Springer Undergraduate Mathematics Series Jürg Kramer Anna-Maria von Pippich From Natural Numbers to Quaternions Springer Undergraduate Mathematics Series Advisory Board M. A. J. Chaplain, University of St. Andrews A. MacIntyre, Queen Mary University of London S. Scott, King’s College London N. Snashall, University of Leicester E. Süli, University of Oxford M. R. Tehranchi, University of Cambridge J. F. Toland, University of Cambridge More information about this series at http://www.springer.com/series/3423 ü J rg Kramer Anna-Maria von Pippich (cid:129) From Natural Numbers to Quaternions 123 Jürg Kramer Anna-Maria vonPippich Department ofMathematics Department ofMathematics Humboldt-Universität zuBerlin Technische UniversitätDarmstadt Germany Germany Translation from the German language edition: Von den natürlichen Zahlen zu den QuaternionenbyJürgKramerandAnna-MariavonPippich,©SpringerSpektrum2013.All Rights Reserved. ISSN 1615-2085 ISSN 2197-4144 (electronic) SpringerUndergraduate MathematicsSeries ISBN978-3-319-69427-6 ISBN978-3-319-69429-0 (eBook) https://doi.org/10.1007/978-3-319-69429-0 LibraryofCongressControlNumber:2017958024 MathematicsSubjectClassification(2010): 08–01,11–01,12–01,20–01 ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface to the English Edition Thisbookontheconstructionofnumbersystemsfirstappearedin2013ina Germaneditionwiththesametitle.Itcanbeseenfromthefollowingpreface to that edition that the goal of this book is to present a basic and compre- hensive construction of number systems, beginning with the natural num- bersandendingwithHamilton’squaternions,whileprovidingrelevantal- gebraicknowledgealongtheway.AsasupplementtotheGermanedition, anappendixhasbeenaddedtoeachchapterinthisEnglishedition,which incontrasttotherigorousstyleoftherestofthebook,presentsinthemore casualformofasurveysomerelatedaspectsofthematerialofthechapter, includingsomerecentdevelopments. Wewouldliketoofferourmostheartfeltthankstothetranslator,David Kramer,forhiscompetentwork,whichhascontributedsignificantlytothis Englishversionandinmanyplacesledtoamorefelicitouspresentationof thematerial. We hope that this book will help students and teachers of mathematics aswellasallthosewithaninterestinthesubjecttofillinanygapsintheir mathematicaleducationrelatedtotheconstructionofnumbersystemsand thattheappendiceswillinspiresomereaderstopursuefurthermathemati- calstudies. Berlin,September2017 JürgKramer Anna-MariavonPippich Preface to the German Edition The main topic of this book is an elementary introduction to the construc- tion of the number systems encountered by mathematics students in their first semesters of study. Beginning with the natural numbers, we succes- sivelyconstruct,alongwiththerequisitealgebraicmachinery,allthenum- berfieldscontainingthenaturalnumbers,includingtherealnumbers,com- plexnumbers,andHamiltonianquaternions.Ourexperiencehasshownus that time is frequently lacking in introductory mathematics courses for a well-founded construction of number systems; this book represents a con- tributiontowardfillingthatgap. Theconstructionofnumbersystemsalsorepresentsanimportantcompo- nentintheprofessionaleducationofmathematicsteachers.Forthisreason, this book offers a self-contained and compact construction of the number systemsthatareofrelevancetodifferentgradelevelsfromamathematical perspectivewithaviewtowardaspectsofpedagogicalcontentknowledge. Thisbookarosefromacourseinelementaryabstractalgebraandnumber theorygivenanumberoftimesattheHumboldtUniversityofBerlin.Parts of the first-named author’s book Zahlen für Einsteiger: Elemente der Algebra und Zahlentheorie (Vieweg Verlag, Wiesbaden, 2008) have been revised and expandedforinclusioninthisnewlyconceivedbookontheconstructionof numbersystems.Numerousexerciseswithextensivesolutionsfacilitatethe reader’sengagementwiththesubject. The completion of this book would not have been possible without the contributionsofmanyindividuals.HerewewishtothankfirstofallChrista DobersandMatthiasFischmannfortypingthefirstpartsofthemanuscript. In addition, we wish to thank all the students whose written course notes contributed to the text. We also wish to thank our colleagues, in particu- larAndreasFillerandWolfgangSchulz,fortheirnumeroussuggestionsfor improvingearlyversionsofthemanuscript.Aspecialwordofthanksgoes to Olaf Teschke for his work on creating the exercises, and we also thank Barbara Jung and André Henning for their work on writing up solutions to the exercises. Finally, we offer hearty thanks to Christoph Eyrich for his expertsupportindesigningthelayoutofthebookandtoUlrikeSchmickler- Hirzebruchforherencouragementandsupportonbehalfofthepublisher, SpringerSpektrum. Berlin,February2013 JürgKramer Anna-MariavonPippich Table of Contents PrefacetotheEnglishEdition v PrefacetotheGermanEdition vii Introduction 1 I TheNaturalNumbers 9 1. ThePeanoAxioms ............................................ 9 2. DivisibilityandPrimeNumbers................................ 15 3. TheFundamentalTheoremofArithmetic ....................... 22 4. GreatestCommonDivisor,LeastCommonMultiple ............. 25 5. DivisionwithRemainder ...................................... 29 A. PrimeNumbers:FactsandConjectures ......................... 32 II TheIntegers 45 1. SemigroupsandMonoids...................................... 45 2. GroupsandSubgroups ........................................ 48 3. GroupHomomorphisms ...................................... 54 4. CosetsandNormalSubgroups ................................. 57 5. QuotientGroupsandtheHomomorphismTheorem ............. 63 6. ConstructionofGroupsfromRegularSemigroups............... 68 7. TheIntegers .................................................. 73 B. RSAEncryption:AnApplicationofNumberTheory............. 77 III TheRationalNumbers 93 1. TheIntegersandDivisibilityTheory............................ 93 2. RingsandSubrings ........................................... 97 3. RingHomomorphisms,Ideals,andQuotientRings ..............102 4. FieldsandSkewFields ........................................110 5. ConstructionofFieldsfromIntegralDomains ...................112 6. TheRationalNumbers ........................................117 7. UniqueFactorizationDomains,PrincipalIdealDomains,and EuclideanDomains ...........................................119 C. RationalSolutionsofEquations:AFirstGlimpse ................129 IV TheRealNumbers 141 1. DecimalRepresentationofRationalNumbers ...................141 2. ConstructionoftheRealNumbers..............................145 3. TheDecimalExpansionofaRealNumber ......................155 x TableofContents 4. EquivalentCharacterizationsofCompleteness ..................159 5. TheRealNumbersandtheRealNumberLine...................164 6. TheAxiomaticPointofView...................................168 D. The p-adicNumbers:AnotherCompletionofQ .................171 V TheComplexNumbers 183 1. TheComplexNumbersasaRealVectorSpace...................183 2. ComplexNumbersofModulus1andtheSpecialOrthogonal Group........................................................187 3. TheFundamentalTheoremofAlgebra..........................191 4. AlgebraicandTranscendentalNumbers ........................193 5. TheTranscendenceofe ........................................197 E. ZerosofPolynomials:TheSearchforSolutionFormulas..........204 VI Hamilton’sQuaternions 219 1. Hamilton’sQuaternionsasaRealVectorSpace ..................219 2. QuaternionsofModulus1andtheSpecialUnitaryGroup........223 3. QuaternionsofModulus1andtheSpecialOrthogonalGroup ....227 F. Extensions of Number Systems: What Comes after the Quaternions? .................................................231 SolutionstoExercises 247 SelectedLiterature 279 Index 283 Introduction TheDevelopmentoftheIntegersandAlgebra Oneofmankind’searliestintellectualoccupationswascounting.Thedevel- opmentoftheconceptsofnumbersandtherepresentationofnumbershas thereforeassumedaplaceofimportanceinthehistoryofeverycivilization. The enormous effectiveness of our decimal system of numerical represen- tation is the culmination of centuries—indeed millennia—of earlier efforts thattogetherrepresentapowerfulculturalattainment. Theideaofcountingobjects,thatis,ofbringingasetofequivalentobjects intoaone-to-onecorrespondencewithafixedsetofnumbers,representsa significantintellectualprocessofabstraction. Inmoreadvancedcultures,systemsofsymbolicnotationforthesenum- bers—somemoreeffectivethanothers—weredeveloped.Wementionpar- ticularlythecuneiformwritingoftheBabylonians,Egyptianhieroglyphics, Roman numerals, and the system of numerals developed in India. It was only in the thirteenth and fourteenth centuries that the Indian positional decimal system finally made its way via the Islamic world to Western Eu- rope,whichtothisdayuses“Arabic”numerals. Thedevelopmentofnumbersystemsgoesrelativelycloselyhandinhand withthedevelopmentofmethodsofcalculation.Inthisregard,theBabylo- nianandIndiannumbersystems,forexample,werefarsuperiortothoseof theEgyptiansandRomans.Nevertheless,untillateinthefifteenthcentury, inboththeancientcivilizationsandWesternEurope,numericalcalculation wastheprovinceofasmallgroupofspecialistsknownasarithmeticians.It wasnotuntilthepublicationinthefifteenthcenturyofAdamRies’sbooks on calculation, which were based on the book Liber Abaci of Leonardo of Pisa,knownasFibonacci,thattheusualmethodsofcalculationthatweuse todaybecameaccessibletothe“commonpeople.”Thediffusionofcalcula- tionaltechniquesislinkedtoasystemizationofarithmeticintheacademic world, which then led to the development of algebra. At first, algebra was viewedprimarilyasapracticaltool,butitgraduallytookonalifeofitsown andeventuallydevelopedintotheindependentdisciplinethatweknowto- day.Algebrawillthereforeplayasignificantroleineveryrigorousscientifi- callybasedconstructionofnumbersystems.
Description: