70 Springer Series in Solid-State Sciences Edited by Peter Fulde Springer Series in Solid-State Sciences Editors: M. Cardona P. Fulde K. von Klitzing H.-J. Queisser 40 Semiconductor Physics An Introduction 58 The Recursion Method and Its Applications 3rd Edition By K. Seeger Editors: D. Pettifor and D. Weaire 41 The LMTO Method 59 Dynamical Processes and Muffin-Tin Orbitals and Electronic Structure Ordering on Solid Surfaces By H.L. Skriver Editors: A. Yoshirnori and M. Tsukada 42 Crystal Optics with Spatial Dispersion, 60 Excitonic Processes in Solids and Excitons By M. Veta, H. Kanzaki, K. Kobayashi, By V. M. Agranovich and V. L. Ginzburg Y. Toyozawa, and E. Hanamura 43 Resonant Nonlinear Interactions of 61 LocaIization, Interaction, and Light with Matter Transport Phenomena By V. S. Butylkin, A. E. Kaplan, Editors: B. Kramer, G. Bergmann, Yu. G. Khronopulo, and E.1. Yakubovich and Y. Bruynseraede 44 Elastic Media with Microstructure n 62 Theory of Heavy Fermions Three-Dimensional Models and Valence Fluctuations By LA. Kunin Editors: T. Kasuya and T. Saso 45 Electronic Properties of Doped Semiconductors 63 Electronic Properties of By B.1. Shklovskii and A. L. Efros Polymers and Related Compounds Editors: H. Kuzmany, M. Mehring, and S. Roth 46 Topological Disorder in Condensed Matter Editors: F. Yonezawa and T. Ninomiya 64 Symmetries in Physics: Group Theory Applied to Physical Problems 47 Statics and Dynamics of Nonlinear Systems By W. Ludwig and C. Falter Editors: G. Benedek, H. Bilz, and R. Zeyher 65 Phonons: Theory and Experiments II 48 Magnetic Phase Transitions Experiments and Interpretation of Editors: M. Ausloos and R. J. Elliott Experimental Results By P. Briiesch 49 Organic Molecular Aggregates, Electronic 66 Phonons: Theory and Experiments III Excitation and Interaction Processes Phenomena Related to Phonons Editors: P. Reineker, H. Haken, and H.C. Wolf By P. Briiesch 50 Multiple Diffraction of X-Rays in Crystals 67 Two-Dimensional Systems: Physics By Shih-Lin Chang and New Devices 51 Phonon Scattering in Condensed Matter Editors: G. Bauer, F. Kuchar, and H. Heinrich Editors: W. Eisenmenger, K. LaBmann, 68 Phonon Scattering in Condensed Matter V and S. Dottinger Editors: A. C. Anderson and J. P. Wolfe 52 Superconductivity in Magnetic and Exotic 69 Nonlinearity in Condensed Matter Materials Editors: A.R. Bishop, D.K. Campbell, Editors: T. Matsubara and A. Kotani P. Kumar and S. E. Trullinger 53 Two-Dimensional Systems, Heterostructures, 70 From Hamiltonians to Phase Diagrams and Superlattices The Electronic and Statistical-Mechanical Editors: G. Bauer, F. Kuchar, and H. Heinrich Theory of sp-Bonded Metals and Alloys 54 Magnetic Excitations and Fluctuations By J. Hafner Editors: S. Lovesey, V. Balucani, F. Borsa, 71 High Magnetic Fields in Semiconductor Physics and V. Tognetti Editor: G. Landwehr 55 The Theory of Magnetism II 72 One-Dimensional Conductors Thermodynamics and Statistical Mechanics By S. Kagoshima, T. Sambongi, By D. C. Mattis and H. Nagasawa 56 Spin Fluctuations in Itinerant Electron 73 Quantum Solid-State Physics Magnetism By T. Moriya Editors: S. V. Vonsovsky and M.1. Katsnelson 57 PolycrystaIline Semiconductors, 74 Quantum Monte Carlo Methods in Equilibrium Physical Properties and Applications and Nonequilibrium Systems Editor: G. Harbeke Editor: M. Suzuki Volumes 1-39 are listed on the back inside cover Jiirgen Hafner From Hamiltonians to Phase Diagrams The Electronic and Statistical-Mechanical Theory of sp-Bonded Metals and Alloys With 147 Figures Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Professor Dr. Jiirgen Hafner Institut fUr Theoretische Physik, Techn. Universitat Wien, Karlsplatz 13, A-1040 Wien, Austria Series Editors: Professor Dr., Dr. h. c. Manuel Cardona Professor Dr., Dr. h. c. Peter Fulde Professor Dr. Klaus von Klitzing Professor Dr. Hans-Joachim Queisser Max-Planck-Institut fUr Festkorperforschung, Heisenbergstrasse 1 D-7000 Stuttgart 80, Fed. Rep. of Germany ISBN -13 :978-3-642-83060-0 e-ISBN- 13: 978-3-642-83058-7 DOl: 10.1007/978-3-642-83058-7 Library of Congress Cataloging·in·Publication Data. Hafner, J. (Jiirgen), 1945-. From Hamiltonians to phase diagrams. (Springer series in solid-state sciences; 70). Bibliography: p. Includes index. 1. Metal-metal bonds. 2. Alloys. 3. Phase transformations (Statistical physics) 4. Phase diagrams. I. Title. II. Series. QD461.H16 1987 530.4'1 87-9846 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the German Copyright Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be paid. Violations fall under the prosecution act of the German Copyright Law. © Springer-Verlag Berlin Heidelberg 1987 Softcover reprint of the hardcover 1st edition 1987 The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. 2153/3150-543210 Preface The development of the modern theory of metals and alloys has coincided with great advances in quantum-mechanical many-body theory, in electronic structure calculations, in theories of lattice dynamics and of the configura tional thermodynamics of crystals, in liquid-state theory, and in the theory of phase transformations. For a long time all these different fields expanded quite independently, but now their overlap has become sufficiently large that they are beginning to form the basis of a comprehensive first-principles the ory of the cohesive, structural, and thermodynamical properties of metals and alloys in the crystalline as well as in the liquid state. Today, we can set out from the quantum-mechanical many-body Hamiltonian of the system of electrons and ions, and, following the path laid out by generations of the oreticians, we can progress far enough to calculate a pressure-temperature phase diagram of a metal or a composition-temperature phase diagram of a binary alloy by methods which are essentially rigorous and from first prin ciples. This book was written with the intention of confronting the materials scientist, the metallurgist, the physical chemist, but also the experimen tal and theoretical condensed-matter physicist, with this new and exciting possibility. Of course there are limitations to such a vast undertaking as this. The selection of the theories and techniques to be discussed, as well as the way in which they are presented, are necessarily biased by personal inclination and personal expertise. The book begins with a discussion of the fundamental concepts that guide our way, starting with things that are as basic as the adiabatic approximation or the idea of the self-consistent field. To the condensed-matter theorist this is of course all familiar and he or she might just glance rapidly over the first chapter, but I hope that the non-specialist will find this introduction helpful. The introduction also sets the framework for the remaining chapters which should provide the reader with a working knowledge of the electronic theory of interatomic interac tions, the theory of cohesion and structure, the thermodynamics of crystals, liquid-state theory, etc., as far as is necessary to reach the final goal. These chapters also present a necessarily very personal view of the state of the art in each field. The presentation is as self-contained as possible; no familiar ity with advanced theoretical concepts beyond the level of basic quantum mechanics, statistical mechanics and solid-state theory is assumed. v Most of what is presented in this book resides upon the concept of effective interatomic potentials. To date, the most reliable technique for calculating these potentials in metals and alloys is based on reponse theory, which is valid only in systems whose ions scatter the electrons weakly and are describable by pseudopotentials. These are the sp-bonded or simple metals. For this reason most of the book is devoted to this particular class of metals and their alloys, with only short excursions into the theory of d-band or transition metals to sketch the essential differences between sp and d-bonding and to draw the reader's attention to some interesting new developments. But here, as everywhere else in this book, I could not aim for encyclopaedic completeness. The book reflects the long-time research interests ofthe author. Several chapters grew out of lectures given at the Technical University of Vienna and at the Laboratoire de Thermodynamique et Physico-Chimie Metallurgiques of the Ecole Normale Superieure d'Electrochimie et d'Electrometallurgie de Grenoble. The ideas presented here have been shaped in many discussions with friends and colleagues all over the world. I do not attempt to name them all, as such a list could never be complete. However, I could not forget to mention Volker Heine and the late Heinz Bilz - it has always been a great privilege to work with them and I greatly enjoyed their hospitality at the Cavendish Laboratory of the University of Cambridge and at the Max Planck-Institut fUr Festkorperforschung. I should also not forget to mention my friends Pierre Hicter, Ferencz Igloi, Sitaram Jaswal, Gerhard Kahl, Alain Pasturel, Gottfried Punz, and Werner Weber, whose cooperation I deeply appreciate. To all others who might have been cited but have'not, 'I extend my apologies, and I sincerely hope that t'hey will accept my gratitude. I thank my colleagues at the Institute of Theoretical Physics under the direction of Prof. Otto Hittmair for creating a congenial athmosphere for my scientific work. I thank Prof. Peter Fulde who suggested that I should write this book. I am grateful to Dr. II.K.V. Lotsch for his patience and to Dr. A.M. Lahee for her efficient cooperation and for making several excellent suggestions concerning the presentation. Finally, I should not forget to thank my wife Anneliese and my sons Thomas and Michael. They certainly had to bear an absentminded husband and father over many evenings and weekends and they have tolerated it with good humour. The book is dedicated to my parents. Vienna" January 1987 Jurgen Hafner VI Contents 1. Introduction................................................. 1 1.1 Why This Book Was Written and What It Contains..... .. 1 1.2 The Thermodynamic Origin of Phase Diagrams. . . . . . . . . . . 4 1.2.1 First-Order Transitions Without Compositional Change - The pT Phase Diagram. . . . . . . . . . . . . . . . . . 5 1.2.2 First-Order Transitions with Compositional Change - The Alloy Phase Diagram. . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.3 Second-Order Transitions. . . . . . . . . . . . . . .. . . . . . . . . . . 8 1.3 Adiabatic Decoupling of the Ionic and Electronic Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 The One-Electron Approximation........ ................. 10 1.5 Tightly-Bound and Nearly-Free Electrons; Potentials and Pseudopotentials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.6 Response Theory and Interatomic Interactions. . . . . . . . . . . . . 18 1.7 The Statistical Mechanics of a Vibrating Lattice. . . . . . . . . . . 20 1.8 Periodic, Aperiodic and Quasi-Periodic Structures. . . . . . . . . 22 1.9 Elementary Excitations in Aperiodic Structures. . . . . . . . . . . 24 1.9.1 Effective Medium Approximations. . . . . . . . . . . . . . . . . . 24 1.9.2 The Recursion Method and Related Techniques. . . . . 27 1.10 Configurational Thermodynamics of Solids and Liquids. . . . 28 1.10.1 Order-Disorder Transitions........................ 29 1.10.2 From the Interatomic Force Law to the Structure of a Liquid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 1.10.3 Order-Parameter Approach to Freezing and Melting 31 2. Interatomic Forces in Metals and Alloys.................. 34 2.1 Pseudopotentials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.1.1 The Operator Approach............................ 35 2.1.2 The Scattering Approach. . . . . . . . . . . . . . . . . . .. . . . . . . . 37 2.1.3 Model Potentials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.2 Response Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2.2.1 Nonlocality........................................ 45 2.2.2 Screening Beyond the Random Phase Approximation 46 2.3 Effective Pair Potentials in Pure Metals. . . . . . . . . . . . . . . . . . . 48 VII 2.4 Effective Pair Potentials in Binary Alloys. . . . . . . . . . . . . . . . . . 54 2.4.1 Chemical Compression............................. 58 2.4.2 Chemical Ordering.. . . ... . .. . . .. . . . . . . .. . . . . . .. . . . . 59 2.5 Interatomic Forces in Non-Simple Metals and Alloys. . . . . . . 63 2.6 Beyond Perturbation Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3. Phase Stability of Crystalline Metals. . . . . . . . . . . . . . . . . . . . . . 67 3.1 Simple-Metal Cohesion.................................... 67 3.1.1 An Excursion into Transition-Metal Cohesion....... 72 3.2 Structural Stability.. .. .. . .. . .. . .. .. .. . . . . .. .. .. .. .. .. . . . . 77 3.3 Trends in Crystal Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.3.1 A Brief Remark on Transition Metal Structures. . . . 82 3.3.2 The Crystal Structures of the Lanthanides. . . . . . . . . . 84 3.3.3 Charge-Density Analysis of Bonding .... " . . . . . . . . . . 85 3.4 Pressure-Induced Phase Changes. . . . . . . .. . . . . . . . . . . . . . . . . . 88 3.5 Thermodynamics of Crystalline Metals. . . . . . . . . . . . . . . . . . . . 90 3.5.1 Harmonic Lattice Dynamics. ...... ................. 90 3.5.2 Anharmonicity.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 3.5.3 Variational Method for Calculating Thermodynamic Properties (Gibbs-Bogoljubov Method)............ . 96 3.6 Temperature-Induced Phase Changes. . . . . . . . . . . .. . . . . . . . . . 98 4. Structure and Thermodynamics of Liquid Metals.... . . . . 102 4.1 Computer Simulations. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 103 4.2 Integral Equation Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 4.3 Thermodynamic Perturbation Theories.................... 107 4.3.1 Thermodynamic Variational Method for Liquids (Gibbs-Bogoljubov Method)..................... ... 107 4.3.2 Repulsive Forces: Weeks-Chandler-Andersen Theory 110 4.3.3 Attractive Forces: Random Phase Approximation, Optimized Random Phase Approximation and Mean Spherical Approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . 113 4.4 Trends in Liquid Structures. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 121 4.5 Expanded Fluid Metals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 4.6 Structure and Thermodynamics of Liquid Transition and Rare-Earth Metals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 4.7 Atomic Motion in Liquid Metals.......................... 128 5. The pT Phase Diagram of Pure Metals. . . . . . . . . . . . . . . . . . . 133 5.1 Solid-Liquid Trnasitions: The Total Energy Approach. . . . . 133 5.2 Microscopic Theories of Melting and Freezing. . . . . . . . . . . . . 137 5.3 The Liquid-Vapour Transition............................. 142 VIII 6. Alloy Formation and Stability............................. 145 6.1 Nearly-Free-Electron Approach to Alloy Formation. . . . . . . . 146 6.1.1 Criteria for Solubility in Homovalent Systems. . . . . . . 146 6.1.2 Variations of the Atomic Volume in Heterovalent Alloy Systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 6.1.3 The Chemical Potential Model for the Heat of Formation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 6.1.4 Band Picture for Simple-Metal Alloys.............. 157 6.1.5 Real-Space Picture for Alloy Formation... ......... 159 6.1.6 A Brief Summary..................... ...... ....... 162 6.2 Miedema's Semiempirical Theory of Alloy Formation...... 163 6.2.1 Microscopic Interpretation of Miedema's Alloying Rules: Simple Metals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 6.2.2 Microscopic Interpretation of Miedema's Alloying Rules: Transition Metals. . . . . . . . . . . . . . . . . . . . . . . . . . . 165 7. Solid Substitutional Alloys................................. 169 7.1 Primary Solid Solutions..... ........ ...................... 171 7.1.1 The Homovalent Case.... .. .. .. .. .. .. .. .. .. .. .. .. .. 171 7.1.2 The Heterovalent Case.. .. .. .. .. .. .. .. .... .. .. .. .. . 177 7.2 Hume-Rothery Phases...... ..................... ......... 180 7.3 Static Lattice Distortions. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 184 7.4 Ordering in Substitutional Alloys. . . . . . . . . . . . . . . . . . . . . . . . . . 188 7.4.1 Long-Range Order................................. 190 7.4.2 Short-Range Order. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 195 7.4.3 Ordering in Substitutional Transition-Metal Alloys. 196 7.5 Thermodynamics of Alloys.......... ...... ................ 197 7.5.1 Lattice Dynamics of Substitutional Alloys.......... 197 7.5.2 Thermodynamic Perturbation Theory.............. 202 7.5.3 Vibrational Dynamics and the Ordering Transition. 205 8. Intermetallic Compounds...... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 8.1 Structure Maps........... ........ ........ ................ 207 8.2 Empirical Pair-Potential Analysis of Intermetallic Phases. . 211 8.3 Classification of Intermetallic Phases According to Building Principles and Properties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 8.4 Topologically Close-Packed Intermetallic Compounds (Frank-Kasper Phases).................. .................. 215 8.4.1 Heat and Volume of Formation of Laves Phases..... 215 8.4.2 Structural Stability of Laves Phases. . . . . . . . . . . . . . . .. 221 8.4.3 Other Topologically Close-Packed Compounds. . . . . . 227 8.4.4 Charge-Density Analysis of Bonding. . . . . . . . . . . . . . . . 230 8.4.5 Lattice Dynamics of Topologically Close-Packed Compounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235 IX 8.5 Intermetallic Phases with Large Band-Structure Stabilization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 8.5.1 Charge-Density Analysis of Bonding in Zintl Phases 238 8.5.2 Lattice Dynamics of Zintl Phases. . . . . . . . . . . . . . . . . . . 239 9. Liquid Alloys................................................ 241 9.1 Computer Simulations of Binary Liquid Alloys............ 243 9.2 Thermodynamic Variational Calculations. . . . . . . . . . . . . . . . . . 246 9.2.1 Systems with a Nearly Ideal Mixing Behaviour..... 247 9.2.2 Liquid Alloys with Strong Chemical Short-Range Order.............................................. 254 9.2.3 Liquid Alloys with a Miscibility Gap. . . . . . . . . . . . . . . 262 9.3 Thermodynamic Perturbation Theory. . . . . . . . . . . . . . . . . . . . . 267 9.3.1 Repulsive Forces: Weeks-Chandler-Andersen Theory. ............. .. ............................ 267 9.3.2 Long-Range Forces: Optimized-Random-Phase Approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272 9.4 Structure and Thermodynamics of Liquid Transition-Metal Alloys.................................................... 275 9.5 Collective Excitations in Liquid Alloys. . . . . . . . . . . . . . . . . . . . 278 10. Alloy Phase Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 10.1 First Principles Calculations of Alloy Phase Diagrams. . . . . 282 10.2 Chemical Short-Range Order and Alloy Phase Diagrams... 285 10.2.1 Melting Extrema. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286 10.2.2 Eutectic Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 10.2.3 Compound Formation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 288 10.2.4 Phase Separation in the Liquid State. . . . . . . . . . . . . 289 10.3 Molecular Theory of the Freezing of Liquid Alloys. . . . . . . . 289 11. Beyond the Phase Diagram: The Formation and Properties of Metastable Phases. . . . . . . . . . . . . . . . . . . . . . . . . . . 292 11.1 Amorphous Alloys - Metallic Glasses.... .................. 292 11.1.1 Glass-Forming Ability. . . . . . . . . . . . . . . . . . . ... . . . .. . . 293 11.1.2 Atomic Structure of Metallic Glasses.............. 298 11.1.3 Elementary Excitations in Metallic Glasses.. . . . . . . 307 11.2 Quasi-Crystals............................................ 309 12. Conclusions and Outlook................................... 313 Appendices. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 A. Density-Functional Pseudopotentials . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 A.1 Optimized Pseudopotentials - the Operator Approach.... 319 A.2 Norm-Conserving Pseudopotentials - the Scattering Approach. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . .. . . . . . 323 x
Description: