a map allows the robot to position itself correctly(cid:4) Because the map also provides information about the physical length of each place(cid:2) the shortest path leading to any given goal from the current place can be generated by initiating a spreading activation process throughout the map(cid:2) in all directions from the goal(cid:4) Insofar as the speed of this process depends upon the length of the places through which it travels(cid:2) the direction from which goal activation (cid:5)rst arrives in each place indicates the direction in which to move in order to reach the goal(cid:4) Such a navigation system provides an animat with the highly adaptive capacity of planning its trajectory to the goal(cid:4) According to the experience in the head metaphor (cid:6)Craik(cid:2) (cid:7)(cid:8)(cid:13)(cid:15)(cid:12)(cid:2) trajectory planning makes it possible to run internal simulations that(cid:2) being decoupled from overt behavior(cid:2) avoid the hazards of dangerous encounters(cid:4) (cid:14) Visual input Left Ahead Right L dL L dL L dL a b c a b c a b c Landmark identity cells View cells 1 2 3 4 5 Cognitive map Representation of the goal location Goal cells weighted vectors weighted average resulting vector To the motor system Figure (cid:6)(cid:3) Zipser(cid:6)s navigationsystem(cid:2) The upper module of the neural network (cid:7)bordered in gray(cid:8) is the oriented place representation by view cells(cid:2) Each landmark (cid:7)a(cid:4) b or c(cid:8)(cid:4) indicated by its identity L(cid:4) is seen left(cid:4) ahead or right relative to the head(cid:11)direction and at a certain distance dL(cid:2) The landmark identity cells a(cid:4) b(cid:4) and c (cid:9)re proportionally to the distances to the associated landmarks(cid:7)dL(cid:8) when the associated landmarks are in their gross angular (cid:9)eld (cid:7)L is (cid:13) or (cid:14)(cid:8)(cid:2) For instance(cid:4) in the position of the animat in Figure (cid:15)(cid:4) landmark identity cells a and b for the (cid:16)Ahead(cid:17) visual (cid:9)eld and landmark identity cell c for the (cid:16)Right(cid:17) visual (cid:9)eld are active (cid:7)shading(cid:8) and all the other landmark identity cells remainsilent(cid:2) The combinationofthelandmarkidentitycells activatestheviewcells(cid:2) Here(cid:4) view(cid:11)cells (cid:14) and (cid:18) (cid:9)re the most and view(cid:11)cell (cid:15) (cid:9)res the least (cid:7)shading(cid:8)(cid:2) The lower module represents the subsequent population coding of the direction to the goal(cid:2) Each view(cid:11)cell is associated with the direction to the goal(cid:4) and the corresponding vector is represented by a goal cell(cid:2) The vectors representing these directions are weighted by the activities of their associated view cells and the weighted average yields the estimate of the direction to the goalfromthe animat(cid:6)scurrent position(cid:2) (cid:17) LW4 0 LW0 LW8 the environment 12 4 C4 RW6 8 C0 RW10 compass reading Start C12 the corresponding cognitive map C0 C4 LW0 LW4 LW8 C12 RW6 RW10 Figure (cid:7)(cid:3) Example of an environment and of the associated graph in Matari(cid:19)c(cid:6)s model(cid:2) A placeislabeledaccordingtothecharacteristics ofthe rangesensor readings(cid:7)RW(cid:20)rightwall(cid:4) LW(cid:20)leftwall(cid:4)C(cid:20)corridor(cid:8)andtothecompassreading(cid:7)from(cid:13)to(cid:14)(cid:18)(cid:8)whentherobot(cid:4)driven by its lower(cid:11)level guidance strategy (cid:7)a wall(cid:11)followingprocedure(cid:8)(cid:4) travels through it(cid:2) In the corresponding cognitive map(cid:4) each place is represented by a node(cid:4) and any two nodes can be linked dynamicallyto code the adjacency relationship(cid:2) Finally(cid:2) another variety of navigation model calls upon the representation of metric spatial relations between two or more places on a plane and upon vector manipulations(cid:4) Usually these modelsinvolveasystemofcoordinatesbyreferencetowhichthepositions ofplacesarerecorded(cid:4) This(cid:2) for example(cid:2) is the case with the model of Wan et al(cid:4) (cid:6)(cid:7)(cid:8)(cid:8)(cid:13)(cid:12) that integrates multi(cid:3)modal (cid:2) information involving kinesthetic signals provided by e(cid:3)erent copies (cid:2) proprioceptive signals supplied by the integration of the angular velocity of the animat(cid:18)s head(cid:2) and exteroceptive signals from its visual sensory system (cid:6)Figure (cid:17)(cid:12)(cid:4) In this model(cid:2) the correspondence between the animat(cid:18)s cognitive map and its position in the environment is coded by the activity of so(cid:3)called place code units(cid:4) This activity is determined bythe product ofseven Gaussianfunctions(cid:2) respectively tuned(cid:2) atexploration time(cid:2) to the distances and allocentric bearings of two selected landmarks(cid:2) to the egocentric bearing di(cid:16)erence between twoother selected landmarks(cid:2) and to the estimated Cartesian coordinates of the animat(cid:18)s position relative to an identi(cid:5)ed reference point(cid:4) Should one or more items taken into account in such a calculation be missing(cid:2) the corresponding term or terms would simply be excluded from the product(cid:4) This model thus accounts for the experimental persistence of place cellactivityindarkness(cid:6)Quirketal(cid:4)(cid:2)(cid:7)(cid:8)(cid:8)(cid:11)(cid:12)(cid:2)becauseinformationprovidedbythepathintegrator mechanism is capable ofsubstituting forthemissing visual information(cid:4) In this model(cid:2) thelocal view module (cid:6)McNaugton(cid:2) (cid:7)(cid:8)(cid:8)(cid:7)(cid:12) transforms the egocentrically sensed visual information into an allocentric representation that is stored in the place code module(cid:2) by simply summing the head direction and the egocentric bearing(cid:4) Conversely(cid:2) by subtracting the egocentric bearing provided by the visual input to the allocentric bearing recorded in the place code module(cid:2) the local view module makes it possible to update the estimate of the head direction (cid:6)Figure (cid:20)(cid:12)(cid:4) (cid:2) Motor subsystems that drive muscles can map an e(cid:2)erence copy or corollary dischargeback onto the per(cid:3) ceptual system(cid:4) which can thus distinguish self(cid:3)induced movements from world(cid:3)induced movements (cid:5)McCloskey(cid:4) (cid:6)(cid:7)(cid:8)(cid:6)(cid:9)(cid:2) (cid:20) Vestibular ΔΦh Head reset Local < r i ,θi , θi −θj > Visual Input Direction View Input Φ h r ,Φ i ki Φ PC h k θi −θj efference Motor copy Path reset Place Cmd Integrator Code <x ,y > p p Figure (cid:8)(cid:3) Functional block diagram of Wan et al(cid:2)(cid:6)s model(cid:2) It shows how multimodal informationmight be combined and mutuallyin(cid:21)uenced(cid:2) Place is represented as the fuzzy conjunction of multimodal information(cid:4) coupling path integration (cid:7)(cid:0) xp(cid:2)yp (cid:3) Cartesian coordinates with respect to ana priori globalreference frame(cid:8)(cid:4)visual information(cid:7)distance ri and relative bearing (cid:4)i of each visible landmark i(cid:4) transformed into absolute bearing (cid:3)ki that depends on the current place k(cid:8)(cid:4) and head(cid:11)direction (cid:7)(cid:3)h(cid:8)(cid:2) The head(cid:11)direction representation is updated through the integration of angular velocity (cid:22)(cid:3)h and reset by place recognition when there is some drift (cid:7)PCk(cid:8)(cid:2) Likewise(cid:2) the place code module makes it possible to reset the Cartesian coordinates of the animat(cid:2) which can then be used by a vector manipulation module to plan a trajectory to any given goal(cid:4) Besides the particular adaptive capacities that the integration of multimodal signals and the reset of the error(cid:3)accumulating information given by the kinesthetic and proprioceptive integrators provide to the above speci(cid:5)c implementation(cid:2) such a navigation system a(cid:16)ords an animat other important potentials for survival(cid:2) since additional vector manipulation abilities make metric detours and shortcuts possible(cid:4) (cid:3) Action selection The chances of survival of any animal are obviously heavily dependent upon its ability to solve the action selection problem (cid:6)McFarland(cid:2) (cid:7)(cid:8)(cid:9)(cid:7)(cid:10) Maes(cid:2) (cid:7)(cid:8)(cid:8)(cid:13)(cid:12)(cid:2) i(cid:4)e(cid:4)(cid:2) upon its ability to choose(cid:2) at any time(cid:2) the proper action to perform in order to optimize the achievement of its goals(cid:4) Since the days of the robot Shakey (cid:6)Nilson(cid:2) (cid:7)(cid:8)(cid:9)(cid:15)(cid:12)(cid:2) traditional engineering solutions to this problem haverelied upon the assumption thattheenvironment can be accurately andexhaustively mod(cid:3) eled bythe animat and havebeen reduced tothe problem of planning asequence ofactions that will(cid:2) if performed(cid:2) achieve a single and (cid:5)xed goalimposed bythe experimenter(cid:4) Other engineer(cid:3) ing solutions (cid:6)Kaelbling and Rosenschein(cid:2) (cid:7)(cid:8)(cid:8)(cid:23)(cid:12) have been designed to deal with sets of (cid:5)xed goals by automatizing the process of designing the arbitration circuitry that selects the proper action(cid:4) These solutions require theexperimenter tospecify the animat(cid:18)srepertoires ofgoalsand actions(cid:2) and how these goals can be reduced to other goals or actions(cid:4) Then(cid:2) a compiler anal(cid:3) ysesthisspeci(cid:5)cation andgeneratesacircuit thatimplements thedesired goal(cid:3)seeking behavior(cid:4) Numerous research e(cid:16)orts have been directed at dealing with the more challenging action selection problems that any animal experiences in nature and at unraveling the basic mecha(cid:3) (cid:9) nisms that allow him to survive (cid:6)fora review(cid:2) see Guillot and Meyer(cid:2) (cid:7)(cid:8)(cid:8)(cid:13)(cid:12)(cid:4) The corresponding models usually involve several endogenously(cid:3)generated time(cid:3)varying goals and implement a mo(cid:2) tivational system (cid:6)McFarland(cid:2) (cid:7)(cid:8)(cid:20)(cid:13)(cid:10) Toates(cid:2) (cid:7)(cid:8)(cid:9)(cid:17)(cid:10) Colgan(cid:2) (cid:7)(cid:8)(cid:9)(cid:8)(cid:12)(cid:4) The Booker model (cid:6)Booker(cid:2) (cid:7)(cid:8)(cid:9)(cid:9)(cid:12)(cid:2) for instance(cid:2) uses a classi(cid:4)er system (cid:3) i(cid:4)e(cid:4)(cid:2) a rule(cid:3)based structure designed to reproduce various cognitive processes in animals and men (cid:6)Holland et al(cid:4)(cid:2) (cid:7)(cid:8)(cid:9)(cid:17)(cid:12) (cid:3) in order to allow an animat to learn to produce goal(cid:3)seeking sequences through the use of rules that manipulate ob(cid:3) jects(cid:2) goals(cid:2) and object(cid:25)goal associations(cid:2) rather than rules that code simple stimulus(cid:25)response associations(cid:4) Such a structure allows the animat to move about on a grid containing food ob(cid:3) jects and noxious objects(cid:2) these objects being located in the middle of stimulus auras whose intensity diminishes with the distance from the object in question(cid:4) Contact with food gives rise to a reward(cid:2) while contact with a noxious object entails a punishment(cid:4) To survive(cid:2) the animat must learn which actions are appropriate in which situations(cid:10) it(cid:2) therefore(cid:2) must build a model ofits environment(cid:4) To this end(cid:2) its controlarchitecture mimics the hierarchical structure described by Tinbergen (cid:6)(cid:7)(cid:8)(cid:14)(cid:7)(cid:12) to model instinctive behavior in animals(cid:4) Basically(cid:2) it involves three instinctive centers concerned with locomotion(cid:2) food(cid:3)seeking(cid:2) and pain aversion(cid:2) as well as innate releasing mechanisms that prompt the animat to pursue two objectives(cid:22) to eat in the presence of food and to (cid:21)ee in the presence of a noxious object (cid:6)Figure (cid:9)(cid:12)(cid:4) The animat(cid:18)s default activity consists in exploring its environment(cid:4) This activity is in(cid:3) terrupted when the strength of the sensory or motivational signals associated with a lower instinctive center allow it to be activated and to trigger an approach or avoidance behavior(cid:4) These behaviors can be expected to prompt the animat to feed or to (cid:21)ee(cid:2) according to what kind of object it has come in contact with(cid:2) and to shut o(cid:16) the activity of the corresponding center(cid:2) thus allowing the animat to resume its exploration(cid:4) In this approach(cid:2) the animat(cid:18)s adaptive capacities derive from its ability to learn represen(cid:3) tations(cid:4) These representations are used to classify the objects encountered in the environment into categories that have a(cid:16)ective signi(cid:5)cance and accordingly to trigger the appropriate be(cid:3) havior(cid:4) In other words(cid:2) Booker(cid:18)s animat learns to respond to the regularities hidden behind the equivocal nature of its sensory cues and to take advantage of the useful and structured information a(cid:16)orded by the environment (cid:6)Gibson(cid:2) (cid:7)(cid:8)(cid:9)(cid:17)(cid:12)(cid:4) According to Tyrrel (cid:6)(cid:7)(cid:8)(cid:8)(cid:15)(cid:12)(cid:2) such a hierarchical control architecture gives rise to several problems when dealing with more complex environments that pose more challenging survival problems and thatentail the management ofmore than three elementary behaviors(cid:4) To demon(cid:3) stratethispoint(cid:2) hedevised asimulated environmentwhich posed(cid:7)(cid:15)di(cid:16)erentsurvival problems to an animat(cid:2) i(cid:4)e(cid:4) obtaining food(cid:2) obtaining water(cid:2)keeping clean(cid:2) regulating body temperature(cid:2) avoiding predators(cid:2) being vigilant for predators(cid:2) staying close to cover(cid:2) avoiding the boundaries of the territory(cid:2) avoiding dangerous places(cid:2) avoiding irrelevant creatures(cid:2) sleeping at night in a den(cid:2) not getting lost and reproducing(cid:4) To solve these problems the animat has a choice of (cid:15)(cid:14) actions that it can undertake(cid:2) such as drink(cid:2) clean self(cid:2) sleep(cid:2) move north(cid:2) move south(cid:3)west and look around(cid:4) By choosing appropriate actions in appropriate situations(cid:2) the animat can exert some control over the values of its internal variables (cid:3) like its levels of food and water (cid:3) and over its environment (cid:3) like how well it perceives its local environment or can be perceived by predators(cid:4) The overall quality of a given action selection controler is measured by an equivalent of genetic (cid:5)tness(cid:2) i(cid:4)e(cid:4) by the number of times the animat manages to reproduce before it dies(cid:4) Comparative results obtained by Tyrrell on various control architectures suggest that the most e(cid:19)cient design is that of a set of overlapping free (cid:5)ow hierarchies(cid:2) each hierarchy being devoted toeachsurvival problem thattheanimat is confrontedwith(cid:4) Such hierarchies aremade up of nodes interconnected via weighted connections(cid:2) which are similar to standard arti(cid:5)cial (cid:8) Local View φ h - φ ki Head Direction Allocentric Bearing Memory φ θ h i θi−θj Visual Input r i PCk φki θi−θj ri Place Code Figure (cid:9)(cid:3) In Wan et al(cid:2)(cid:6)s model(cid:4) the animat learns the relationship between egocentric and allocentric bearings of speci(cid:9)c cues as viewed from a set of locations(cid:2) Information about the current (cid:7)estimated(cid:8) head(cid:11)direction (cid:7)input (cid:3)h(cid:8)(cid:4) the current (cid:7)estimated(cid:8) position (cid:7)PCk(cid:8) and the egocentric bearings of landmarks (cid:7)(cid:4)i(cid:8) converge into the Allocentric Bearing Memory(cid:4) which computes the head(cid:11)direction independent (cid:7)allocentric(cid:8) bearings of these landmarks(cid:7)(cid:3)ki forlandmarki at place k(cid:8)(cid:2) Thismodulecan alsocorrect the head(cid:11)direction representationbyusingthememorizedallocentricbearings(cid:4)therepresentationofthecurrent place and visual information(cid:2) )(cid:24)(cid:9)(cid:30)&*(cid:9)(cid:10) $(cid:31)(cid:10)#(cid:31)&(cid:26) (cid:12)(cid:3)(cid:13)(cid:3)(cid:14)(cid:3)(cid:15)(cid:16)(cid:3)(cid:17) (cid:20)(cid:28)(cid:29)(cid:30)(cid:6)(cid:27)(cid:26) (cid:23)(cid:24)(cid:10)(cid:25)(cid:26)(cid:27) (cid:10)(cid:6)(cid:28)(cid:9)(cid:6)(cid:24)(cid:8) %(cid:6)(cid:6)# (cid:8)(cid:9)(cid:25)(cid:10)(cid:31)(cid:30) (cid:8)(cid:9)(cid:25)(cid:10)(cid:31)(cid:30) (cid:22)(cid:20)(cid:18)(cid:3)(cid:20)’(cid:3)(cid:16)(cid:4)(cid:17)( (cid:19)(cid:29)(cid:29)(cid:27)(cid:6)(cid:31) ! (cid:19)(cid:5)(cid:2)(cid:20)(cid:19)(cid:21)(cid:16)(cid:17)(cid:22)(cid:16)(cid:3)(cid:17) (cid:19)"(cid:6)(cid:9)# % (cid:6)(cid:6)(cid:6)(cid:10)#&(cid:31) & (cid:13)(cid:6)(cid:10)(cid:8)(cid:24)$(cid:26) (cid:10) (cid:6)(cid:6)(cid:10)(cid:28)&(cid:9)(cid:6)(cid:31) (cid:24)&(cid:8) (cid:20)(cid:8) (cid:31)(cid:29)(cid:26) Figure (cid:10)(cid:3) Control architecture of Booker(cid:6)s animat(cid:2) The rectangles correspond to instinct centers and arrows to innate releasing mechanisms(cid:2) Each instinctive center is characterized by a releasing stimulus and an associated action(cid:4) and can be submitted to two sources of control(cid:20) the current motivationalstate andother instinctive centers higher inthe hierarchy(cid:2) Here(cid:4) the food(cid:11)seeking and pain(cid:11)aversion centers are located on the same hierarchical level(cid:4) under the control of the locomotion center(cid:2) The food(cid:11)seeking center is subjected to an additionalmotivationalcontrol exerted by the degree of hunger the animatexperiences(cid:2) (cid:7)(cid:23)

Description:
surrounding landmarks, the activity of the former depends on the animal's current location, whatever the direction faced (for a review, see Muller et al., 1991), whereas the activity of the latter depends upon the absolute orientation of the head, whatever the animal's location. (Taube et al., 1990
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.