ebook img

From DeepCore to PINGU: Measuring atmospheric neutrino oscillations at the South Pole PDF

0.29 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview From DeepCore to PINGU: Measuring atmospheric neutrino oscillations at the South Pole

EPJWebofConferenceswillbesetbythepublisher DOI:willbesetbythepublisher (cid:13)c Ownedbytheauthors,publishedbyEDPSciences,2016 6 1 0 From DeepCore to PINGU 2 n Measuring atmospheric neutrino oscillations at the South Pole a J 0 J.P.Yáñez1,a fortheIceCube-Gen2Collaboration 2 1DESY,D-15735Zeuthen,Germany ] x e Abstract.Verylargevolumeneutrinotelescopes(VLVNTs)observeatmosphericneutri- - nos overa wide energyrange (GeV toTeV), after theytravel distances aslarge as the p Earth’sdiameter. DeepCore, thelowenergyextension ofIceCube, hasstartedmaking e h meaningful measurements of the neutrino oscillation parameters θ23 and |∆m232| by an- [ alyzing the atmospheric flux at energies above 10GeV. PINGU, a proposed project to lower DeepCore’s energy threshold, aims to use the same flux to further increase the 1 precisionwithwhichtheseparametersareknown,andeventuallydeterminethesignof v ∆m2 . ThelatestresultsfromDeepCore,andtheplannedtransitiontoPINGU,aredis- 5 32 4 cussedhere. 2 5 0 . 1 1 Introduction 0 6 Evidencethatneutrinoschangeflavor(oscillate)astheytravel,andarethusmassive,hasaccumulated 1 : in the last decades (see [1] and references therein). Although the phenomenon has been confirmed v from a variety of neutrino sources, atmospheric (anti-)neutrinos, ν and ν , remain a very powerful i µ e X tooltostudyit. r Theamplitudeofoscillationprobabilitiesdependsonthemixingofflavorandmasseigenstates, a encodedin mixingangles θ . The oscillationphase isproportionalto ∆m2L/E, where L isthe dis- ij ij tance traveled by the neutrino, E is its energy and ∆m2 is the squared mass difference of the mass ij eigenstates. AtmosphericneutrinosareproducedwithenergiesfromMeVtotheTeV-scaleandcan traveldistancesaslargeastheEarth’sdiameterbeforedetection. Thismeansthatexperimentsmea- suringtheseneutrinosaresensitivetothemass-splitting∆m2 andthemixinganglesθ andθ over 32 23 13 awideL/Erange[2]. Current VLVNTs can measure atmospheric neutrinos starting at approximately 10GeV [3, 4], and future proposed telescopes aim to lower the threshold to a few GeV [5, 6]. Neutrinos crossing theEarthattheseenergiesundergoneutrino-electroncoherentforwardscattering,whichaffectshow theyoscillate[7]. BetweenE ≈ 1−12GeV,thisleadstolargedeviationsfromvacuumoscillations ν forneutrinosorantineutrinos,dependingontheorderingoftheneutrinomasses[8–10]. Abovethis energy range saturation occurs and, while oscillation probabilities still differ from those in vacuum, theyarethesameforneutrinosandantineutrinosregardlessoftheneutrinomassordering. ae-mail:[email protected] EPJWebofConferences IceCube’sDeepCore[4]detectsneutrinosinthesaturationregime. Theexperimentisthussuited formeasuringtheatmosphericparametersθ and|∆m2 |[11,12]. ThePrecisionIceCubeNextGen- 23 32 erationUpgrade(PINGU)[5],aproposedsuccessortoDeepCore,willlowertheenergythresholdto accesstheresonantregime,identifythesignof∆m2 and,withthat,willplacethefinalpieceofthe 32 neutrinomassorderingpuzzle. 2 Detector performance of DeepCore and PINGU IceCubeisaniceCherenkovneutrinodetectorthatconsistsof5160digitalopticalmodules(DOMs) deployedoveravolumeof1km3,atdepthsbetween1450and2500matthegeographicSouthPole [13]. The DOMs are arranged in 86 strings, with each string holding 60 of them. Most strings are situatedoveraquasi-hexagonalgrid,withaninter-stringseparationof125m,andaverticalspacing betweenDOMsof17m. Towardsthemiddleofthedetector,eightstringsarelocatedinbetweenthe regular grid, reducing the inter-string spacing to 40−70m. The DOMs on these strings have 35% higherquantumefficiencythanthestandardDOMsandareonly7mapart. Inthisvolume,knownas DeepCore,itispossibletodetectneutrinoswithenergiesaslowas10GeV[4]. PINGUwillconsistof40additionalstringsdeployedinsidetheDeepCorevolumewithaninter- stringspacingofapproximately20m[5,14]. Eachstringwillhost96highquantumefficiencyDOMs 3m apart. The additional optical modules result in a factor of 10 increase in photocathode area density with respect to DeepCore. The closer spacing between the DOMs in PINGU lowers the energythresholdfordetectiontoafewGeV,andimprovesthereconstructionoftheenergyandarrival zenithangleoftheneutrinosinteractinginitsvolume. 2.1 Signalandbackground Thereareeightdistinctneutrino-nucleoninteractionsthatDeepCorecan, andPINGUwill, observe: chargedcurrent(CC)ν , ν andν , andneutralcurrent(NC)interactionsofallflavors, bothofneu- e µ τ trinos and antineutrinos. Only two of them, CC ν and ν¯ , are expected to produce muons with a µ µ range similar to the DOM spacing1. All of these interactions below E ≤ 100GeV constitute the ν signal for oscillation measurements in DeepCore and PINGU. Muon neutrino disappearance is the strongesteffectexpected, andsincemostmuonneutrinososcillateintotauneutrinos, ν appearance τ is also testable. Transitions involving electron neutrinos are relevant in the resonance region. The identificationandreconstructionoftheseeventsareexplainedinthefollowingsections. Atmosphericmuons, producedinthesamecosmicrayshowersastheneutrinos, areadominant sourceofbackgroundevents. InDeepCoredataanalyses,atmosphericmuonsarerejectedbyavari- ety of veto algorithms that try to correlate the signal observed in DeepCore with the arrival time of photonsobservedoutsidetheDeepCorevolume. Thesamealgorithmsarealsousedtoextractapure atmosphericmuonsamplefromdata. Thesedataareusedasabackgroundtemplateinthefinalfitof thesimulation. A similarstrategyisbeing implementedforPINGU. Aftertheveto informationhas been exhausted, the remaining atmospheric muon background is rejected by requiring the events to haveaminimumof5directphotons(seebelow)andbyapplyingcutsonthereconstructionquality. BackgroundeventsarealsointroducedbyPMTthermalnoiseandradioactivedecaysintheglass oftheDOM,whichbecomerelevantwhenlookingforfaintevents. Eventsproducedbythisnoiseare alsoremovedbyqualitycutsonthereconstruction. Amoreimportanteffectofthisbackgroundisthat itcanbiastheenergyreconstructionandaffecttheefficiencyofvetoalgorithms. Inordertomodelit correctly,noisesimulationistunedtothedata[15]. 1While18%ofCCντinteractionswillalsoproducemuonsfromtaudecay,theexpectednumberofeventsofthistypeat energiesrelevantforatmosphericneutrinooscillationsisnegligible. 7thVeryLargeVolumeNeutrinoTelescopeWorkshop 2.2 Reconstructionofneutrinoevents All neutrino events are reconstructed using the general hypothesis that at the point of interaction a hadronic shower is produced together with a collinear muon. A muon hypothesis is fit to the event withtracklengthsrangingfromzero(i.e. ultimatelyacascade-likeevent)tothedetector’ssize. Only ahandfulofthephotonsemittedinlowenergyneutrinointeractionsareobservedbyDeepCore,and thesephotonsmayscattermultipletimesbeforebeingdetected. ThelatestDeepCoreresults[12]re- liedonfindingunscatteredphotonstoaidtheeventselectionandeventreconstruction.Unscattered,or direct,photonsareidentifiedbyrestrictingthepatternsformedbytheirarrivaltimetoastring. While requiring5ormoredirectphotonsresultsina30%signalefficiency,thiscriterionkeepsthesubsetof thedetectedneutrinoswhosedirectioncanbeeasilyreconstructed. Themuontrackdirectionisfitus- ingthesephotons,following[16]. Sincethelightproducedbyacascadeisalsopreferentiallyemitted intheCherenkovangleeventswithoutamuonarealsofit,althoughtheresolutionobtainedissignifi- cantlyworse. Theneutrinointeractionposition,theenergyofthehadroniccascadeattheinteraction point,andtherangeofthemuonproducedarefitinasecondstepusingallphotonsrecordedbythe detectorwhilethedirectionalongwhichtheseparametersarevariediskeptfixed. At E = 15GeV, ν the resulting median zenith angle resolution is 10◦ for ν and 25◦ for ν , while the median energy µ e resolutionis25%forboth. Anewmethodforreconstructingneutrinointeractionshasbeensuccessfulydevelopedinthelast fewyears. Itusesamaximumlikelihoodestimatorwheretheexpectedtimeofarrivalofphotonsto aDOMgivenaparticlehypothesisisfinelybinned. TheeffectsoftheopticalpropertiesoftheSouth Pole ice are taken into account. In contrast to the method described above, this approach has the advantagesofbeingabletoreconstructnearlyallneutrinoevents(nodirectphotonsarerequired)and ofproducingasignificantlybetterdirectionalreconstructionforeventswithoutamuonpresent.Other resolutionsobtainedarecomparable. Themaximumlikelihoodreconstructionisappliedtostudythe performance of PINGU, where the energy and zenith angle resolutions are expected to improve by approximately30%. 2.3 Particleidentification MuonswithlongtracksareusedtoidentifyCCν interactions. InthelatestresultsfromDeepCore, µ neutrino-inducedmuonsareidentifiedbycomparingthequalityofthemuontrackdirectionalrecon- structiontoacascadefitthatassumesthelightobservedhasbeenrandomizedbyscatteringandtravels sphericallyoutwardsfromitsemissionpoint. TheclassificationstabilizesatE ≥30GeV,andabove ν this energy it correctly identifies 60% of CC ν , while misidentifying 30% of cascades. A similar µ strategyisbeingdevelopedforthemaximumlikelihoodreconstruction. TheparticleidentificationinPINGUismorecomplex,asν andν areexpectedtocontributeto e µ thesensitivitytodiscriminatetheneutrinomassordering[5]. Amultivariatemethodhasbeenputin place to classify the events according to their topology taking advantage of the reduced inter-string spacing. The classifier shows a stable behavior at E ≥ 15GeV, correctly identifying about 80% of ν CCν andmisidentifyinglessthan20%ofcascade-likeevents. µ 3 Analysis methods and systematic uncertainties CurrentandfutureanalysisofDeepCoredataareaimedatmeasuringtheatmosphericneutrinoflux and extracting the oscillation parameters θ and |∆m2 |. The simulation is fit to the data under the 23 32 assumption of normal and inverse mass ordering, and both results are reported. The CP-violating phase δ is held to zero. Only marginal sensitivity to the neutrino mass ordering is expected from EPJWebofConferences Table1.ListofthesourcesoferrorincludedinneutrinooscillationanalysesinthelatestDeepCoreresult(DC), ongoingstudiesofDeepCoredata(DC+)andPINGU(P).DISstandsfordeepinelasticscattering.BYrefersto thesixparametersusedintheBodek-YangmodelimplementedinGENIE. Sourceoferror Nominalvalue Uncertainty DC DC+ P Totalcrosssectionscaling Free x x x Linearenergydependence E±0.03 x x x Neutrino DISlowQ2tuning BY±[25,40]% x x GENIEmodel[18] interactions NCscaling ±10% x x Quasi-elasticaxialmass −15% +25% x x x Resonanceaxialmass ±20% x x x Overallscaling Free x x x Spectralindex E±0.04 x x x Atmospheric Honda2015[19] Fluxratioν/ν¯ ±20% x x νandµflux ν /ν relativescaling ±3% x x x e µ Atm.µcontamination Fromdata Free x x DOMoverallefficiency Muonsandflashers ±10% x x Detection DOMangularacceptance Flashers,laser Upto50% x x process Bulkicemodel Flashers Modelsin[20,21] x x Hadronicenergyscaling Geant4[22] ±5% x x DeepCore data. A main goal of PINGU analyses, on the other hand, is to discriminate between the twopossiblemassorderings. Inthismeasurement,theatmsophericoscillationparameterswouldalso bemeasuredwhilethesolarparametersandθ wouldbetakenfromglobalanalysesofallavailable 13 oscillationdata[17]. AlikelihoodratiomethodisusedbothforDeepCoreandPINGUtofindthebestfitbetweendata andsimulation,andtoestimatetheerrorofthemeasurement. InDeepCorethemethodreliesonthe productionofseveralhighstatisticssimulationsetsthatspanthespaceofthesystematicuncertainties. Sources of these systematic uncertainties are implemented as nuisance parameters and the data is left to select the set of parameters in the simulation that describe it best. The uncertainties on the oscillationparametersareestimatedfromscanningthelikelihoodlandscapearoundthebestfitpoint and using a χ2 approximation. The same method is used for studies which aim at improving the precisionofcurrentDeepCoreresults. PINGU uses two methods for estimating its sensitivity to the neutrino mass ordering. The like- lihood ratio approach is implemented as outlined in [23]. In this method, pseudo-experiments are drawnfromtwosimulationtemplates,eachproducedunderadifferentmassordering. Theoscillation parameters requried for the two templates are selected so that they result in the case of “maximum confusion”betweenhierarchies. Eachpseudo-experimentisfitundertheassumptionofbothhierar- chiesandthelikelihoodratioiscalculated. Theseparationbetweentheresultingdistributionsserves as an estimate of the confidence with which the two hypotheses can be discriminated. The second methodusedinPINGUisasimplified∆χ2 approach. ThisisafastparametricanalysisoftheFisher informationmatrix[24]andreliesonthepartialderivativesoftheeventcountsineachbinwithrespect totheparametersunderstudy. Theresultsobtainedfromthesimplified∆χ2 andthelikelihoodratio approacheshavebeenfoundtobeinagreement,andbothareusedtoreporttheprojectedsensitivity ofPINGU. Inallmethodsdiscussed,sourcesofuncertaintyareimplementedasadditionalparametersinthe fit to the data. Table 1 contains a list of the uncertainties considered for the latest DeepCore result, those being studied for future DeepCore measurements, and those included in the PINGU studies. 7thVeryLargeVolumeNeutrinoTelescopeWorkshop Anadditionalfine-grainedstudyoftheimpactoftheuncertaintiesoftheneutrinofluxpredicionsfor PINGU analyses, not listed in Table 1, can be found in [25]. We note that, directly impacting the measurementoftheoscillationparameters, simulationtestsindicatethatthedetectorenergyscaling is strongly correlated with |∆m2 |. The value of sin2θ shows a dependence on the assumed angu- 32 23 lar acceptance of the DOM and also on the parameters that modify the angular flux of atmospheric neutrinos. Thesensitivitytotheneutrinomassorderingdependsstronglyonthetruevalueofsin2θ . 23 4 Results and projections for DeepCore and PINGU The latest published results of DeepCore are a muon disappearance analysis of three years of data consideringonlytrack-likeeventswithcosθ < 0and E = [6,56]GeV.Some5174eventsare reco reco foundinthatrange. Thebestfitpointisfoundatsin2θ =0.53+0.09and∆m2 =2.72+0.19×10−3eV2. 23 −0.12 32 −0.20 Figure 1 shows the best fit point and the 90% confidence regions as a function of the atmospheric oscillationparameters. The sensitivity of an eventual re-analysis of the three years data set has been investigated in a simulationstudy. Thisstudyincludesalessrestrictiveeventselection(includingcascade-likeevents), events from the complete zenith range, and the maximum likelihood event reconstruction described inSec.2.2. Thesenstivitycalculationusingthesemodificationsindicatesthepossibilitytoreducethe uncertaintyon|∆m2 |tohalfofthecurrentlyreportedvalue,andthattheuncertaintyonsin2θ may 32 23 bedecreasedby20%. IceCube 2014 T2K 2014 [NH] 3.8 MINOS w/atm [NH] SK IV [NH] 3.6 90% CL contours )3.4 2V Figure1.Comparisonofbestfitandconfidenceintervals e3.2 3− ofatmosphericoscillationparametersobtainedwith 2m(1032|23..80 DeepCore[12]withthoseofSuperKamoikande[26],T2K ∆ [27]andMINOS[28]. |2.6 2.4 2.2 2.0 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 sin2(θ23) ThepredictedsensitivityofPINGUtotheneutrinomassorderingasafunctionoftimeisshownin Fig.2(left),wheretheaccumulatedimpactofthesystematicuncertaintiesconsideredisalsoshown. ThesestudiesindicatethatPINGUwillbeabletoidentifytheneutrinomassorderingwithasignifi- canceof3σafter3−3.5yearsofoperation. Thesensitivitydependenceonthetruevalueofsin2θ at 23 the3−yearsbenchmarkisshowninFig.2(right).Afavorablecombinationoftruephysicsparameters resultsinafasteridentificationofthemassordering. 5 Outlook Atmospheric neutrinos are a valuable tool to study neutrino oscillations. IceCube’s DeepCore has demonstratedthatverylargevolumeneutrinotelescopescanuseatmosphericneutrinostomakemean- ingful contributions to the field. Current results have started to approach the precision of dedicated experiments. Studies indicate that the full potential has not been reached and the addition of the PINGUarraycangrealtyimproveonthesemeasurementsbyaccumulatinglargesamplesofverywell reconstructedGeV-scaleneutrinosandultimatelyidentifytheneutrinomassordering. EPJWebofConferences 5.0 3 year significance vs.θ23 IMH 4.5 NMH PRELIMINARY 4.0 r) 3y3.5 ( σ 3.0 2.5 2.0 0.40 0.45 0.50 0.55 0.60 sin2θ 23 Figure2. PINGUprojections. Left:Expectedsignificancefordiscriminatingthemassorderingasafunctionof time.Right:Significanceasafunctionofthetruevalueofsin2θ atthethreeyearbenchmark. 23 References [1] K.Oliveetal.(ParticleDataGroup),Chin.Phys.C38,090001(2014) [2] J.P.Yañez,A.Kouchner,Adv.HighEnergyPhys.2015,271968(2015),1509.08404 [3] S.Adrian-Martinezetal.(ANTARESCollaboration),Phys.Lett.B714,224(2012),1206.0645 [4] R.Abbasietal.(IceCubeCollaboration),Astropart.Phys.35,615(2012),1109.6096 [5] M.Aartsenetal.(IceCube-PINGUCollaboration)(2014),1401.2046 [6] J.Brunner(KM3NeTCollaboration),inICRC(2015) [7] L.Wolfenstein,Phys.Rev.D17,2369(1978) [8] S.P.Mikheev,A.Yu.Smirnov,Sov.J.Nucl.Phys.42,913(1985),[Yad.Fiz.42,1441(1985)] [9] V.Ermilovaetal.,ShortNoticesoftheLebedevInstitute5,26(1986) [10] E.K.Akhmedov,Sov.J.Nucl.Phys47,301(1988) [11] M.Aartsenetal.(IceCubeCollaboration),Phys.Rev.Lett.111,081801(2013),1305.3909 [12] M.Aartsenetal.(IceCubeCollaboration),Phys.Rev.D91,072004(2015),1410.7227 [13] A.Achterbergetal.(IceCubeCollaboration),Astropart.Phys.26,155(2006) [14] K.Hanson(IceCube-Gen2Collaboration),inVLVnTWorkshop,Rome(2015) [15] M.Larson,Master’sthesis,UniversityofAlabama(2013) [16] J.A.Aguilaretal.(ANTARESCollaboration),Astropart.Phys.34,652(2011),1105.4116 [17] M.Gonzalez-Garcia,M.Maltoni,T.Schwetz,JHEP1411,052(2014),1409.5439 [18] C.Andreopoulosetal.,Nucl.Instrum.MethodsA614,87(2010),0905.2517 [19] M.Hondaetal.,Phys.Rev.D92,023004(2015),1502.03916 [20] M.G.Aartsenetal.(IceCubeCollaboration),Nucl.Instrum.MethodsA711,73(2013) [21] D.Chirkin(IceCubeCollaboration),inICRC(2013),1309.7010 [22] S.Agostinellietal.,Nucl.Instrum.MethodsA506,250(2003) [23] D.Francoetal.,JHEP1304,008(2013),1301.4332 [24] R.A.Fisher,Phil.Trans.Roy.Soc.Lond.A222,309(1922) [25] J.Sandroos(IceCube-Gen2Collaboration),inVLVnTWorkshop,Rome(2015) [26] M. Nakahata (Super-Kamiokande Collaboration), in XVI International Workshop on Neutrino Telescopes,Venice(2015) [27] K.Abeetal.(T2KCollaboration),Phys.Rev.D91,072010(2015),1502.01550 [28] P.Adamsonetal.(MINOSCollaboration),Phys.Rev.Lett.110,251801(2013),1304.6335

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.