From Curves to Tropical Jacobians and Back BarbaraBolognese,MadelineBrandt,LynnChua 7 1 0 2 n a J Abstract Givenacurvedefinedoveranalgebraicallyclosedfieldwhichiscomplete 2 with respect to a nontrivial valuation, we study its tropical Jacobian. This is done 1 by first tropicalizing the curve, and then computing the Jacobian of the resulting ] weightedmetricgraph.Ingeneral,itisnotknownhowtofindtheabstracttropical- G izationofacurvedefinedbypolynomialequations,sinceanembeddedtropicaliza- A tionmaynotbefaithful,andthereisnoknownalgorithmforcarryingoutsemistable . reduction in practice. We solve this problem in the case of hyperelliptic curves by h t studyingadmissiblecovers.Wealsodescribehowtotakeaweightedmetricgraph a andcomputeitsperiodmatrix,whichgivesitstropicalJacobianandtropicaltheta m divisor.Lastly,wedescribethepresentstatusofreversingthisprocess,namelyhow [ tocomputeacurvewhichhasagivenmatrixasitsperiodmatrix. 1 v 4 9 1 Introduction 1 3 0 WedescribetheprocessoftakingacurveandfindingitstropicalJacobian.Weaim . tocarryouteachstepasalgorithmicallyaspossible,however,somestepscannotyet 1 be completed in such a way. We now give a brief overview of the steps involved, 0 7 whichwedepictinFigure1. 1 Let k be an algebraically closed field which is complete with respect to a non- v: archimedean valuation v, and let X be a nonsingular curve of genus g over k. Let i X BarbaraBolognese r TheUniversityofSheffield,Sheffield,UKe-mail:[email protected] a MadelineBrandt DepartmentofMathematics,UniversityofCalifornia,Berkeley,970EvansHall,Berkeley,CA, 94720,e-mail:[email protected] LynnChua DepartmentofElectricalEngineeringandComputerScience,UniversityofCalifornia,Berkeley, 643SodaHall,Berkeley,CA,94720,e-mail:[email protected] 1 2 BarbaraBolognese,MadelineBrandt,LynnChua R be the valuationring of k with maximal ideal m, and let k=R/m be its residue field.WecanassociatetoX itsabstracttropicalization,whichisthedualweighted metricgraphΓ ofthespecialfiberofasemistablemodelofX.Inpractice,finding the abstract tropicalization of a general curve is difficult and there is no known algorithmtodothisingeneral[CJar,Remark3].Inthispaper,wesolvethisproblem for hyperelliptic curves, which is new to the literature, and discuss known results towardsfindingabstracttropicalizationsofallcurves. Given Γ, we compute its period matrix Q . This corresponds to the tropical Γ JacobianofthecurveX.BytakingtheVoronoidecompositiondualtotheDelaunay subdivisioncorrespondingtoQ ,weobtainthetropicalthetadivisor.Thisprocess Γ canalsobeinverted.ThesetofperiodmatricesthatariseasthetropicalJacobianof acurveisthetropicalSchottkylocus.Startingwithaprincipallypolarizedtropical abelianvarietywhoseperiodmatrixQisknowntolieinthetropicalSchottkylocus, wegiveaproceduretocomputeacurvewhosetropicalJacobiancorrespondstoQ. This process of associating a tropical Jacobian to a curve can also be carried outbylookingatclassicalJacobiansofcurves.Jacobiansofcurvesareprincipally polarizedabelianvarietiesinanaturalway;theyarethemostwellknownandexten- sivelystudiedamongabelianvarieties.Bothalgebraiccurvesandabelianvarieties have extremely rich geometries, which cannot be fully understood in many cases. Jacobiansprovidealinkbetweensuchgeometries,andtheyoftenrevealhiddenfea- turesofalgebraiccurveswhichcannotbeuncoveredotherwise.Inordertoassociate atropicalJacobiantoacomplexalgebraiccurveC,onefirstconstructsitsclassical Jacobian J(C):=H0(C,ω )∗/H (C,Z), (1) C 1 wherewedenotebyω thecotangentbundleofthecurve.Thiscomplextorusad- C mits a natural principal polarizationΘ, called the theta divisor, such that the pair (J(C),Θ)isaprincipallypolarizedabelianvariety.Wecanthenobtainthetropical JacobianbytakingtheBerkovichskeletonoftheclassicalJacobian.Baker-Rabinoff, and independently Viviani, proved that this alternative path gives the same result as the procedure we describe in this paper [BR15, Viv13]. However, the classical process hides more difficulties on the computational level and proves much more challenging to carry out in explicit examples. Methods have been implemented in theMaplepackagealgcurvesforcomputingJacobiansnumericallyoverC[DP11]. ThestructureofthispaperisdepictedinFigure1.InSection2wefindtheab- stract tropicalization of all hyperelliptic curves, a result which is new to this pa- per.Then,inSection3wediscussissueswithembeddedtropicalization,statesome knownresultsaboutcertifyingafaithfultropicalization,andoutlinetheprocessof semistablereduction.Thisstepoftheprocedureisfarfrombeingalgorithmic,and this section focuses on examples which provide obstacles to doing this in general. InSection4wedescribehowtofindtheperiodmatrixofaweightedmetricgraph. Then we define and give examples of the tropical Jacobian and its theta divisor in Section 5. In Section 6, we discuss the tropical Schottky problem. Finally, we de- scribetheobstaclestoreversingthisprocessinSection7. FromCurvestoTropicalJacobiansandBack 3 CurveX Hyperelliptic AllCurves Section7.3 Curves Section3 Section2 WeightedMetricGraphΓ Section7.2 Section4 PeriodMatrixQ Section7.1 Section5 TropicalJacobianandThetaDivisor(J,Θ) Fig.1 Thestructureofthepaper,andtheprocessofassociatingatropicalJacobiantoacurve. Dashedarrowsindicatestepswhicharenotyetachievablealgorithmically. 2 HyperellipticCurves We now study the problem of finding the abstract tropicalization of hyperelliptic curves.Inthecaseofellipticcurves,thetropicalizationcanbecompletelydescribed intermsofthe j-invariant[KMM08].Similarly,tropicalizationsofgenus2curves (allofwhicharehyperelliptic)canbedescribedbystudyingtropicalIgusainvari- ants [Hel]. This problem was also solved in genus 2 by studying the curve as a doublecoverofP1ramifiedat6points,asdonein[RSS14,Section5]. Inthissection,wegeneralizethelattermethodtofindtropicalizationsofallhy- perellipticcurves,whichwaspreviouslynotknown.LetX beanonsingularhyper- elliptic curve of genus g over k, an algebraically closed field which is complete withrespecttoanontrivial,non-archimedeanvaluationv.OurgoalistofindΓ,the abstracttropicalizationofX. WedenotebyM themodulispaceofgenusgcurveswithnmarkedpoints,see g,n [HM98]forathoroughintroduction.ThespaceM mapssurjectivelyontothe 0,2g+2 hyperellipticlocusinsideM byidentifyingeachhyperellipticcurveofgenusgwith g adoublecoverofP1ramifiedat2g+2markedpoints.Whenthecharacteristicofk 4 BarbaraBolognese,MadelineBrandt,LynnChua isnot2,thenormalformfortheequationofahyperellipticcurveisy2= f(x),where f(x)hasdegree2g+2,andtherootsof f aredistinct.Then,thesearepreciselythe ramificationpoints. The space Mtr is the tropicalization of M . A phylogenetic tree is a 0,2g+2 0,2g+2 metric tree with leaves labeled {1,...,m} and no vertices of degree 2. Such a tree isuniquelyspecifiedbythedistancesd betweentheleaves.WeseethatMtr ij 0,2g+2 parametrizes the space of phylogenetic trees with 2g+2 leaves using the Plu¨cker embedding to map M into the Grassmannian Gr(2,k2g+2) [MS15, Chapter 0,2g+2 4.3]: {(a :b)}2g+2(cid:55)→(p :p :···:p ) where p =ab −a b. (2) i i i=1 12 13 2g+1,2g+2 i,j i j j i Thedistancesarethengivenbyd =−2p +n·1forasuitableconstantn[RSS14, ij ij Section5].UsingtheNeighborJoiningAlgorithm[PS05,Algorithm2.41],onecan constructtheuniquetree,alongwiththelengthsofitsinterioredges,usingonlythe leafdistancesd asinput.Sincethelengthsofleafedgescanonlybedefinedupto ij addingaconstantlengthtoeachleaf,wethinkofthistreeasametricgraphwhere theleaveshaveinfinitelengthandtheinterioredgeshavelengthsasdescribed. ThisrealizesMtr asa2g−1dimensionalfaninsideTP(2g2+2)−1(cf.[MS15, 0,2g+2 Section 2.5]). The space Mtr can be computed as a tropical subvariety of 0,2g+2 TP(2g2+2)−1,sinceithasatropicalbasisgivenbythePlu¨ckerrelationsforGr(2,k2g+2) [MS15, Chapter 4.4]. Each cone corresponds to a combinatorial type of tree (see Figure 2), and the dimension of each cone corresponds to the number of interior edgesinthetree. The next step in finding the tropicalization of the hyperelliptic curve X is to take the corresponding point in Mtr , as a tree on 2g+2 leaves, and compute 0,2g+2 a weighted metric graph in Mtr. Figure 2 gives this correspondence in the case g g=3. We now give some definitions related to metric graphs in order to describe thiscorrespondenceforgeneralg,following[Cha13]. Definition2.1.AmetricgraphisametricspaceΓ,togetherwithagraphGanda length function l :E(G)→R ∪{∞} such thatΓ is obtained by gluing intervals >0 e of length l(e), or by gluing rays to their endpoints, according to how they are connected in G. In this case, the pair (G,l) is called a model for Γ. A weighted metric graph is a metric graph Γ together with a weight function on its points w:Γ →Z≥0,suchthat∑v∈Γw(v)isfinite. Wecalledgesofinfinitelengthinfiniteleaves,andtheseonlymeettherestofthe graphinoneendpoint.Abridgeisanedgewhosedeletionincreasesthenumberof connectedcomponents. Thegenusofaweightedmetricgraph(Γ,w)is ∑w(v)+|E(G)|−|V(G)|+1, (3) v∈Γ FromCurvestoTropicalJacobiansandBack 5 Fig.2 Theposetofunlabeledtreeswith8leaves,andtropicalizationsofhyperellipticcurvesof genus3.Bothareorderedbytherelationofcontractinganedge. whereGisanymodelofΓ.Wesaythattwoweightedmetricgraphsofgenus≥2 areisomorphicifonecanbeobtainedfromtheotherviagraphautomorphisms,or byremovinginfiniteleavesorleafverticesvwithw(v)=0,togetherwiththeedge connectedtoit.Inthisway,everyweightedmetricgraphhasaminimalskeleton. Amodelislooplessifthereisnovertexwithaloopedge.Thecanonicalloopless modelofΓ,withgenusofΓ ≥2,isthegraphGwithvertices V(G):={x∈Γ |val(x)(cid:54)=2orw(x)>0orxisthemidpointofaloop}. (4) 6 BarbaraBolognese,MadelineBrandt,LynnChua If(G,l)and(G(cid:48),l(cid:48))arelooplessmodelsformetricgraphsΓ andΓ(cid:48),thenamorphism oflooplessmodelsφ:(G,l)→(G(cid:48),l(cid:48))isamapofsetsV(G)∪E(G)→V(G(cid:48))∪E(G(cid:48)) suchthat • AllverticesofGmaptoverticesofG(cid:48). • Ife∈E(G)mapstov∈V(G(cid:48)),thentheendpointsofemustalsomaptov. • Ife∈E(G)mapstoe(cid:48)∈E(G(cid:48)),thentheendpointsofemustmaptoverticesof e(cid:48). • InfiniteleavesinGmaptoinfiniteleavesinG(cid:48). • Ifφ(e)=e(cid:48),thenl(cid:48)(e(cid:48))/l(e)isaninteger.Theseintegersmustbespecifiedifthe edgesareinfiniteleaves. We call an edge e∈E(G) vertical if φ maps e to a vertex of G(cid:48). We say that φ is harmonicifforeveryv∈V(G),thelocaldegree d = ∑ l(cid:48)(e(cid:48))/l(e) (5) v e(cid:51)v, φ(e)=e(cid:48) isthesameforallchoicesofe(cid:48)∈E(G(cid:48)).Ifitispositive,thenφ isnondegenerate. Thedegreeofaharmonicmorphismisdefinedas ∑ l(cid:48)(e(cid:48))/l(e). (6) e∈E(G), φ(e)=e(cid:48) Wealsosaythatφ satisfiesthelocalRiemann-Hurwitzconditionif: 2−2w(v)=d (2−2w(cid:48)(φ(v)))−∑(cid:0)l(cid:48)(φ(e))/l(e)−1(cid:1). (7) v e(cid:51)v Ifφ satisfiesthisconditionateveryvertexvinthecanonicallooplessmodelofΓ, thenφ iscalledanadmissiblecover[CMR16]. Definition2.2.[Cha13, Theorem 1.3] Let Γ be a weighted metric graph, and let (G,l) denote its canonical loopless model. We say that Γ is hyperelliptic if there existsanondegenerateharmonicmorphismofdegree2fromGtoatree. A hyperelliptic curve will always tropicalize to a hyperelliptic weighted metric graph,howevernoteveryhyperellipticweightedmetricgraphisthetropicalization ofahyperellipticcurve. Theorem2.3.[ABBR15,Corollary4.15]LetΓ beaminimalweightedmetricgraph ofgenusg≥2.ThenthereisasmoothproperhyperellipticcurveX overkofgenus g having Γ as its minimal skeleton if and only if Γ is hyperelliptic and for every p∈Γ thenumberofbridgeedgesadjacentto pisatmost2w(p)+2. Lemma2.4anditsproofgiveanalgorithmfortakingatreewith2g+2infinite leavesandobtainingametricgraphwhichisanadmissiblecoverofthetree. FromCurvestoTropicalJacobiansandBack 7 Lemma2.4.EverytreeT with2g+2infiniteleaveshasanadmissiblecoverφ by auniquehyperellipticmetricgraphΓ ofgenusg,andφ isharmonicofdegree2. Proof. LetT beatreewith2g+2infiniteleaves.Ifallinfiniteleavesaredeleted, then a finite tree T(cid:48) remains. Let v ,...,v be the vertices of T(cid:48), ordered such that 1 k thedistancefromv tov isgreaterthanorequaltothedistancefromv tov ,for i k j k i< j. WeconstructΓ iterativelybybuildingthepreimageofeachvertexv,asserting i along the way that the local Riemann-Hurwitz condition holds. This also gives an algorithmforfindingΓ.Webeginwithv ,whichhasapositivenumbern ofleaf 1 1 edgesinT.Sinceφ hasdegree2,itmustbelocallyofdegree1or2ateveryvertex ofΓ.Sincethepreimageofeachinfiniteleafmustbeaninfiniteleaf,wewillattach n infiniteleavesatthepreimageφ−1(v )inΓ. 1 1 AtanyvertexinΓ withinfiniteleaves,φ haslocaldegree2,hencewewillattach toΓ aninfiniteleafesuchthatl(φ(e))/l(e)=2.Then,thereisauniquevertexinthe preimageφ−1(v ).Otherwise,therewouldneedtobeanotheredgeinthepreimage 1 ofeachleaf,sothedegreeofthemorphismwouldbegreaterthan2. Lete betheedgeconnectingv tosomeotherv.Therearetwopossibilities: 1 1 i 1. Thepreimageofe istwoedgesinΓ,eachwithlengthl(e ).ThelocalRiemann- 1 1 Hurwitzequationreads 2−2w(φ−1(v ))=2(2−0)−(n +0+0). (8) 1 1 Thisisonlypossibleifn iseven,andφ−1(v )hasweight(n −2)/2. 1 1 1 2. The preimage of e is one edge inΓ, with length l(e )/2. The local Riemann- 1 1 Hurwitzequationreads 2−2w(φ−1(v ))=2(2−0)−(n +1). (9) 1 1 Thisisonlypossibleifn isodd,andφ−1(v )hasweight(n −1)/2. 1 1 1 Now, we proceed to the other vertices. As long as the order of the vertices is re- spected,ateachvertexv therewillbeatmostoneedgee whosepreimageinΓ we i i do not know. Then, what happens at v can be completely determined by studying i the local Riemann-Hurwitz data. For i>1, let n be the number of infinite leaves i at v plus the number of edges e∈T such that e={v,v }, j<i, and φ−1(e) is a i i j bridgeinΓ.Ifn >0,theneither1or2holds.However,itispossiblethatn =0,in i i whichcasewehaveathirdpossibility: 3. Ifn =0,letv(cid:48)∈φ−1(v).ThelocalRiemann-Hurwitzequationreads: i i i 2−2w(v(cid:48))=d (2−0)−(0). (10) i vi Then we must have d = 1 and w(v(cid:48)) = 0, which implies that there are two vi i verticesinφ−1(v). i 8 BarbaraBolognese,MadelineBrandt,LynnChua Finally, we glue the pieces ofΓ as specified by T, and contract the leaf edges on Γ. The fact that Γ has genus g is a consequence of the local Riemann-Hurwitz condition. (cid:116)(cid:117) We remark that this process did not require the fact that the tree had an odd numberofleaves.Indeed,ifonerepeatsthisprocedureforsuchatree,ahyperelliptic metric graph will be obtained. However, this graph is not the tropicalization of a hyperellipticcurve. Example2.5.InFigure3,wehaveatreewithverticeslabelledv ,...,v .Beginning 1 7 withv ,weobservethatn =2,whichmeansthattheedgefromv tov hastwo 1 1 1 3 edgesinitspreimage.Thesameistrueforv .Movingontov ,weseethatn =0, 2 3 3 whichmeansthatv hastwopointsinΓ whichmaptoit.Wecanconnecttheedges 3 from φ−1(v ) and φ−1(v ) to the two points in φ−1(v ). Since φ−1(v ) has two 1 2 3 3 points, the edge from v to v corresponds to two edges in Γ, so n =2, which 3 4 4 means that the edge from v to v also splits. Next, n =1, which means that the 4 5 5 edgefromv tov correspondstoabridgeinΓ.Then,n =4,whichmeansthatthe 5 6 6 edgev tov splits,andthevertexmappingtov hasgenus1.Lastly,sincen =2, 6 7 6 7 thepointmappingtov hasgenus0.Alledgesdepictedintheimagehavethesame 7 lengthasthecorrespondingedgesinthetree,exceptforthebridge,whichhaslength equaltohalfthelengthofthecorrespondingedgeinthetree. Fig.3 ThetreeT with12infiniteleavesfromExample2.5andthehyperellipticweightedmetric graphΓ ofgenus5whichadmissiblycoversT byφ. Thefollowingtheoremshowsthatthismetricgraphisactuallythetropicalization ofahyperellipticcurve. FromCurvestoTropicalJacobiansandBack 9 Theorem2.6.Letg≥1beaninteger.LetX beahyperellipticcurveofgenusgover k,givenbytakingthedoublecoverofP1 ramifiedat2g+2points p ,...,p .If 1 2g+2 T isthetreewhichcorrespondstothetropicalizationofP1 withthemarkedpoints p ,...,p described above, and Γ is the unique hyperelliptic weighted metric 1 2g+2 graphwhichadmitsanadmissiblecovertoT,thenΓ istheabstracttropicalization ofX. Proof. Thisfollowsfrom[CMR16],Remark20andTheorem4.Indeed,thehyper- ellipticlocusofM canbeunderstoodasthespaceH ((2),...,(2))ofadmis- g g→0,2 sible covers with 2g+2 ramification points of order 2. Its tropicalization is con- an structedandstudiedin[CMR16].ThespaceH ((2),...,(2))istheBerkovich g→0,2 analytificationofH ((2),...,(2)),andthusapointX isrepresentedbyanad- g→0,2 missiblecoveroverSpec(K)with2g+2ramificationpointsoforder2.ByTheorem 4in[CMR16],thediagram an H ((2),...,(2)) (11) g→0,2 bran srcan (cid:119)(cid:119) (cid:39)(cid:39) Man Man trop 0,2g+2 g (cid:15)(cid:15) trop trop H ((2),...,(2)) trop g→0,2 brtrop srctrop (cid:15)(cid:15) (cid:119)(cid:119) (cid:39)(cid:39) (cid:15)(cid:15) Mtrop Mtrop 0,2g+2 g commutes. The morphisms src take a cover to its source curve, marked at the entire inverse image of the branch locus, and the morphisms br take a cover to its base curve, marked at its branch points. We start with an element X of Han ((2),...,(2)), and we wish to find trop(srcan(X))∈M trop. The unicity in g→0,2 g Lemma2.4enablesustofindaninverseforbrtrop.ThenT =trop(bran(X)),andso bycommutativityofthediagram,trop(srcan(X))=srctrop((brtrop)−1(T))=Γ. (cid:116)(cid:117) Example2.7.([Stuar,Problem2onCurves])Considerthecurve y2=(x−1)(x−2)(x−3)(x−6)(x−7)(x−8) withthe5-adicvaluation.InMtrop,thisgivesusthepoint 0,6 (0,0,1,0,0,0,0,1,0,0,0,1,0,0,0)=(p ,p ,...,p ). 1,2 1,3 5,6 Whennisanyinteger,thisgivesusatreemetricof (n,n,n−2,n,n,n,n,n−2,n,n,n,n−2,n,n,n)=(d ,d ,...,d ). 1,2 1,3 5,6 10 BarbaraBolognese,MadelineBrandt,LynnChua Then,thisisametricforthetreeontheleftofFigure4,andthemetricgraphonthe right. Fig.4 ThisisthetreeandmetricgraphforProblem2fromtheCurvesworksheet. 3 OtherCurves Outside of the hyperelliptic case, finding the abstract tropicalization of a curve is very hard. In this section, we highlight some of the difficulties and discuss two approaches to this problem: faithful tropicalization and semistable reduction. We offerthefollowingexampleasmotivationforwhythisisadifficultproblem. Example3.1.([Stuar,Problem9onAbelianCombinatorics])Webeginwithacurve inP2,givenbythezerolocusof f(x,y,z)=41x4+1530x3y+3508x3z+1424x2y2+2490x2yz −2274x2z2+470xy3+680xy2z−930xyz2+772xz3 +535y4−350y3z−1960y2z2−3090yz3−2047z4, definedoverQ .Here,theinducedregularsubdivisionoftheNewtonpolygonwill 2 be trivial, since the 2-adic valuation of the coefficients on the x4, y4, z4 terms is each0.Therefore,wecandetectnoinformationaboutthestructureoftheabstract tropicalizationfromthisembeddedtropicalization.InExample3.4,wewillpicka niceenoughchangeofcoordinatestoallowustofindafaithfultropicalization. 3.1 FaithfulTropicalization WebrieflydiscusstheBerkovichskeletonofacurve.Letkbeanalgebraicallyclosed field which is complete with respect to a nontrivial, nonarchimedean valuation v.