ebook img

From Foundations to Philosophy of Mathematics : An Historical Account of Their Development in the XX Century and Beyond PDF

238 Pages·2012·1.994 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview From Foundations to Philosophy of Mathematics : An Historical Account of Their Development in the XX Century and Beyond

From Foundations to Philosophy of Mathematics From Foundations to Philosophy of Mathematics: An Historical Account of their Development in the XX Century and Beyond By Joan Roselló From Foundations to Philosophy of Mathematics: An Historical Account of their Development in the XX Century and Beyond, by Joan Roselló This book first published 2012 Cambridge Scholars Publishing 12 Back Chapman Street, Newcastle upon Tyne, NE6 2XX, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2012 by Joan Roselló All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISBN (10): 1-4438-3459-9, ISBN (13): 978-1-4438-3459-9 TO MY FATHER CONTENTS Introduction.................................................................................................1 Chapter One.................................................................................................7 Frege’s Logic and Logicism 1.1 Fregean Logicism.............................................................................7 1.2 Frege’s Logic...................................................................................9 1.3 The Reduction of the Concept of Order in a Series.......................12 1.4 The Definition of the Concept of Number.....................................14 1.5 The Infinitude of the Natural Number Series.................................18 1.6 The Basic Laws of Arithmetic.......................................................20 1.7 Russell’s Paradox...........................................................................24 1.8 Conclusion.....................................................................................26 Chapter Two..............................................................................................29 Russell’s Logicism and Type Theory 2.1 Russell, Logicism and the Paradoxes.............................................29 2.2 The Transfinite Paradoxes and the No Classes Theory..................32 2.3 The Theory of Descriptions and the Vicious Circle Principle.......34 2.4 The Theory of Logical Types.........................................................38 2.5 Realism versus Constructivism......................................................41 2.6 The Notion of Predicativity and the Axiom of Reducibility..........45 2.7 The Extensional Hierarchy: The Multiplicative and Infinity Axioms...........................................................................................48 2.8 Conclusion.....................................................................................50 Chapter Three............................................................................................55 Zermelo and the Origins of Axiomatic Set Theory 3.1 Cantor, Dedekind and the Origins of Set Theory..........................55 3.2 Cantor and Transfinite Number Theory.........................................58 3.3 Dedekind’s Logicism and Set Theory............................................60 3.4 The Origins of Zermelo’s Axiomatic Set Theory..........................62 3.5 First Definitions and Axioms.........................................................65 3.6 The Axiom of Separation and Russell’s Paradox...........................67 3.7 The Axioms of Choice and of Infinity...........................................70 3.8 The Cumulative Hierarchy of Sets.................................................72 3.9 Conclusion.....................................................................................74 viii Contents Chapter Four..............................................................................................79 Brouwer’s Intuitionism and the Foundational Debate 4.1 Intuitionism and Brouwerian Intuitionism.....................................79 4.2 The Primordial Intuition of Time...................................................81 4.3 Mathematics, Language and Logic................................................83 4.4 The Unreliability of the Principle of Excluded Middle..................86 4.5 The Continuum..............................................................................89 4.6 Intuitionist Mathematics................................................................92 4.7 Intuitionist Set Theory...................................................................95 4.8 The Grundlagenstreit: Intuitionism versus Formalism..................98 4.9 Conclusion...................................................................................103 Chapter Five............................................................................................107 Hilbert’s Formalism and Finitism 5.1 Hilbert’s Early Career.................................................................107 5.2 The Geometrical Context............................................................109 5.3 Hilbert’s Grundlagen der Geometrie..........................................111 5.4 Formalism...................................................................................113 5.5 The Foundations of Arithmetic...................................................116 5.6 Logic and Logicism....................................................................119 5.7 Finitism.......................................................................................123 5.8 Proof Theory...............................................................................126 5.9 Conclusion..................................................................................130 Chapter Six..............................................................................................133 Poincaré, Weyl and Predicativism 6.1 Poincaré’s Intuitionism and the Predicativist Constraint.............133 6.2 Russell, Poincaré and the Emergence of Predicativism...............136 6.3 Poincaré against the Logicists, Formalists and Cantorians..........140 6.4 Weyl’s Contributions to the Foundations of Mathematics...........145 6.5 Das Kontinuum (I): Foundational Issues......................................148 6.6 Das Kontinuum (II): The Reconstruction of Analysis..................151 6.7 Conclusion...................................................................................153 From Foundations to Philosophy of Mathematics ix Chapter Seven..........................................................................................155 Gödel’s Incompleteness Theorems and Platonism 7.1 Gödel and Hilbert’s Program.......................................................155 7.2 Completeness and Incompleteness...............................................157 7.3 Peano’s Arithmetic and Sentences of Goldbach’s Type..............160 7.4 The First Incompleteness Theorem..............................................165 7.5 The Second Incompleteness Theorem and the Incompletability of Mathematics............................................................................169 7.6 The Consistency of the Axiom of Choice and the Continuum Hypothesis....................................................................................173 7.7 Platonism or Conceptual Realism................................................176 7.8 Conclusion...................................................................................179 Chapter Eight...........................................................................................183 New Perspectives in the Philosophy of Mathematics: The Foundational Programs Revisited 8.1 Neologicism.................................................................................183 8.2 Constructivism.............................................................................188 8.3 Second-Order Arithmetic.............................................................192 8.4 Subsystems of PA and Reverse Mathematics.............................194 2 8.5 Finitist Reductionism...................................................................197 8.6 Predicativist Reductionism..........................................................199 8.7 Coda.............................................................................................201 References...............................................................................................207 Subject Index...........................................................................................221

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.