ebook img

From Euler to Grad–Shafranov—The Simplest Way PDF

44 Pages·2009·0.86 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview From Euler to Grad–Shafranov—The Simplest Way

AppendixA From Euler to Grad–Shafranov—The Simplest Way HereweshowhowthesubsonicGSequationversion(1.345)canbedirectlyderived from the Euler equation. We consider, for simplicity, only the nonrelativistic flow andthesmallanglesΘ=π/2−θ inthevicinityoftheequatorialplane. Theθ-componentoftheEulerequationis vr∂∂vrθ +vθr∂∂vθθ + vrrvθ − vrϕ2cotθ =−∇ θnP −∇θϕg. (A.1) Ifweaddvϕ∂vϕ/r∂θ tobothsidesandaddandsubtractvr∂vr/r∂θ ontheleft-hand side,wefind (cid:6) (cid:7) vr∂∂vrθ −vrr∂∂vθr +∇θ v22 + vrrvθ = vrϕ2cotθ +vϕr∂∂vθϕ − ∇mθPn −∇θϕg. (A.2) p BythedefinitionoftheBernoulliintegral E =v2/2+w+ϕ andaccordingtothe n g thermodynamicrelationshipdP = dw−nTds,weobtainfor E =const n vr∂∂vrθ −vrr∂∂vθr + vrrvθ = rvϕ(cid:19)si2nθ r∂∂θ(rvϕsinθ)+ mT r∂∂sθ. (A.3) p Thedefinition(1.90)yields 1 ∂Φ 1 ∂Φ vr = 2πnr2sinθ ∂θ , vθ =−2πnrsinθ ∂r . (A.4) Assumingnown ≈const(thisisthecaseforthesubsonicflow),weget (cid:6) (cid:7)(cid:2) (cid:6) (cid:7)(cid:3) 1 ∂Φ ∂2Φ sinθ ∂ 1 ∂Φ − + 4π2n2 ∂θ ∂r2 r2 ∂θ sinθ ∂θ ∂ T ∂s =rvϕsinθ∂θ(rvϕsinθ)+(cid:19)2m ∂θ. (A.5) p Finally,ifwedividebothsidesby−(∂Φ/∂θ),weobtain(1.345). V.S.Beskin,MHDFlowsinCompactAstrophysicalObjects,Astronomyand 385 AstrophysicsLibrary,DOI10.1007/978-3-642-01290-7, (cid:2)C Springer-VerlagBerlinHeidelberg2010 386 A FromEulertoGrad–Shafranov—TheSimplestWay Therefore,ifthefirsttermontheleft-handsideof(1.345)reallycorrespondsto thecomponentvr∂vθ/∂r andthelasttermontheright-handside(cs =const)tothe pressuregradient,theroleoftheterm∝ L ∂L /∂Φproveslesstrivial.Itcomprises n n both the effective potential gradient and, actually, the component vθ∂vθ/∂θ. The formeristheleadingonenearthemarginallystableorbitr ≈3r ;thelatterbecomes g importantonlywhenapproachingthesonicsurface. AppendixB Nonrelativistic Force-Free Grad–Shafranov Equation Aswasnoted,thenonrelativisticversionoftheforce-freeequation(2.101)reduces tozeroofAmpere’sforce[∇ ×B]×B,whichimpliesthatthecontributionofthe electricfieldisnottakenintoaccount.Thus,theGSequationhastheform 2 ∂Ψ 16π2 dI −∇2Ψ+ − I =0. (B.1) (cid:19) ∂(cid:19) c2 dΨ Aswesee,themaindifferencefromtherelativisticversionisthatthereisnointegral ofmotionΩ inEq.(B.1).Hence, F (cid:129) thenonrelativisticGSequationversionhasnocriticalsurface; (cid:129) accordingtothegeneralformulab=2+i −s(cid:16),foranumberofboundarycon- ditionswehaveb=3,i.e.,theproblemrequiresthreeboundaryconditions. ThenonrelativisticGSequationcanbesubstantiallysimplifiedifweconsidera one-dimensionalcylindricalconfiguration;thecurrent I(Ψ)isthelinearfunctionof themagneticfluxΨ.Itisconvenienttowritethisrelationas c I(Ψ)= Ψ, (B.2) 4π(cid:19) 0 where(cid:19) istheconstantoflengthdimension.Inthiscase,Eq.(B.1)becomeslinear: 0 d2Ψ 1 dΨ − +Ψ=0. (B.3) dx2 x dx r r r Herex =(cid:19)/(cid:19) .ThesolutiontoEq.(B.3)istheknownfields r 0 B = B J (x ), (B.4) z 0 0 r Bϕ = B0J1(xr), (B.5) 387 388 B NonrelativisticForce-FreeGrad–ShafranovEquation where J (x ) and J (x ) are the Bessel functions. As we see, in a stable cylindri- 0 r 1 r cal discharge at some distance from the axis, the longitudinal magnetic field must changeitsdirection,whichisobservedexperimentally(see,e.g.,Kadomtsev,1988). AppendixC Part-Time Job Pulsars Recently,Krameretal.(2006)havereportedonthethoroughstudyofradiopulsar B1931+24. The difference between this pulsar and ordinary radio pulsars is that theformerhas5–10dactivephases.Therefore,theradioemissionisswitchedoffin lessthan10sandisactuallyundetectableforthenext25–35d.Itisveryimportant thattheneutronstarspin-downisdifferentintheonandoffstates: Ω˙ =1.02×10−141/s2, (C.1) on Ω˙ =0.68×10−141/s2. (C.2) off Hence Ω˙ on =1.5. (C.3) Ω˙ off Later,thesameratiowasdetectedforPSR J1832+0031(t ∼300d,t ∼700d). on off This discovery offers a unique opportunity to observe both energy-loss mecha- nismsforthesameradiopulsar(BeskinandNokhrina,2007;GurevichandIstomin, 2007).Besides,wecanclarifythepulsarbrakingmechanism.Thus,itislogicalto supposethatintheonstatetheenergyreleaseisduetothecurrentlossesonlyand intheoffstatetothemagnetodipoleradiation(inthiscase,itisnottheplasma-filled magnetosphere).Using(2.5)and(2.178),wefind Ω˙ 3f2 on = ∗ cot2χ, (C.4) Ω˙ 2 off whichyieldsthereasonablevalueoftheinclinationangleχ ≈60◦. Ontheotherhand,ifwetakerelation(2.260)fortheon-stateenergylosses(Spitkovsky, 2006) 1 B2Ω4R6 W = 0 (1+sin2χ), (C.5) tot 4 c3 389 390 C Part-TimeJobPulsars weget Ω˙ 3 (1+sin2χ) on = . (C.6) Ω˙ 2 sin2χ off Itisobviousthatthisratiocannotbeequalto1.5foranyinclinationangle. Comparingthetheorywiththeobservationsofradiopulsar B1931+24,wecan makethefollowingconclusions(GurevichandIstomin,2007): 1. It is for the first time that in the PSR B1931+24 off state the spin-down of themagnetizedneutronstarrotationduetothemagnetodipoleradiationenergy losseswasobserved. 2. Therearereallycurrentlosseswhicharefullydifferentfromthevacuumones. 3. As the switching time between the on and off states is very short, the plasma sourceistobelocatedintheopenpartofthemagnetosphere. AppendixD Special Functions D.1 LegendrePolynomials The Legendre polynomials of the first and second kind P (x) and Q (x) are the m m solutionstotheequation (cid:2) (cid:3) d d (1−x2) f(x)=qf(x). (D.1) dx dx Theyhavetheeigenfunctions P (x) = 1, (D.2) 0 P (x) = x, (D.3) 1 3x2−1 P (x) = , (D.4) 2 2 5x3−3x P (x) = , (D.5) 3 2 ... and (cid:6) (cid:7) 1 1+x Q (x) = ln , (D.6) 0 2 1−x (cid:6) (cid:7) x 1+x Q (x) = −1+ ln , (D.7) 1 2 1−x (cid:6) (cid:7) 3x 3x2−1 1+x Q (x) = − + ln , (D.8) 2 2 4 1−x (cid:6) (cid:7) 2 5x2 5x3−3x 1+x Q (x) = − + ln , (D.9) 3 3 2 4 1−x ... andtheeigenvalues 391 392 D SpecialFunctions q =−m(m+1). (D.10) m ThegeneralexpressionforP (x)is m 1 dm P (x)= (x2−1). (D.11) m 2mm!dxm Since the Legendre polynomials are a complete orthogonal system in the interval −1< x <1,anyfunction f(x)canbegivenas (cid:20)∞ f(x)= (f) P (x), (D.12) m m m=0 where (cid:17) 2m+1 1 (f) = P (x)f(x)dx. (D.13) m m 2 −1 D.2 BesselFunctions TheBesselfunctionsofthefirstkind J (x)arethesolutionstotheequation m d2f(x) df(x) x2 +x +(x2−m2)f(x)=0, (D.14) dx2 dx havingnosingularityatx =0: (cid:14)x(cid:15)m(cid:20)∞ 1 (cid:6)−x2(cid:7)k J (x)= . (D.15) m 2 k!Γ(m+k+1) 4 k=0 Inparticular, x2 x4 x6 J (0)=1− + − +··· , (D.16) 0 4 64 2304 x x3 x5 x7 J (x)= − + − +··· , (D.17) 1 2 16 384 18432 asx →0,and (cid:31) (cid:14) (cid:15) π mπ π J (x) = cos x − − , (D.18) m 2x 2 4 asx →∞. TheMacdonald(modifiedBessel)functions K (x)arethesolutionstoequation m D.3 HypergeometricFunction 393 d2f(x) df(x) x2 +x −(x2+m2)f(x)=0. (D.19) dx2 dx Theyhaveasingularityatx =0,butvanishatinfinity.Inparticular, K (x)=−lnx +ln2−γ, (D.20) 0 1 K (x)= , (D.21) 1 x asx →0,and (cid:31) π K (x) = e−x, (D.22) m 2x asx →∞.Hereγ ≈0.577istheEulerconstant. D.3 HypergeometricFunction Thehypergeometricfunction F(a,b,c,x)isthesolutionstotheequation d2f(x) df(x) x(1−x) +[c−(a+b+1)x] −abf(x)=0, (D.23) dx2 dx havingnosingularityatx =0: ab x a(a+1)b(b+1) x2 F(a,b,c,x) =1+ + c 1! c(c+1) 2! a(a+1)(a+2)b(b+1)(b+2) x3 + +··· . (D.24) c(c+1)(c+2) 3! Thus, if a or b is an integer less than or equal to zero, the function F(a,b,c,x) reducestoapolynomial.

Description:
ApJ 332,. 646–658 (1988) 3, 8, 14. Abramowicz, M.A., Kato, S.: Constraints ApJ 246, 314–320 (1981) 360 ApJ 204, 889–896 (1976) 1, 236, 286 .. Frankl', F. I.: On the problems of Chaplygin for mixed sub- and supersonic flows.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.