ebook img

From Global to Local Statistical Shape Priors: Novel Methods to Obtain Accurate Reconstruction Results with a Limited Amount of Training Shapes PDF

266 Pages·2017·11.35 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview From Global to Local Statistical Shape Priors: Novel Methods to Obtain Accurate Reconstruction Results with a Limited Amount of Training Shapes

Carsten Last From Global to Local Statistical Shape Priors Novel Methods to Obtain Accurate Reconstruction Results with a Limited Amount of Training Shapes 123 CarstenLast Institut für Robotik undProzessinformatik Technische UniversitätBraunschweig Braunschweig Germany ISSN 2198-4182 ISSN 2198-4190 (electronic) Studies in Systems,DecisionandControl ISBN978-3-319-53507-4 ISBN978-3-319-53508-1 (eBook) DOI 10.1007/978-3-319-53508-1 LibraryofCongressControlNumber:2017930419 ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilarmethodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface ThepresentthesisoriginatesfrommyscientificworkasemployeeattheInstitutfür Robotik und Prozessinformatik, Technische Universität Braunschweig, Germany. However, the completion of this thesis would not have been possible without the help of others. Atfirst,IwouldliketothankProf.Dr.-Ing.FriedrichM.Wahl fordirectingme towards the interesting topic of medical image segmentation and giving me the freedomtodevelopmyownideas withinthisfield.He providedmewith excellent technical resources and a great working environment, and he gave me the oppor- tunitytopresentmyideasatvariousnationalandinternationalconferences.Iwould also like to thank Prof. Dr. Thomas Vetter for his effort to review this thesis as a secondrefereeandforprovidingthemorphablefacemodelaswellastheadditional face scans that are used for evaluation. My thanks go especially also to Dr.-Ing. Simon Winkelbach for his continuous support in developing and discussing new ideas, but as well for proofreading this thesis.Hisinputhadagreatinfluenceonthefinaloutcome.Ialsohavetothankthe whole staff and all students of the Institut für Robotik und Prozessinformatik for creating such a nice and friendly working atmosphere. Additionally,IwouldliketothanktheGermanResearchFoundation(DFG)for funding parts of my research within the project Roboterunterstützte, erwartungskonformeEndoskopführunginderendosalenChirurgie.Inthisregard,I would like to thank Prof. Dr. med. Dr. h.c. Friedrich Bootz from the Klinik und Poliklinik für Hals-Nasen-Ohrenheilkunde/Chirurgie at the Universitätsklinikum Bonnforprovidingmewiththeparanasalsinusesdatabasethatisbeingusedwithin this thesis. Also, I would like to thank my former colleagues Dr.-Ing. Ralf Westphal, Markus Rilk, and Dr. med. Klaus Eichhorn for the fruitful and friendly cooperation within this project. vii viii Preface Specialthanksgotomyfamilyfortheircontinuousmoralandfinancialsupport throughoutallmyyearsofstudyandtomywifeCarolinforthecountlesshoursthat she spent discussing and proofreading this thesis. Braunschweig, Germany Carsten Last December 2016 Contents 1 Basics. .... .... .... .... .... ..... .... .... .... .... .... ..... 1 1.1 Naming Conventions . .... ..... .... .... .... .... .... ..... 1 1.2 Vector Calculus . .... .... ..... .... .... .... .... .... ..... 2 1.2.1 Pixels and Voxels.. ..... .... .... .... .... .... ..... 2 1.2.2 The Gradient and Necessary Condition for a Minimum ... 3 1.2.3 Directional Derivative.... .... .... .... .... .... ..... 3 1.2.4 Descent Direction.. ..... .... .... .... .... .... ..... 3 1.2.5 Descent Methods .. ..... .... .... .... .... .... ..... 4 1.3 Calculus of Variations .... ..... .... .... .... .... .... ..... 4 1.3.1 The Functional Derivative. .... .... .... .... .... ..... 6 1.3.2 Differentiation Rules..... .... .... .... .... .... ..... 7 1.3.3 Functionals of Functions with Multiple Arguments . ..... 7 1.3.4 Functionals of Multiple Functions .. .... .... .... ..... 8 1.3.5 The Functional Differential.... .... .... .... .... ..... 9 1.4 Level Set Methods... .... ..... .... .... .... .... .... ..... 9 1.4.1 Level Set Function. ..... .... .... .... .... .... ..... 9 1.4.2 Level Set Evolution ..... .... .... .... .... .... ..... 11 1.4.3 Level Set Methods for Image Segmentation Problems .... 13 1.5 Variational Image Segmentation.. .... .... .... .... .... ..... 16 1.5.1 Geodesic Active Contours .... .... .... .... .... ..... 16 1.5.2 Active Contours Without Edges.... .... .... .... ..... 18 2 Statistical Shape Models (SSMs) .... .... .... .... .... .... ..... 21 2.1 Definition of Shape .. .... ..... .... .... .... .... .... ..... 22 2.2 An Explicit Linear Parametric Statistical Shape Model .... ..... 24 2.3 An Implicit Linear Parametric Statistical Shape Model .... ..... 31 2.4 Rigid Shape Alignment ... ..... .... .... .... .... .... ..... 39 2.4.1 Similarity Transformation. .... .... .... .... .... ..... 41 2.4.2 Rigid Alignment of Two Shape Configurations .... ..... 41 2.4.3 Rigid Alignment of Multiple Shape Configurations . ..... 43 ix x Contents 2.5 Problem: Limited Training Data.. .... .... .... .... .... ..... 44 2.5.1 Artificial Enlargement of Shape Variations.... .... ..... 46 2.5.2 Relaxation of Model-Constraints.... .... .... .... ..... 48 2.5.3 Model Partitioning . ..... .... .... .... .... .... ..... 49 3 A Locally Deformable Statistical Shape Model (LDSSM) .... ..... 53 3.1 Motivation . .... .... .... ..... .... .... .... .... .... ..... 53 3.2 Mathematical Formulation of Our LDSSM . .... .... .... ..... 55 3.3 An Iterative Framework to Determine the Weight Fields... ..... 58 3.3.1 General Idea: Demons-Based Approach .. .... .... ..... 58 3.3.2 A Side Note to Optimal Weights for the SSM. .... ..... 60 3.3.3 Determination of the Weights for a Known Target Shape.. .... ..... .... .... .... .... .... ..... 62 3.3.4 Determination of the Weights for Segmentation Problems. .... .... ..... .... .... .... .... .... ..... 65 4 Evaluation of the Locally Deformable Statistical Shape Model..... 75 4.1 Segmenting the Nasal Cavity and the Paranasal Sinuses ... ..... 75 4.1.1 Description of the Paranasal Sinuses Database. .... ..... 78 4.1.2 Segmentation with Global Model Information . .... ..... 81 4.1.3 Experimental Setup and Results .... .... .... .... ..... 88 4.2 Segmenting the Bones in the Human Knee . .... .... .... ..... 100 4.2.1 Motivation ... .... ..... .... .... .... .... .... ..... 100 4.2.2 Experimental Setup. ..... .... .... .... .... .... ..... 100 4.2.3 Results .. .... .... ..... .... .... .... .... .... ..... 104 4.3 Fitting the LDSSM to Range Scans of Faces.... .... .... ..... 106 4.3.1 The Basel Face Model: A Meta-Database for 3D Faces... 107 4.3.2 Evaluating the Shape Approximation for Known Target Shapes. .... ..... .... .... .... .... .... ..... 109 4.3.3 Application: Reconstructing Incomplete Face Scans. ..... 116 5 Global-To-Local Shape Priors for Variational Level Set Methods.... .... .... .... ..... .... .... .... .... .... ..... 125 5.1 Problems of the Iterative Segmentation Framework... .... ..... 126 5.2 Existing Variational Image Segmentation Approaches with Shape Priors.... .... ..... .... .... .... .... .... ..... 127 5.2.1 Linear Subspace-Constrained Approaches. .... .... ..... 127 5.2.2 Approaches with Additional Flexibility... .... .... ..... 132 5.2.3 Drawbacks of Existing Approaches . .... .... .... ..... 137 5.3 Variational Formulation for a Global Shape Prior .... .... ..... 138 5.3.1 Problem Formulation .... .... .... .... .... .... ..... 139 5.3.2 An Exemplary Segmentation Problem ... .... .... ..... 141 Contents xi 5.3.3 General Solution for Arbitrary Segmentation Problems ... 143 5.3.4 Extension of the Approach by the Trained Weight Distribution... .... ..... .... .... .... .... .... ..... 144 5.3.5 Consideration of Rigid Transformations.. .... .... ..... 146 5.4 Variational Formulation for a Local Shape Prior . .... .... ..... 147 5.4.1 Motivation ... .... ..... .... .... .... .... .... ..... 147 5.4.2 Problem Formulation .... .... .... .... .... .... ..... 148 5.4.3 Extension of Our Approach by the Trained Weight Distribution... .... ..... .... .... .... .... .... ..... 150 5.4.4 Finding a Solution to the Problem by Functional Gradient Descent .. ..... .... .... .... .... .... ..... 152 5.4.5 Obtaining the Functional Gradient .. .... .... .... ..... 154 5.5 Global-to-Local Variational Formulation ... .... .... .... ..... 162 5.5.1 Problems of the Variational Gradient Descent Approach .... .... ..... .... .... .... .... .... ..... 163 5.5.2 Connection Between the Global Approach and Our Local Approach . .... .... .... .... .... ..... 164 5.5.3 Combining the Global Approach and Our Local Approach .... .... ..... .... .... .... .... .... ..... 168 6 Evaluation of the Global-To-Local Variational Formulation.. ..... 173 6.1 Extracting the Nasal Cavity and the Paranasal Sinuses from Two-Dimensional CT Slices .... .... .... .... .... ..... 173 6.1.1 New Global-To-Local Approach Versus Global Approach by Tsai et al. .. .... .... .... .... .... ..... 174 6.1.2 New Global-To-Local Approach Versus Former Segmentation Framework. .... .... .... .... .... ..... 185 6.2 Extracting the Nasal Cavity and the Paranasal Sinuses from Three-Dimensional CT Data .... .... .... .... .... ..... 191 6.2.1 New Global-To-Local Approach Versus Global Approach by Tsai et al. .. .... .... .... .... .... ..... 192 6.2.2 New Global-To-Local Approach Versus Former Segmentation Framework. .... .... .... .... .... ..... 199 7 Conclusion and Outlook.. .... ..... .... .... .... .... .... ..... 207 7.1 Open Topics and Future Work... .... .... .... .... .... ..... 209 Appendix A: Results from Sect. 4.1.3 ... .... .... .... .... ..... .... 211 Appendix B: Results from Sect. 6.1.1 ... .... .... .... .... ..... .... 221 Appendix C: Results from Sect. 6.1.2 ... .... .... .... .... ..... .... 231 Appendix D: The Sample Covariance Matrix. .... .... .... ..... .... 241 xii Contents Appendix E: More Examples for the Global Variational Formulation.... ..... .... .... .... .... .... ..... .... 245 Appendix F: Rigid Shape Alignment.... .... .... .... .... ..... .... 249 Own Publications and References .. .... .... .... .... .... ..... .... 253 List of Figures Figure 1.1 Depiction of the brachistochrone curve on which the blue bodyreachesthepointP inshortesttimewhenstartingwith 2 zero velocity in point P .... .... .... .... .... .... ..... 5 1 Figure 1.2 Exemplary level set representations of different curves. ..... 10 Figure 1.3 Zero level set and normalized gradient vectors of the level set function U. .. .... ..... .... .... .... .... .... ..... 11 Figure 1.4 Example of an edge-indicator function g ... .... .... ..... 14 Figure 1.5 Curve moving under the Euclidean curve shortening flow ... 15 Figure 1.6 Zero level curve C and corresponding narrow band NBðCÞ.... .... ..... .... .... .... .... .... ..... 16 Figure 1.7 Exemplary level set segmentation of an implanted knee prosthesis .. .... .... ..... .... .... .... .... .... ..... 18 Figure 2.1 Exemplary CT cross-section and range scan of a human head. .... ..... .... .... .... .... .... ..... 22 Figure 2.2 Exemplary explicit shape representations of a hand and a dolphin..... .... .... ..... .... .... .... .... .... ..... 23 Figure 2.3 Mean shape overlaid with the trainings shapes before and after they have been rigidly aligned with regard to rotation, translation, and scale. . ..... .... .... .... .... .... ..... 24 Figure 2.4 Distribution of the training shapes, projected onto the two main modes of variation. ... .... .... .... .... .... ..... 27 Figure 2.5 Cumulative variance for a growing number of eigenvectors. . 28 Figure 2.6 Screegraph,showingtheeigenvaluesr2indescendingorder i of importance ... .... ..... .... .... .... .... .... ..... 29 Figure 2.7 Variation of the mean shape by (cid:2)3 standard deviations along the five most important eigenvectors. . .... .... ..... 30 Figure 2.8 Exemplaryschematicoverviewofthetrainingprocessofthe implicit linear parametric statistical shape model from Eq. (2.34).. .... .... ..... .... .... .... .... .... ..... 35 xiii xiv ListofFigures Figure 2.9 First four main modes of variation of the implicit training shapes. .... .... .... ..... .... .... .... .... .... ..... 36 Figure 2.10 Screegraph,showingtheeigenvaluesr2indescendingorder i of importance ... .... ..... .... .... .... .... .... ..... 37 Figure 2.11 Cumulative variance for a growing number of eigenvectors. . 37 Figure 2.12 Variation of the mean shape by (cid:2)3 standard deviations along the five main modes of variation. .... .... .... ..... 38 Figure 2.13 Distribution of the implicit training shapes, projected onto the first three main modes of variation.. .... .... .... ..... 39 Figure 2.14 Two-dimensional projections of the plot shown in Fig. 2.13a. ... .... ..... .... .... .... .... .... ..... 40 Figure 3.1 Benefits of the local adaptation of global shape parameters... 54 Figure 3.2 Schematic visualizations of the global SSM and the LDSSM.. .... ..... .... .... .... .... .... ..... 57 Figure 3.3 Exemplary registration of two hands with a demons-based approach. .. .... .... ..... .... .... .... .... .... ..... 59 Figure 3.4 General idea of the demons-based approach to the determination of a smooth field of weight vectors for our LDSSM.... .... .... ..... .... .... .... .... .... ..... 60 Figure 3.5 Original shape and best possible approximation that can be obtained with the SSM from Eq. (2.34) .... .... .... ..... 62 Figure 3.6 Demons-based approach to the determination of a smooth field of weight vectors for our LDSSM that is constraint by the trained shape distribution .... .... .... .... .... ..... 64 Figure 3.7 Original image I, edge image I , and unsigned distance bin image Idist . .... .... ..... .... .... .... .... .... ..... 66 Figure 3.8 Weight field update loop for an unknown target shape. ..... 67 Figure 3.9 Weight update target estimation for an image edge outside the modeled shape ... ..... .... .... .... .... .... ..... 68 Figure 3.10 Weightupdatetargetestimationforanimageedgeinsidethe modeled shape .. .... ..... .... .... .... .... .... ..... 69 Figure 3.11 Weight update target estimation based on the smoothed gradient magnitude... ..... .... .... .... .... .... ..... 71 Figure 4.1 Exemplary slices in frontal view from two different CT datasets. ... .... .... ..... .... .... .... .... .... ..... 77 Figure 4.2 Datasets of the paranasal sinuses database .. .... .... ..... 79 Figure 4.3 Eight iterations of the Nelder–Mead simplex method, searching for a minimum of Himmelblau's two-dimensional test function..... .... ..... .... .... .... .... .... ..... 84 Figure 4.4 Gradient magnitude image jrIj, convolved with Gaussian smoothing kernels Kgauss that differ in the standard deviation rgauss. .... ..... .... .... .... .... .... ..... 86 Figure 4.5 Intermediate steps of our processing chain for segmenting the paranasal sinuses, applied to the CT data in Fig. 4.1a.... 87

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.