ebook img

From Gestalt theory to image analysis: a probabilistic approach PDF

285 Pages·2008·7.761 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview From Gestalt theory to image analysis: a probabilistic approach

Interdisciplinary Applied Mathematics Volume 34 Editors S.S. Antman J.E. Marsden L. Sirovich S. Wiggins Geophysics and Planetary Sciences Imaging, Vision, and Graphics D. Geman Mathematical Biology L. Glass, J.D. Murray Mechanics and Materials R.V. Kohn Systems and Control S.S. Sastry, P.S. Krishnaprasad Problems in engineering, computational science, and the physical and biological sciences are using increasingly sophisticated mathematical techniques. Thus, the bridge between the mathematical sciences and other disciplines is heavily traveled. The correspondingly increased dialog between the disciplines has led to the establishment of the series: Interdisciplinary Applied Mathematics. The purpose of this series is to meet the current and future needs for the interaction between various science and technology areas on the one hand and mathematics on the other. This is done, firstly, by encouraging the ways that mathematics may be applied in traditional areas, as well as point towards new and innovative areas of applications; and, secondly, by encouraging other scientifi c disciplines to engage in a dialog with mathematicians outlining their problems to both access new methods and suggest innovative developments within mathematics itself. The series will consist of monographs and high-level texts from researchers working on the interplay between mathematics and other fi elds of science and technology. Interdisciplinary Applied Mathematics Volumes published are listed at the end of this book. Agne`s Desolneux Lionel Moisan Jean-Michel Morel From Gestalt Theory to Image Analysis A Probabilistic Approach A.Desolneux L. Moisan Universite´ Paris Descartes Universite´ Paris Descartes MAP5 (CNRS UMR 8145) MAP5 (CNRS UMR 8145) 45, rue des Saints-Pe`res 45, rue des Saints-Pe`res 75270 Paris cedex 06, France 75270 Paris cedex 06, France [email protected] [email protected] J.-M. Morel Ecole Normale Supe´rieure de Cachan, CMLA 61, av. du Pre´sident Wilson 94235 Cachan Ce´dex France [email protected] Editors S.S. Antman J.E. Marsden Department of Mathematics Control and Dynamical Systems and Mail Code 107-81 Institute for Physical Science California Institute of Technology and Technology Pasadena, CA 91125, USA University of Maryland [email protected] College Park, MD 20742, USA [email protected] L. Sirovich S. Wiggins Division of Applied Mathematics School of Mathematics Brown University University of Bristol Providence, RI 02912, USA Bristol BS8 1TW, UK [email protected] [email protected] ISBN:978-0-387-72635-9 e-ISBN:978-0-387-74378-3 DOI:10.1007/978-0-387-74378-3 Libraryof CongressControlNumber:2007939527 MathematicsSubjectClassification(2000):62H35, 68T45, 68U10 © 2008 Springer Science + Business Media, LLC All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science + Business Media, LLC, 233 Spring St., New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identifi ed as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper 9 8 7 6 5 4 3 2 1 springer.com Preface Thetheoryinthesenoteswastaughtbetween2002and2005atthegraduateschools of Ecole Normale Supe´rieure de Cachan, Ecole Polytechnique de Palaiseau, Uni- versitat Pompeu Fabra, Barcelona, Universitat de les Illes of Balears, Palma, and UniversityofCaliforniaatLosAngeles.ItisalsobeingtaughtbyAndre`sAlmansa attheFacultaddeIngeneria,Montevideo. Thistextwillbeofinteresttoseveralkindsofaudience.Ourteachingexperience provesthatspecialistsinimageanalysisandcomputervisionfindthetexteasyatthe computervisionsideandaccessibleonthemathematicallevel.Theprerequisitesare elementary calculus and probability from the first two undergraduate years of any sciencecourse.Allslightlymoreadvancednotionsinprobability(inequalities,sto- chasticgeometry,largedeviations,etc.)willbeeitherprovedinthetextordetailed inseveral exercises attheendofeachchapter. Wehave always askedthestudents todoallexercisesandtheyusuallysucceedregardlessofwhattheirscienceback- groundis.Themathematicsstudentsdonotfindthemathematicsdifficultandeasily learnthroughthetextitselfwhatisneededinvisionpsychologyandthepracticeof computervision.Thetextaimsatbeingself-containedinallthreeaspects:mathe- matics,vision,andalgorithms.Wewillinparticularexplainwhatadigitalimageis andhowtheelementarystructurescanbecomputed. Wewishtoemphasizewhywearepublishingthesenotesinamathematicscol- lection.Themainquestiontreatedinthiscourseisthevisualperceptionofgeometric structure.Wehopethisisathemeofinterestforallmathematiciansandallthemore ifvisualperceptioncanreceive–uptoacertainlimitwecannotyetfix–afullymath- ematical treatment. In these lectures, we rely on only four formal principles, each one taken from perception theory, but receiving here a simple mathematical defi- nition. These mathematically elementary principles are theShannon-Nyquist prin- ciple, the contrast invariance principle, the isotropy principle and the Helmholtz principle.Thefirstthreeprinciplesareclassicalandeasilyunderstood.Wewilljust statethem along withtheir straightforwardconsequences. Thus, thetext ismainly dedicated to one principle, the Helmholtz principle. Informally, it states that there is no perception in white noise. A white noise image is an image whose samples v vi Preface areidenticallydistributedindependentrandomvariables.Theviewofawhitesheet of paper in daylight gives a fair idea of what white noise is. The whole work will be to draw from this impossibility of seing something on a white sheet a series of mathematicaltechniquesandalgorithmsanalyzingdigitalimagesand“seeing”the geometricstructurestheycontain. Most experiments are performed on digital every-day photographs, as they presentavarietyofgeometricstructuresthatexceedsbyfaranymathematicalmod- eling and are therefore apt for checking any generic image analysis algorithm. A warning to mathematicians: It would be fallacious to deduce from the above lines thatweareproposingadefinitionofgeometricstructureforallrealfunctions.Such a definition would include all geometries invented by mathematicians. Now, the mathematician’srealfunctionsare,fromthephysicalorperceptualviewpoint,im- possibleobjectswithinfiniteresolutionandthatthereforehaveinfinitedetailsand structuresonallscales.Digitalsignals,orimages,aresurelyfunctions,butwiththe essential limitation of having a finite resolution permitting a finite sampling (they are band-limited, by the Shannon-Nyquist principle). Thus, in order to deal with digitalimages,amathematicianhastoabandontheinfiniteresolutionparadiseand stepintoafiniteworldwheregeometricstructuresmustallthesamebefoundand proven. They can even be found with an almost infinite degree of certainty; how sureweareofthemispreciselywhatthisbookisabout. The authors are indebted to their collaborators for their many comments and corrections, and more particularly to Andre`s Almansa, Je´re´mie Jakubowicz, Gary Hewer, Carol Hewer, and Nick Chriss. Most of the algorithms used for the exper- iments are implemented in the public software MegaWave. The research that led to the development of the present theory was mainly developed at the University Paris-Dauphine(Ceremade)andattheCentredeMathe´matiquesetLeursApplica- tions,ENSCachanandCNRS.Itwaspartiallyfinancedduringthepast6yearsby theCentreNational d’Etudes Spatiales, theOffice ofNaval Research, and NICOP undergrantN00014-97-1-0839andtheFondationlesTreilles.Wethankverymuch BernardRouge´,DickLau,WenMasters,RezaMalek-Madani,andJamesGreenberg fortheirinterestandconstantsupport.TheauthorsaregratefultoJeanBretagnolle, NicolasVayatis,Fre´de´ricGuichard,IsabelleGaudron-Trouve´,andGuillermoSapiro forvaluablesuggestionsandcomments. Contents Preface............................................................ v 1 Introduction................................................... 1 1.1 GestaltTheoryandComputerVision .......................... 1 1.2 BasicPrinciplesofComputerVision .......................... 3 2 GestaltTheory................................................. 11 2.1 BeforeGestaltism:Optic-GeometricIllusions................... 11 2.2 GroupingLawsandGestaltPrinciples ......................... 13 2.2.1 GestaltBasicGroupingPrinciples ...................... 13 2.2.2 CollaborationofGroupingLaws ....................... 17 2.2.3 GlobalGestaltPrinciples.............................. 19 2.3 ConflictsofPartialGestaltsandtheMaskingPhenomenon ....... 21 2.3.1 Conflicts ........................................... 21 2.3.2 Masking ........................................... 22 2.4 QuantitativeAspectsofGestaltTheory ........................ 25 2.4.1 QuantitativeAspectsoftheMaskingPhenomenon ........ 25 2.4.2 ShannonTheoryandtheDiscreteNatureofImages ....... 27 2.5 BibliographicNotes ........................................ 29 2.6 Exercise .................................................. 29 2.6.1 GestaltEssay ....................................... 29 3 TheHelmholtzPrinciple ........................................ 31 3.1 IntroducingtheHelmholtzPrinciple:ThreeElementary Examples ................................................. 31 3.1.1 ABlackSquareonaWhiteBackground ................. 31 3.1.2 BirthdaysinaClassandtheRoleofExpectation.......... 34 3.1.3 VisibleandInvisibleAlignments ....................... 36 3.2 TheHelmholtzPrincipleandε-MeaningfulEvents .............. 37 3.2.1 AFirstIllustration:PlayingRoulettewithDostoievski ..... 39 3.2.2 AFirstApplication:DotAlignments.................... 41 3.2.3 TheNumberofTests ................................. 42 vii viii Contents 3.3 BibliographicNotes ........................................ 43 3.4 Exercise .................................................. 44 3.4.1 BirthdaysinaClass .................................. 44 4 EstimatingtheBinomialTail .................................... 47 4.1 EstimatesoftheBinomialTail................................ 47 4.1.1 Inequalitiesfor (l,k,p) .............................. 49 B 4.1.2 AsymptoticTheoremsfor (l,k,p)=P[S k]........... 50 l B ≥ 4.1.3 ABriefComparisonofEstimatesfor (l,k,p)............ 50 B 4.2 BibliographicNotes ........................................ 52 4.3 Exercises ................................................. 52 4.3.1 TheBinomialLaw ................................... 52 4.3.2 Hoeffding’sInequalityforaSumofRandomVariables..... 53 4.3.3 ASecondHoeffdingInequality ........................ 55 4.3.4 GeneratingFunction.................................. 56 4.3.5 LargeDeviationsEstimate............................. 57 4.3.6 TheCentralLimitTheorem............................ 60 4.3.7 TheTailoftheGaussianLaw .......................... 63 5 AlignmentsinDigitalImages ................................... 65 5.1 DefinitionofMeaningfulSegments ........................... 65 5.1.1 TheDiscreteNatureofAppliedGeometry ............... 66 5.1.2 TheAContrarioNoiseImage.......................... 67 5.1.3 MeaningfulSegments ................................ 70 5.1.4 DetectabilityWeightsandUnderlyingPrinciples .......... 72 5.2 NumberofFalseAlarms .................................... 74 5.2.1 Definition .......................................... 74 5.2.2 PropertiesoftheNumberofFalseAlarms................ 75 5.3 OrdersofMagnitudesandAsymptoticEstimates ................ 76 5.3.1 SufficientConditionofMeaningfulness.................. 77 5.3.2 AsymptoticsfortheMeaningfulnessThresholdk(l) ....... 78 5.3.3 LowerBoundfortheMeaningfulnessThresholdk(l) ...... 80 5.4 PropertiesofMeaningfulSegments ........................... 81 5.4.1 ContinuousExtensionoftheBinomialTail............... 81 5.4.2 DensityofAlignedPoints ............................ 83 5.5 AboutthePrecision p ....................................... 86 5.6 BibliographicNotes ........................................ 87 5.7 Exercises ................................................. 91 5.7.1 ElementaryPropertiesoftheNumberofFalseAlarms ..... 91 5.7.2 AContinuousExtensionoftheBinomialLaw ............ 91 5.7.3 ANecessaryConditionofMeaningfulness ............... 92 Contents ix 6 MaximalMeaningfulnessandtheExclusionPrinciple ............. 95 6.1 Introduction ............................................... 95 6.2 TheExclusionPrinciple ..................................... 97 6.2.1 Definition .......................................... 97 6.2.2 ApplicationoftheExclusionPrincipletoAlignments...... 98 6.3 MaximalMeaningfulSegments ..............................100 6.3.1 AConjectureAboutMaximality .......................102 6.3.2 ASimplerConjecture ................................103 6.3.3 ProofofConjecture1UnderConjecture2 ...............105 6.3.4 PartialResultsAboutConjecture2......................106 6.4 ExperimentalResults .......................................109 6.5 BibliographicalNotes.......................................112 6.6 Exercise ..................................................113 6.6.1 StraightContourCompletion ..........................113 7 ModesofaHistogram ..........................................115 7.1 Introduction ...............................................115 7.2 MeaningfulIntervals........................................115 7.3 MaximalMeaningfulIntervals................................119 7.4 MeaningfulGapsandModes.................................122 7.5 StructurePropertiesofMeaningfulIntervals ....................123 7.5.1 MeanValueofanInterval .............................123 7.5.2 StructureofMaximalMeaningfulIntervals...............124 7.5.3 TheReferenceInterval................................126 7.6 ApplicationsandExperimentalResults ........................127 7.7 BibliographicNotes ........................................129 7.8 Exercises .................................................129 7.8.1 Kullback-LeiblerDistance.............................129 7.8.2 AQualitativeaContrarioHypothesis ...................130 8 VanishingPoints ...............................................133 8.1 Introduction ...............................................133 8.2 DetectionofVanishingPoints ................................133 8.2.1 MeaningfulVanishingRegions.........................134 8.2.2 ProbabilityofaLineMeetingaVanishingRegion.........135 8.2.3 PartitionoftheImagePlaneintoVanishingRegions .......137 8.2.4 FinalRemarks.......................................141 8.3 ExperimentalResults .......................................144 8.4 BibliographicNotes ........................................145 8.5 Exercises .................................................150 8.5.1 Poincare´-InvariantMeasureontheSetofLines ...........150 8.5.2 PerimeterofaConvexSet ............................150 8.5.3 Crofton’sFormula ...................................150 x Contents 9 ContrastedBoundaries .........................................153 9.1 Introduction ...............................................153 9.2 LevelLinesandtheColorConstancyPrinciple..................153 9.3 AContrarioDefinitionofContrastedBoundaries ................159 9.3.1 MeaningfulBoundariesandEdges......................159 9.3.2 Thresholds..........................................162 9.3.3 Maximality .........................................163 9.4 Experiments...............................................164 9.5 TwelveObjectionsandQuestions .............................168 9.6 BibliographicNotes ........................................174 9.7 Exercise ..................................................175 9.7.1 TheBilinearInterpolationofanImage ..................175 10 VariationalorMeaningfulBoundaries?...........................177 10.1 Introduction ...............................................177 10.2 The“Snakes”Models .......................................177 10.3 ChoiceoftheContrastFunctiong.............................180 10.4 SnakesVersusMeaningfulBoundaries.........................185 10.5 BibliographicNotes ........................................188 10.6 Exercise ..................................................188 10.6.1 NumericalScheme...................................188 11 Clusters ......................................................191 11.1 Model ....................................................191 11.1.1 Low-ResolutionCurves...............................191 11.1.2 MeaningfulClusters..................................193 11.1.3 MeaningfulIsolatedClusters ..........................193 11.2 FindingtheClusters ........................................194 11.2.1 SpanningTree.......................................194 11.2.2 ConstructionofaCurveEnclosingaGivenCluster ........194 11.2.3 MaximalClusters ....................................196 11.3 Algorithm.................................................196 11.3.1 ComputationoftheMinimalSpanningTree..............196 11.3.2 DetectionofMeaningfulIsolatedClusters ...............197 11.4 Experiments...............................................198 11.4.1 Hand-MadeExamples ................................198 11.4.2 ExperimentonaRealImage...........................198 11.5 BibliographicNotes ........................................198 11.6 Exercise ..................................................201 11.6.1 PoissonPointProcess ................................201 12 BinocularGrouping ...........................................203 12.1 Introduction ...............................................203 12.2 EpipolarGeometry .........................................204 12.2.1 TheEpipolarConstraint...............................204 12.2.2 TheSeven-PointAlgorithm............................204

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.