AppendixA From Euler to Grad–Shafranov—The Simplest Way HereweshowhowthesubsonicGSequationversion(1.345)canbedirectlyderived from the Euler equation. We consider, for simplicity, only the nonrelativistic flow andthesmallanglesΘ=π/2−θ inthevicinityoftheequatorialplane. Theθ-componentoftheEulerequationis vr∂∂vrθ +vθr∂∂vθθ + vrrvθ − vrϕ2cotθ =−∇ θnP −∇θϕg. (A.1) Ifweaddvϕ∂vϕ/r∂θ tobothsidesandaddandsubtractvr∂vr/r∂θ ontheleft-hand side,wefind (cid:6) (cid:7) vr∂∂vrθ −vrr∂∂vθr +∇θ v22 + vrrvθ = vrϕ2cotθ +vϕr∂∂vθϕ − ∇mθPn −∇θϕg. (A.2) p BythedefinitionoftheBernoulliintegral E =v2/2+w+ϕ andaccordingtothe n g thermodynamicrelationshipdP = dw−nTds,weobtainfor E =const n vr∂∂vrθ −vrr∂∂vθr + vrrvθ = rvϕ(cid:19)si2nθ r∂∂θ(rvϕsinθ)+ mT r∂∂sθ. (A.3) p Thedefinition(1.90)yields 1 ∂Φ 1 ∂Φ vr = 2πnr2sinθ ∂θ , vθ =−2πnrsinθ ∂r . (A.4) Assumingnown ≈const(thisisthecaseforthesubsonicflow),weget (cid:6) (cid:7)(cid:2) (cid:6) (cid:7)(cid:3) 1 ∂Φ ∂2Φ sinθ ∂ 1 ∂Φ − + 4π2n2 ∂θ ∂r2 r2 ∂θ sinθ ∂θ ∂ T ∂s =rvϕsinθ∂θ(rvϕsinθ)+(cid:19)2m ∂θ. (A.5) p Finally,ifwedividebothsidesby−(∂Φ/∂θ),weobtain(1.345). V.S.Beskin,MHDFlowsinCompactAstrophysicalObjects,Astronomyand 385 AstrophysicsLibrary,DOI10.1007/978-3-642-01290-7, (cid:2)C Springer-VerlagBerlinHeidelberg2010 386 A FromEulertoGrad–Shafranov—TheSimplestWay Therefore,ifthefirsttermontheleft-handsideof(1.345)reallycorrespondsto thecomponentvr∂vθ/∂r andthelasttermontheright-handside(cs =const)tothe pressuregradient,theroleoftheterm∝ L ∂L /∂Φproveslesstrivial.Itcomprises n n both the effective potential gradient and, actually, the component vθ∂vθ/∂θ. The formeristheleadingonenearthemarginallystableorbitr ≈3r ;thelatterbecomes g importantonlywhenapproachingthesonicsurface. AppendixB Nonrelativistic Force-Free Grad–Shafranov Equation Aswasnoted,thenonrelativisticversionoftheforce-freeequation(2.101)reduces tozeroofAmpere’sforce[∇ ×B]×B,whichimpliesthatthecontributionofthe electricfieldisnottakenintoaccount.Thus,theGSequationhastheform 2 ∂Ψ 16π2 dI −∇2Ψ+ − I =0. (B.1) (cid:19) ∂(cid:19) c2 dΨ Aswesee,themaindifferencefromtherelativisticversionisthatthereisnointegral ofmotionΩ inEq.(B.1).Hence, F (cid:129) thenonrelativisticGSequationversionhasnocriticalsurface; (cid:129) accordingtothegeneralformulab=2+i −s(cid:16),foranumberofboundarycon- ditionswehaveb=3,i.e.,theproblemrequiresthreeboundaryconditions. ThenonrelativisticGSequationcanbesubstantiallysimplifiedifweconsidera one-dimensionalcylindricalconfiguration;thecurrent I(Ψ)isthelinearfunctionof themagneticfluxΨ.Itisconvenienttowritethisrelationas c I(Ψ)= Ψ, (B.2) 4π(cid:19) 0 where(cid:19) istheconstantoflengthdimension.Inthiscase,Eq.(B.1)becomeslinear: 0 d2Ψ 1 dΨ − +Ψ=0. (B.3) dx2 x dx r r r Herex =(cid:19)/(cid:19) .ThesolutiontoEq.(B.3)istheknownfields r 0 B = B J (x ), (B.4) z 0 0 r Bϕ = B0J1(xr), (B.5) 387 388 B NonrelativisticForce-FreeGrad–ShafranovEquation where J (x ) and J (x ) are the Bessel functions. As we see, in a stable cylindri- 0 r 1 r cal discharge at some distance from the axis, the longitudinal magnetic field must changeitsdirection,whichisobservedexperimentally(see,e.g.,Kadomtsev,1988). AppendixC Part-Time Job Pulsars Recently,Krameretal.(2006)havereportedonthethoroughstudyofradiopulsar B1931+24. The difference between this pulsar and ordinary radio pulsars is that theformerhas5–10dactivephases.Therefore,theradioemissionisswitchedoffin lessthan10sandisactuallyundetectableforthenext25–35d.Itisveryimportant thattheneutronstarspin-downisdifferentintheonandoffstates: Ω˙ =1.02×10−141/s2, (C.1) on Ω˙ =0.68×10−141/s2. (C.2) off Hence Ω˙ on =1.5. (C.3) Ω˙ off Later,thesameratiowasdetectedforPSR J1832+0031(t ∼300d,t ∼700d). on off This discovery offers a unique opportunity to observe both energy-loss mecha- nismsforthesameradiopulsar(BeskinandNokhrina,2007;GurevichandIstomin, 2007).Besides,wecanclarifythepulsarbrakingmechanism.Thus,itislogicalto supposethatintheonstatetheenergyreleaseisduetothecurrentlossesonlyand intheoffstatetothemagnetodipoleradiation(inthiscase,itisnottheplasma-filled magnetosphere).Using(2.5)and(2.178),wefind Ω˙ 3f2 on = ∗ cot2χ, (C.4) Ω˙ 2 off whichyieldsthereasonablevalueoftheinclinationangleχ ≈60◦. Ontheotherhand,ifwetakerelation(2.260)fortheon-stateenergylosses(Spitkovsky, 2006) 1 B2Ω4R6 W = 0 (1+sin2χ), (C.5) tot 4 c3 389 390 C Part-TimeJobPulsars weget Ω˙ 3 (1+sin2χ) on = . (C.6) Ω˙ 2 sin2χ off Itisobviousthatthisratiocannotbeequalto1.5foranyinclinationangle. Comparingthetheorywiththeobservationsofradiopulsar B1931+24,wecan makethefollowingconclusions(GurevichandIstomin,2007): 1. It is for the first time that in the PSR B1931+24 off state the spin-down of themagnetizedneutronstarrotationduetothemagnetodipoleradiationenergy losseswasobserved. 2. Therearereallycurrentlosseswhicharefullydifferentfromthevacuumones. 3. As the switching time between the on and off states is very short, the plasma sourceistobelocatedintheopenpartofthemagnetosphere. AppendixD Special Functions D.1 LegendrePolynomials The Legendre polynomials of the first and second kind P (x) and Q (x) are the m m solutionstotheequation (cid:2) (cid:3) d d (1−x2) f(x)=qf(x). (D.1) dx dx Theyhavetheeigenfunctions P (x) = 1, (D.2) 0 P (x) = x, (D.3) 1 3x2−1 P (x) = , (D.4) 2 2 5x3−3x P (x) = , (D.5) 3 2 ... and (cid:6) (cid:7) 1 1+x Q (x) = ln , (D.6) 0 2 1−x (cid:6) (cid:7) x 1+x Q (x) = −1+ ln , (D.7) 1 2 1−x (cid:6) (cid:7) 3x 3x2−1 1+x Q (x) = − + ln , (D.8) 2 2 4 1−x (cid:6) (cid:7) 2 5x2 5x3−3x 1+x Q (x) = − + ln , (D.9) 3 3 2 4 1−x ... andtheeigenvalues 391 392 D SpecialFunctions q =−m(m+1). (D.10) m ThegeneralexpressionforP (x)is m 1 dm P (x)= (x2−1). (D.11) m 2mm!dxm Since the Legendre polynomials are a complete orthogonal system in the interval −1< x <1,anyfunction f(x)canbegivenas (cid:20)∞ f(x)= (f) P (x), (D.12) m m m=0 where (cid:17) 2m+1 1 (f) = P (x)f(x)dx. (D.13) m m 2 −1 D.2 BesselFunctions TheBesselfunctionsofthefirstkind J (x)arethesolutionstotheequation m d2f(x) df(x) x2 +x +(x2−m2)f(x)=0, (D.14) dx2 dx havingnosingularityatx =0: (cid:14)x(cid:15)m(cid:20)∞ 1 (cid:6)−x2(cid:7)k J (x)= . (D.15) m 2 k!Γ(m+k+1) 4 k=0 Inparticular, x2 x4 x6 J (0)=1− + − +··· , (D.16) 0 4 64 2304 x x3 x5 x7 J (x)= − + − +··· , (D.17) 1 2 16 384 18432 asx →0,and (cid:31) (cid:14) (cid:15) π mπ π J (x) = cos x − − , (D.18) m 2x 2 4 asx →∞. TheMacdonald(modifiedBessel)functions K (x)arethesolutionstoequation m D.3 HypergeometricFunction 393 d2f(x) df(x) x2 +x −(x2+m2)f(x)=0. (D.19) dx2 dx Theyhaveasingularityatx =0,butvanishatinfinity.Inparticular, K (x)=−lnx +ln2−γ, (D.20) 0 1 K (x)= , (D.21) 1 x asx →0,and (cid:31) π K (x) = e−x, (D.22) m 2x asx →∞.Hereγ ≈0.577istheEulerconstant. D.3 HypergeometricFunction Thehypergeometricfunction F(a,b,c,x)isthesolutionstotheequation d2f(x) df(x) x(1−x) +[c−(a+b+1)x] −abf(x)=0, (D.23) dx2 dx havingnosingularityatx =0: ab x a(a+1)b(b+1) x2 F(a,b,c,x) =1+ + c 1! c(c+1) 2! a(a+1)(a+2)b(b+1)(b+2) x3 + +··· . (D.24) c(c+1)(c+2) 3! Thus, if a or b is an integer less than or equal to zero, the function F(a,b,c,x) reducestoapolynomial.
Description: