ebook img

From Approximate Factorization to Root Isolation with Application to Cylindrical Algebraic Decomposition PDF

0.3 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview From Approximate Factorization to Root Isolation with Application to Cylindrical Algebraic Decomposition

From Approximate Factorization to Root Isolation with Application to Cylindrical Algebraic Decomposition 3 KurtMehlhornand MichaelSagraloffand PengmingWang∗ 1 0 January 22,2013 2 n a J Abstract 1 2 Wepresentanalgorithmforisolatingtherootsofanarbitrarycomplexpolynomial pthatalsoworks for polynomials with multiple roots provided that the number k of distinct roots is given as part of ] the input. It outputs k pairwise disjoint disks each containing one of the distinct roots of p, and its C multiplicity.Thealgorithmusesapproximatefactorizationasasubroutine. S Inaddition,weapplythenewrootisolationalgorithmtoarecentalgorithmforcomputingthetopol- . s ogyof areal planaralgebraiccurvespecifiedasthezerosetof abivariateintegerpolynomial andfor c isolatingtherealsolutionsofabivariatepolynomialsystem. Forinputpolynomialsofdegreenandbit- [ sizet ,weimprovethecurrentlybestrunningtimefrom O˜(n9t +n8t 2)(deterministic)toO˜(n6+n5t ) 1 (randomized)fortopologycomputationandfromO˜(n8+n7t )(deterministic)toO˜(n6+n5t )(random- v ized)forsolvingbivariatesystems. 0 7 8 1 Introduction 4 1. Inthemainpartofthispaper,wegiveanalgorithmforisolatingtherootsofapolynomialp(x)=(cid:229) ni=0pixi 0 witharbitrarycomplexcoefficientsthatworksforpolynomialswithmultipleroots,providedthatthenum- 3 berkofdistinctrootsisgivenaspartoftheinput. Moreprecisely,letz ,...,z bethedistinctrootsof p, 1 k 1 letm :=mult(z,p)bethemultiplicityofz,andlets :=s (z,p):=min z z betheseparationofz v: fromitheotherriootsof p. Then,thealgoriithmoutputisisolatiingdisksD j=6=iD (iz˜−,Rj )toD =D (z˜ ,R )fori 1 1 1 k k k i (cid:12) (cid:12) s X tthheercoeonttserozf˜poafsD waepllparsoxthimecaotersrezsptoonadninegrrmorulotfiplleiscsititehsanm1stio.mIfk.thTehneurmadbiei(cid:12)rsaotfisdfyi(cid:12)stRinic<tr6o4ointsfoorfaplldi,iftfheurss r i i i 64n a fromk,wemakenoclaimsaboutterminationandoutput. The coefficients of p are provided by oracles. On input L, such an oracle essentially returns binary fractionapproximationsp˜ ofthecoefficientsp suchthat p (cid:229) n p˜xi 2 L p . Here, p := p = i i − i=0 i ≤ − k k k k k k1 p +...+ p denotestheone-normof p. ThedetailsaregiveninSection2.1. 0 n | | | | (cid:13) (cid:13) Thealgorithmhasasimplestructure.Wefirstuseany(cid:13)algorithm(e.g(cid:13).[4,18,16,21])forapproximately factorizingtheinputpolynomial.Itisrequiredthatitcanberunwithdifferentlevelsofprecisionandthat, foranygivenintegerb,itreturnsapproximationszˆ tozˆ suchthat 1 n p p (cid:213) (x zˆ ) 2 b p . (1) − n 1 j n − j ≤ − k k ≤ ≤ (cid:13) (cid:13) Inasecondstep,wepartitionther(cid:13)ootapproximationszˆ to(cid:13)zˆ intokclustersC ,...,C basedongeometric (cid:13) 1 (cid:13)n 1 k vicinity.WeencloseeachclusterC inadiskD =D (z˜,r)andmakesurethatthedisksarepairwisedisjoint i i i i and that the radii r are not“too small” comparedto the pairwise distances of the centers z˜.1 In a third i i step, we verify that the n-times enlarged disks D =D (z˜,R)=D (z˜,n r) are disjoint and that each of i i i i i · themcontainsexactlythesamenumberofapproximationsasrootsof pcountedwithmultiplicity.2 Ifthe MaxPlanckInstituteforInformatics,Germany ∗ 1Thiswillturnouttobecrucialtocontrolthecostforthefinalverificationstep.Fordetails,werefertoSections2.2.2and2.2.3. 2ItseemstobeartificialtoconsiderenlargeddisksD iinsteadofthedisksDi.ThisismainlyduetotheusageofRouche´’sTheorem toverifyroots. 1 clusteringandtheverificationsucceed,wereturnthedisksD ,...,D andthenumberofapproximationszˆ 1 k ∈ zˆ ,...,zˆ inthediskasthemultiplicityoftherootisolatedbythedisk.Ifeitherclusteringorverification 1 n { } doesnotsucceed,werepeatwithahigherprecision. IfPan’salgorithm[16]isusedfortheapproximatefactorizationstep,thentheoverallalgorithmhasbit complexity3 k k O˜ n3+n2i(cid:229)=1logM(zi)+ni(cid:229)=1log M(s i−mi)·M(Pi−1) ! (2) (cid:16) (cid:17) iwnhaerevePriy:=str(cid:213)onjg6=is(ezin−se,zjn)mamj =elyp,(mmtihi!)pe(nzia),boavnedbMo(uxn)d:=dirmecatxl(y1,d|exp|)e.ndOsbosenrvtheethaacttuoaulrmaluglotirpitlhicmitiiessaadnadpttivhee geometry(i.e.theactualmodulusoftherootsandtheirdistancestoeachother)oftheroots. Thereisalso no dependencyon the size or the type (i.e. whetherthey are rational, algebraic or transcendental)of the coefficientsof p. Ouralgorithmcanalsobeusedtofurtherrefinetheisolating diskstoasizeof2 k orless,wherek is − agiveninteger. Thebitcomplexityfortherefinementisgivenbytheboundin(2)plusanadditionalterm O˜(n k max m). Inparticularforsquare-freepolynomials,theamortizedcostperrootandbitofprecision i i · · isone. Forthebenchmarkproblemofisolatingallrootsofapolynomialpwithintegercoefficientsofabsolute value bounded by 2t , the bound in (2) becomes O˜(n3+n2t ). The bound for the refinement becomes O˜(n3+n2t +nk ),evenifthereexistmultipleroots. Forasquare-freeintegerpolynomialp,weareawareofonlyonemethod[9,Theorem3.1]thatachieves a comparable complexity bound for the benchmark problem. That is, based on the gap theorem from Mahler,onecancomputeatheoreticalworstcaseboundb ofsizeQ (nt )withthepropertythatifnpoints 0 z˜ Cfulfilltheinequality(1)fora b b ,thentheyapproximatethecorrespondingroots z toanerror j 0 j les∈sthans /(2n);cf. Lemma4foran≥adaptiveversion. Hence,forb b ,Pan’sfactorizationalgorithm j 0 alsoyieldsisolatingdisksfortherootsof pusingO˜(n2t )bitoperations≥.Notethatthisapproachachievesa goodworstcasecomplexity,however,forthepriceofrunningthefactorizationalgorithmwithb=Q (nt ), evenif therootsarewell conditioned. Incontrast, ouralgorithmturnsPan’sfactorizationalgorithminto a highly adaptive method for isolating and approximating the roots of a general polynomial. Also, for generalpolynomials, there exist theoreticalworst case bounds[18, Section 19] forthe distance between therootsof pandcorrespondingapproximationsfulfilling(1). Theyareoptimalforrootsofmultiplicity W (n) but they constitute strong overestimationsif all rootshave considerablysmaller multiplicities. For thetaskofrootapproximation,thecomplexityofourmethod adaptstothehighestoccurringmultiplicity (with bit complexity O˜(nmax m k ) for k dominating), whereas this is not given for the currently best i i method[16](withcomplexityO˜(n·2k )). Wewouldalsoliketoremarkthatweareawareofonlyonepreviousrootisolationalgorithm[15]that cancopewithmultipleroots,however,withatmostonemultipleroot. Inaddition,thenumberofdistinct complexrootsaswellasthenumberofdistinctrealrootsmustbegivenasanadditionalinput. Finally, we aim to stress the importanceof our root isolation method by applying it to the problems of computingthe topology(in terms of a cylindricalalgebraic decomposition)of a real planar algebraic curve specified as the zero set of an integerpolynomialand of isolating the real solutions of a bivariate polynomial system. Both problems are well-studied [1, 11, 12, 19, 7, 5, 3, 8, 14]. More specifically, we apply our method to a recent algorithm [3] for computing the topology of a planar algebraic curve. Thisyieldsboundsontheexpectednumberofbitoperationswhichimprovethecurrentlybest(whichare bothdeterministic)bounds[8,14]fromO˜(n9t +n8t 2)toO˜(n6+n5t )fortopologycomputationandfrom O˜(n8+n7t )toO˜(n6+n5t )forsolvingbivariatesystems. 3O˜indicatesthatweomitlogarithmicfactors. 2 2 Root Approximation 2.1 Setting andBasicProperties Weconsiderapolynomial p(x)=p xn+...+p C[x] (3) n 0 ∈ ofdegreen 2,where p =0. Wefixthefollowingnotations: n ≥ 6 M(x):=max(1, x),forx R, • | | ∈ • t pdenotestheminimalnon-negativeintegerwith |ppni| ≤2tp foralli=0,...,n−1, | | p := p := p +...+ p denotesthe1-normof p, • k k k k1 | 0| | n| z ,...,z Carethedistinctcomplexrootsof p,withk n, 1 k • ∈ ≤ m :=mult(z,p)isthemultiplicityofz, i i i • s :=s (z,p):=min z z istheseparationofz, i i j=i i j i • 6 | − | G :=M(max log z )thelogarithmicrootboundof p, p i i • | | Mea(p)= pn (cid:213) iM(zi)mi theMahlerMeasureof p. • | |· Thequantitiest ,G , p andMea(p)arecloselyrelated. p p n | | Lemma1. G 1+t andt n 1 logMea(p) nG . p≤ p p− − ≤ pn ≤ p | | Proof. ByCauchy’srootboundmax z 1+max p / p ,andthusmax log z 1+t .Sincet 0, i i i i n i i p p by definition, we have G 1+t .|T|h≤e i-th coeffi|ci|en|t of| p is smaller than|or|e≤qual to n Mea(p≥) p ≤ p i ≤ 2nMea(p)≤2n(G p+1). Thus,fromthedefinitionoft p,eithert p=0or2nMepan(p) ≥maxi |ppni| (cid:0)≥(cid:1)2tp−1 | | | | Weassumetheexistenceofanoraclewhichprovidesarbitrarygoodapproximationsofthepolynomial p. LetL 1beaninteger. Wecallapolynomial p˜= p˜ xn+...+p˜ ,with p˜ =s 2 ℓ ands, ℓ Z, an n 0 i i − i approxim≥ationof precision L of p if p˜ p 2 L log(n+1) p , ℓ L+ log(n+·1) log p∈ , and i i − − log s L+ log(n+1) +1foralli.| W−hen|c≤onsideringp askinkfinit≤ebitstr⌈ingp =sgn⌉(−p⌊) (cid:229) +k¥ k⌋b 2k, | i|≤ ⌈ ⌉ i i i · k= ¥ k b 0,1 , then we can obtain p˜ from the partial string which starts at index k = log p a−nd ends k i 1 ∈{ } ⌊ k k⌋ at index k = log p L log(n+1) , that is, s :=2l sgn(p) (cid:229) k1 b 2k, and l =L+ log(n+ 2 ⌊ k k⌋− −⌈ ⌉ i · i · k=k2 k ⌈ 1) log p . We assume thatwe can ask for an approximationof precision L of p at cost O(n(L+ log⌉n−))⌊=O˜k(nkL⌋). ThisisthecostofreadingtheapproximationofprecisionL. ThenextLemmastatessome elementarypropertiesofapproximationsofprecisionL. Lemma2. Let p˜beanapproximationofprecisionLof pandL 1. ≥ p˜ /2 p 2 p˜ . • k k ≤k k≤ k k IfL t +4,then2 L log(n+1) p˜ p˜ /4. p − − n • ≥ k k≤| | If2 L log(n+1) p˜ p˜ /4,then p˜ /2 p 2 p˜ . − − n n n n • k k≤| | | | ≤| |≤ | | Proof. Fromtheinequality p˜ p (cid:229) p˜ p ,weconcludethat p˜ p 2 L p p /2. i i i − |k k−k k|≤ | − | |k k−k k|≤ k k≤k k Thisestablishesthefirstclaim. Forthesecondclaim,weobservethat p˜ p 2 L log(n+1) p 2 L+tp p p /16. n n − − − n n | − |≤ k k≤ | |≤| | Thus, p˜ p /2and n n | |≥| | 2 L log(n+1) p˜ 2 2 L log(n+1) p p /8 p˜ /4. − − − − n n k k≤ · k k≤| | ≤| | 3 Thethirdclaimfollowsfrom p˜n pn 2−L−log(n+1) p 2 2−L−log(n+1) p˜ p˜n /2. | − |≤ k k≤ · k k≤| | Lemma2suggestsanefficientmethodforestimating p . Weaskforapproximations p˜ ofprecisionL n ofpforL=1,2,4,...untiltheinequality2 L log(n+1) p˜ p˜ /4holds.Then, p˜ /2 p 2 p˜ by − − n n n n part3oftheLemma.AlsoL 2(t +4)bypart2ofthkekab≤ov|eL|emma.Thecost|isO|˜(nt≤)|=|O˜≤(n2|G )|bit p p p operations,whereweusedth≤eupperboundfor t fromLemma1. Observethatthisbounddependsonly p on the geometryof the roots(i.e. the actualroot bound G ) and the degree but not(directly) on the size p ofthecoefficientsof p. Wenextshowthata“good”integerapproximationG ofG canalsobecomputed p withO˜(n2G )bitoperations. p Theorem1. AnintegerG Nwith ∈ G G <8logn+G (4) p p ≤ canbecomputedwithO˜(n2G )bitoperations.ThecomputationusesanapproximationofprecisionLof p p withL=O(nG ). p Proof. Wefirstcomputeanapproximation p˜ ofprecisionLof pwith p˜ /2 p 2 p˜ asdescribed n n n above. Letk :=2⌊log|p˜n|⌋−1. Thenk p˜n /2 pn andk 2⌊log|pn/|2|⌋−|1 ≤p|n /|8≤. Co·|nsid|erthescaled polynomialq:= p/k . Its leading co≤effi|cie|ntl≤ies|be|tween 1≥and 8. Moreo≥ver|,G | =G , t =t , and an q p q p arbitraryapproximationofprecision Lof palsoyieldsanapproximationofprecisionLofqsincedivision byl isjustashiftbylogk bitsand q = p /k .Hence,wemayassumethat1 p 8. n k k k k ≤| |≤ ConsidertheCauchypolynomial n 1 p¯(x):= p xn (cid:229)− p xi n i | | − | | i=0 of p. Then,accordingto[6,Proposition2.51], p¯hasauniquepositiverealrootx R+,andthefollowing ∈ inequalityholds: n max z x < max z <2n max z . i i i i | |≤ ln2· i | | · i | | It follows that p¯(x)>0 for all x x and p¯(x)<0 for all x<x . Furthermore, since p¯ coincides with its own Cauchy polynomial, each≥complex root of p¯ has absolute value less than or equal to x . Let k be the smallest non-negativeinteger k with p¯(2k)>0 (which is equal to the smallest k with|2k|>x ). 0 Our goal is to compute an integer G with k G k +1. Namely, if G fulfills the latter inequality, 0 0 then M(max z ) M(x ) 2G <4M(x )<8n≤M(≤max z ), and thus G fulfills inequality(4). In order i i i i to compute a|G |w≤ith k ≤G k +1, we use ·exponenti|al|and binary search (try k =1,2,4,8,... until 0 0 ≤ ≤ p¯(2k)>0 and, then, performbinarysearch on the interval k/2 to k) and approximateevaluationof p¯ at thepoints2k: Moreprecisely,weevaluate p¯(2k)usingintervalarithmeticwithaprecision r (usingfixed pointarithmetic)whichguaranteesthatthewidthwofB(p¯(2k),r )issmallerthan1,whereB(E,r )isthe intervalobtainedbyevaluatingapolynomialexpressionE viaintervalarithmeticwithprecisionr forthe basicarithmeticoperations;see[13,Section4]fordetails. Weuse[13,Lemma3]toestimatethecostfor eachsuchevaluation:Since p¯hascoefficientsofsizelessthan2tp pn <2tp+3,wehavetochooser such | | that 2 r +2(n+1)22tp+3+nk<1 − in order to ensure that w<1. Hence, r is bounded by O(t +nk) and, thus, each interval evaluation p needsO˜(n(t +nk))bitoperations.Wenowuseexponentialplusbinarysearchtofindthesmallestksuch p thatB(p¯(2k),r )containsonlypositivevalues. Thefollowingargumentthenshowsthatk k k +1: 0 0 Obviously,wemusthavek k since p¯(2k)<0and p¯(2k) B(p¯(2k),r )forallk<k . Fur≤therm≤ore,the 0 0 pointx=2k0+1 hasdistance≥morethan1toeachoftheroot∈sof p¯,andthus p¯(2k0+1) pn 1. Hence, itfollowsthatB(p¯(2k0+1),r )containsonlypositivevalues.Forthesearch|,weneed|≥| |≥ O(logk )=O(loglogx )=O(log(logn+G )) 0 p 4 iterations,andthecostforeachoftheseiterationsisboundedbyO˜(n(t +nk ))=O˜(n2G )bitoperations. p 0 p 2.2 Algorithm Wepresentanalgorithmforisolatingtherootsofapolynomialp(x)=(cid:229) ni=0pixi=pn(cid:213) ki=1(x−zi)mi,where the coefficients p are givenas describedin the previoussection. We may assume k>1; the problemis i trivialotherwise.Ifk=1, p /(np )istherootofmultiplicityn.Thealgorithmusessomepolynomial n 1 n factorizationalgorithmto p−rod−uceapproximationsforthe roots z ,...,z , andthenperformsa clustering 1 k and certificationstep to verifythatthe candidatesare of highenoughquality. Forconcreteness, we pick Pan’sfactorizationalgorithm[16]forthefactorizationstep,whichalsocurrentlyoffersthebestworstcase bitcomplexity. Ifthecandidatesdonotpasstheverificationstep, we reapplythefactorizationalgorithm withahigherprecision.Givenapolynomialpwith z 1for1 i k,andapositiveintegerbdenoting i | |≤ ≤ ≤ thedesiredprecision,thefactorizationalgorithmcomputesnrootapproximationszˆ ,...,zˆ . Thequalityof 1 n approximationandthebitcomplexityareasfollows: Theorem2(Pan[16]). Supposethat z 1for1 i k. Foranypositiveintegerb nlogn,complex i | |≤ ≤ ≤ ≥ numberszˆ ,...,zˆ canbecomputedsuchthattheysatisfy 1 n p p (cid:213) n (x zˆ) 2 b p − n i=1 − i ≤ − k k using O˜(n) operations performed w(cid:13)ith the precision of(cid:13)O(b) bits (or O˜(bn) bit-operations). We write (cid:13) (cid:13) pˆ:= p (cid:213) n (x zˆ). Thealgorithmreturnstherealandimaginarypartofthezˆ’sasdyadicfractionsof n i=1 − i i theformA 2 BwithA Z,B NandB=O(b). Allfractionshavethesamedenominator. − · ∈ ∈ Theparameterbcontrolsthequalityoftheresultingapproximations.NotethatPan’salgorithmrequires allrootsoftheinputpolynomialtoliewithintheunitdiskD (0,1).Hence,inordertoapplytheaboveresult toourinputpolynomial,wefirstscale psuchthattherootscometolieintheunitdisk.Thatis,wecompute a G as in Theorem 1, and then considerthe polynomial f(x):= p(s x)=(cid:229) n fxi with s:=2G . Then, f(x)hasrootsx =z/s D (0,1), andthuswecanusePan’sAlgorith·mwithi=b0:=i nG +btocomputean i i ′ approximatefactorization∈fˆ(x):=(cid:229) ni=0 fˆixi:= fn(cid:213) ni=1(x−xˆi)suchthat f−fˆ <2−b′kfk. Letzˆi:=s·xˆi foralliand pˆ(x):=p (cid:213) n (x zˆ)= fˆ(x/s)=(cid:229) n fˆ/sixi. Then n· i=1 − i i=0 i (cid:13) (cid:13) (cid:13) (cid:13) n n n pˆ p =(cid:229) fi/si fˆi/si (cid:229) fi fˆi 2−b′(cid:229) fi k − k | − |≤ | − |≤ | | i=0 i=0 i=0 n 2−b′sn(cid:229) fi/si =2−b p . ≤ | | k k i=0 Forthe factorizationof f, we need an approximationof precision b of f, and thus an approximationof ′ precision L of p with L=O(nS+b)=O˜(nG +b). The total cost is O˜(n2G +nb) bit operations. We p summarizein: Corollary1. Foranarbitrarypolynomialpandanintegerb nlogn,complexnumberszˆ ,...,zˆ canbe 1 n ≥ computedsuchthat p p (cid:213) n (x zˆ) 2 b p − n i=1 − i ≤ − k k iumsiangginOa˜(rny2pG a+rtobfn)thbeitzˆ-o’spaersadtiyoandsi.c(cid:13)(cid:13)fWraectwiornitseopˆft:h=epfonr(cid:213)mni=(cid:13)(cid:13)A1(2x−Bzˆwi)i.thTAhe aZl,goBrithNmarnedtuBrn=s tOhe(br+eanlGan)d. i − p · ∈ ∈ Allfractionshavethesamedenominator. We now examine how far the approximations zˆ ,...,zˆ can deviate from the actual roots for a given 1 n valueofb. LetD (z,r)bethediskwithcenterzandradiusrandletbdD (z,r)beitsboundary. Wefurther definePi:=(cid:213) j6=i(zi−zj)mj. Then, p(mi)(zi)=mi!pnPi. Lemma3. Ifr s /n,then i ≤ p(x) >rmi p P /4 n i | | | | forallxontheboundaryofD (z,r). i 5 Proof. Wehave p(x) = p x z mi(cid:213) x z mj n i j | | | || − | | − | j=i 6 p x z mi(cid:213) z z mj (1 x z /z z )mj n i i j i i j ≥| || − | | − | · −| − | | − | j=i 6 rmi(1 1/n)n mi p (cid:213) z z mj >rmi p P /4. − n i j n i ≥ − | | | − | | | j=i 6 BasedontheaboveLemma,wecannowuseRouche´’stheorem4,5 toshowthat,forsufficientlylarge b,thediskD (zi,2−b/(2mi))containsexactlymirootapproximations. Lemma4. Let pˆbesuchthat p pˆ 2 b p . If − k − k≤ k k b max(8n,nlog(n)),andbisapoweroftwo (5) ≥ 2−b/(2mi) 1/(2n2), (6) ≤ 2 b/(2mi) s /(2n), and (7) − i ≤ P 2−b/2≤ 16(n+1|)2i|tpM(zi)n (8) for all i, the disk D (zi,2−b/(2mi)) contains exactly mi root approximations. For i= j, let zˆi and zˆj be 6 arbitraryapproximationsinthedisksD (zi,2−b/(2mi))andD (zj,2−b/(2mj)),respectively. Then, 1 1 (1 ) z z zˆ zˆ (1+ ) z z . i j i j i j −n − ≤ − ≤ n − (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) Proof. Let (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) (cid:12) d := 16 (n+1) 2 b2tp P 1M(z)n 1/mi. i − i − i · · | | (cid:16) (cid:17) It is easy to verify that d i 2−b/(2mi) min(1,s i)/(2n). The first inequality follows from (8) and the secondinequalityfollowsfr≤om(6)and(≤7). WewillshowthatD (z,d )containsm approximations.Tothis i i i end, is suffices to show that (p pˆ)(x) < p(x) forall x on the boundaryof D (z,d ). Then, Rouche´’s i i theoremguaranteesthatD (z,|d )−contain|sthe| sam|enumberofrootsof pand pˆ countedwithmultiplicity. i i Sincez isofmultiplicitym andd <s /n,thediskcontainsexactlym rootsofpcountedwithmultiplicity. i i i i i Wehave(notethat x (1+1/(2n2)) M(z)forx bdD (z,d )) i i i | |≤ · ∈ (p pˆ)(x) p pˆ xn<2 b p xn − | − |≤k − k·| | k k| | 2−b p (1+1/(2n2))n M(zi)n ≤ k k· · 4 2 b 2tp p (n+1) M(z)n − n i ≤ · · | |· · d mi p P /4< p(x), ≤ i | n i| | | t wheretheinequalityinlinethreefollowsfrom p (n+1) pn 2 p,thefirstoneinlinefourfollowsfrom thedefinitionofd i,andthelastinequalityfollokwskf≤romLemm| a|3. ItfollowsthatD (zi,2−b/(2mi))contains exactly m approximations. Furthermore, since d s /(2n) for all i, the disks D (z,d ), 1 i k, are i i i i i ≤ ≤ ≤ pairwisedisjoint. Forthesecondclaim,weobservethat zˆℓ zℓ 2−b/(2mℓ) s ℓ/(2n) zi zj /(2n)forℓ=i,jand | − |≤ ≤ ≤ − hence zˆ z + zˆ z z z /n. Theclaimnowfollowsfromthetriangleinequality. i i j j i j | − | − ≤ − (cid:12) (cid:12) (cid:12) (cid:12) 4Rouche´’stheore(cid:12)mstatest(cid:12)hati(cid:12)f f andg(cid:12)areholomorphicfunctionswith (f g)(x) < f(x) forallpointsxontheboundaryof somediskD ,then f (cid:12)andghav(cid:12)ethe(cid:12)samenu(cid:12)mberofzeros(countedwithmult|ipli−city)in|D . | | 5ThereadermaywonderwhywearenotusingGershgorincircles toclusterandverifyrootapproximations. Theproblemisthat verygoodapproximationsofamultiplerootgenerateverylargeGershgorincircleswhichmaythenfailtoisolatetheapproximations. Indeed,iftwoapproximationsareequal,thecorrespondingdiskshaveinfiniteradius. 6 We have now established that the disks D (zi,2−b/(2mi)), 1 i k, are pairwise disjoint and that the ≤ ≤ i-th disk contains exactly m root approximationsprovided that b satisfies (5) to (8). Unfortunately, the i conditionson b are stated in terms of the quantities m, s and P which we do know. Also, we do not i i i | | knowthecenterz.Intheremainderofthesection,wewillshowhowtoclusterrootapproximationsandto i certifythem. Wewillneedthefollowingmorestringentpropertiesfortheclusteringandcertificationstep. s 8 s 2 b/(2mi)<min i , i (9) − 4n 1024n2 (cid:18)(cid:16) (cid:17) (cid:19) 2 b/8<min(1/16, P /((n+1) 22nG p+8n)) (10) − i | | · Letb bethesmallestintegersatisfying(5)to(10)foralli. Then, 0 b0=O(nlogn+nG p+maxi(milogM(s i−1)+logM(Pi−1)). We nextprovideahigh-leveldescriptionofouralgorithmto isolate therootsof p. Thedetailsofthe clusteringstepandthecertificationsteparethengiveninSections2.2.2and2.2.3,respectively. 2.2.1 OverviewoftheAlgorithm Oninput pandthenumberk ofdistinctroots,thealgorithmoutputsisolatingdisks D =D (z˜,R)forthe i i i rootsof paswellasthecorrespondingmultiplicitiesm. TheradiisatisfyR <s /(64n). i i i Thealgorithmusesthefactorizationstepwithanincreasingprecisionuntiltheresultcanbecertified. If either the clustering step or the certification step fails, we simply double the precision. There are a coupleoftechnicalsafeguardstoensurethatwedonotwastetimeoniterationswithaninsufficientlylarge precision(Steps2,5,and6);alsorecallthatweneedtoscaleourinitialpolynomial. 1. Computethebound2G forthemodulusofallrootsof p,whereG fulfillsInequality(4). According toTheorem1,thiscanbedonewithO˜(n2G )bitoperations. p 2. Computea2-approximationl =2ll ,ll Z,of p / pn .AccordingtoLemma2andthesubsequent remarks,wecancomputel withO˜(n2G ∈)bitokpekrati|ons|. p 3. Scale p,thatis, f(x):=p(s x),withs:=2G ,toensurethattherootsx =z/S,i=1,...,k,of f are i i · containedintheunitdisk.Letbbethesmallestintegersatisfying(5) 4. RunPan’salgorithmoninput f withparameterb :=b+nG toproduceapproximationsxˆ ,...,xˆ for ′ 1 n therootsof f. Then,zˆ :=s xˆ areapproximationsoftherootsof p,and pˆ p <2 b p ,where i i − pˆ(x):=p (cid:213) n (x zˆ). · k − k k k n i=1 − i 5. Ifthereisazˆ withzˆ 2G +1,returntoStep4withb:=2b. i i ≥ 6. If(cid:213) n M(zˆ)>8l ,returntoStep4withb:=2b. i=1 i 7. Partition zˆ ,...,zˆ into k clustersC ,...,C . Compute (well separated) enclosing disks D ,...,D 1 n 1 k 1 k fortheclusters.Iftheclusteringfailstofindkclustersandcorrespondingdisks,returntoStep4with b:=2b. 8. Foreach i, letD denotethedisk withthe same centeras D butwith ann-timeslargerradius. We i i nowverifytheexistenceof C roots(countedwithmultiplicity)of pinD . Iftheverificationfails, i i | | returntoStep4withb:=2b. 9. Iftheverificationsucceeds,outputthedisksD (inStep7,weguaranteethatthedisksD arepairwise i i disjoint)andreportthenumber C ofrootapproximationszˆ zˆ ,...,zˆ containedinthedisksas i 1 n | | ∈{ } thecorrespondingmultiplicities. NotethatSteps5and6ensurethatlogM(zˆ)=O(G +logn)foralli,andlog(cid:213) n M(zˆ)=O(log( p / p ))= O(logn+t )=O˜(nG ). ThefollowingLemmi aguaranpteesthatthealgorithmpassi=es1thesiestepsifbk kb .| n| p p 0 ≥ 7 Lemma5. Foranyb b ,itholdsthat zˆ <2G +1foralli,and(cid:213) n M(zˆ)<8l . ≥ 0 | i| i=1 i Proof. IntheproofofLemma4,wehavealreadyshownthat zˆ (1+1/(2n2)) M(z)foralli. Hence, i i itfollowsthat zˆi (1+1/(2n2)) 2G p <2 2G p 2G p+1,and| |≤ · | |≤ · · ≤ (cid:213) n M(zˆi) 4 (cid:213) k M(zi)mi < 4Mea(p) 4kpk2 4kpk <8l . i=1 ≤ ·i=1 |pn| ≤ |pn| ≤ |pn| 2.2.2 Clustering Aftercandidateapproximationszˆ ,...,zˆ arecomputedusingafixedprecisionparameterb,weperforma 1 n partitioningoftheseapproximationsintokclustersC ,...,C ,wherekisgivenasaninput. Theclustering 1 k is described in detail below. It works in phases. At the beginningof a phase, it chooses an unclustered approximation and uses it as the seed for the cluster formed in this phase. Ideally, each of the clusters corresponds to a distinct root of p. The clustering algorithm satisfies the following properties: (1) For b<b ,thealgorithmmayormaynotsucceedinfindingk clusters. (2)Forb b ,theclusteringalways 0 0 ≥ succeeds. Wheneverthe clustering succeeds, the clusterC with seed z˜ is contained in the disk D :=D (z˜,r), i i i i i wherer min(1, s˜i ),ands˜ =min z˜ z˜ .Furthermore,forb b ,D containstherootz (under suitablein≈umberinn2g)2a56nnd2exactlyim manyj6=aippir−oxijmations. ≥ 0 i i i (cid:12) (cid:12) Fortheclustering,weexploitthefactth(cid:12)atana(cid:12)pproximatefactorization pˆ(x)= pn(cid:213) i(x zˆi)of pwith p pˆ 2−b p yieldsmiapproximationszˆoftherootziwithdistancelessthan2−b/(2mi−)tozi(atleast, k − k≤ k k forb b ). Thus,insimpleterms,weaimtodetermineclustersCofmaximalsizesuchthatthepairwise 0 distan≥cebetweentwoelementsinthesameclusterislessthan2 2 b/(2C). Wenextgivethedetails. − | | · 1. InitializeC totheemptyset(ofclusters). 2. InitializeCtothesetofallunclusteredapproximationsandchoosezˆ Carbitrarily.Leta:=2 logn +2 ⌊ ⌋ andd :=2 b/4. ∈ − 3. UpdateCtothesetofpointsq Csatisfying zˆ q 2a/√2d . ∈ | − |≤ 4. If C a/2,addCtoC. Otherwise,seta:=a/2andcontinuewithstep3. | |≥ 5. Iftherearestillunclusteredapproximations,continuewithstep2. 6. IfthenumberofclustersinC isdifferentfromk,reportfailure,doublebandgobacktothefactor- izationstep. Notethat,forb b0,thedisksD (zi,2−b/(2mi))aredisjoint.LetZidenotethesetofrootapproximations in D (zi,2−b/(2mi)). ≥Then, Zi = mi according to Lemma 4. We show that, for b b0, the clustering | | ≥ algorithmterminateswithC=Z ifcalledwithanapproximationzˆ Z. i i ∈ Lemma6. Assumeb b ,zˆ Z,zˆ Z ,andi= j. Then, 0 i i j j ≥ ∈ ∈ 6 zˆ zˆ 2 (2 b/(16mi)+2 b/(16mj)). i j − − − ≥ · Proof. Sinceb b0,wehave2−b/(cid:12)(cid:12)(2mℓ) (cid:12)(cid:12)s ℓforℓ=i,jby(7)and2−b/(16mℓ)=(2−b/(2mℓ))1/8 s ℓ/(4n) s /8by(9). Th≥us, ≤ ≤ ≤ ℓ zˆ zˆ max(s ,s ) 2 b/(2mi) 2 b/(2mj) i j i j − − − ≥ − − s /2+s /2 s /4 s /4 (cid:12) (cid:12) i j i j (cid:12) (cid:12)≥ − − 2 (2 b/(16mi)+2 b/(16mj)). − − ≥ · 8 Lemma 7. If b b , the clustering algorithm computesthe correct clustering, that is, it producesclus- 0 ≥ ters C to C such that C =Z for all i (under suitable numbering). Let z˜ be the seed of C and let 1 k i i i i s˜ =min z˜ z˜ . Then, (1 1/n)s s˜ (1+1/n)s andC aswell asthe rootz is containedin i j=i i j i i i i i D (z˜,min(61, s−˜i )). − ≤ ≤ i n2(cid:12)256n2 (cid:12) (cid:12) (cid:12) Proof. AssumethatthealgorithmhasalreadyproducedZ toZ andisnowrunwithaseedzˆ Z. We 1 i 1 i provethatit terminateswithC=Z. Let ℓ be a powerof two s−uch that ℓ m <2ℓ. The proof∈that the i i ≤ algorithmterminateswithC=Z consistsoftwoparts. Wefirstassumethatsteps2and3areexecutedfor i a=2ℓ. We showthatthealgorithmwillthenterminatewithC=Z. Inthesecondpartoftheproof,we i showthatthealgorithmdoesnotterminateaslongasa>2ℓ. Assumethealgorithmreachessteps2and3witha/2=ℓ,i.e.a/2 m <a.Foranyapproximationq i ≤ ∈ Zi,wehave zˆ q 2 2−b/(2mi)=2mi/√2d 2a/√2d .Thus,Zi C.Conversely,consideranyapproximation q /Zi. Then|,−zˆ |≤q · 2 2−b/(16mi)>24m√≤i d 22√ad ,andth⊆usnosuchapproximationiscontainedinC. ∈ | − |≥ · ≥ ThisshowsthatC=Z. Since C a/2,thealgorithmterminatesandreturnsZ. i i | |≥ It is left to argue that the algorithmdoes not terminate before a/2=ℓ. Since ℓ and a are powers of two,assumeweterminatewitha/2 2ℓ,andletCbetheclusterreturned. Then,m <a/2 C <aand i ≥ ≤| | Z isapropersubsetofC. Consideranyapproximationq C Z,sayq Z with j=i. Sinceq /Z,we i i j i ∈ \ ∈ 6 ∈ have q zˆ 2 (2−b/(16mi)+2−b/(16mj))>2 2−b/(16mi) >24m√i d . And since q C, we have q zˆ | − |≥ · · ∈ | − |≤ 2a/√2d . Thus,4m a/2and,hence,thereareatleast3a/8manyapproximationsinC Z. Furthermore, i i ≤ \ zi zj zi zˆ + zˆ q + q zj 2−b/(2mi)+2a/√2d +2−b/(2mj) 2−b/(16mi)+2a/√2d +2−b/(16mj) − ≤| − | | − | − ≤ ≤ ≤ 3a/√2d . Consequently,thereareatleast3a/8rootsz =z countedwithmultiplicitywithindistance3a/√2d (cid:12) (cid:12) (cid:12) (cid:12) j6 i (cid:12)toz. T(cid:12)hisobservationallows(cid:12)ustou(cid:12)pperboundthevalueof P ,namely i i | | P =(cid:213) z z mj (3a/√2d )3a/82(n mi 3a/8)G p i i j − − | | | − | ≤ j=i 6 <3nd 3/42nG p 3n2 3b/162nG p <3n2 b/8 2nG p, − − ≤ · acontradictionto(10). Wenowcometotheclaimsabouts˜ andthedisksdefinedintermsofit. Therelationbetweens and i i s˜i followsfromthesecondpartofLemma4. AllpointsinCi=Zi havedistanceatmost2 2−b/(2mi) from · z˜. Also,by(6)and(9), i 2 2 b/(2mi)<min(1/n2,s /(512n2)) min(1/n2,s˜ /(256n2)) − i i · ≤ Hence,C aswellasz iscontainedinD (z˜,min(1/n2,s˜ /(256n2))). i i i i Lemma8. Forafixedprecisionb,computingacompleteclusteringneedsO˜(nb+n2G )bitoperations. p Proof. For each approximation, we examine the number of distance computations we need to perform. Recallthatb(property(5))andaarepowersoftwo,a 4nbydefinition,andb 8n 2abyporperty(5). Then, a/√2d =2 b/(2a) 2 N. Thus,thenumber a/√2d≤hasaverysimpleforma≥tinbi≥narynotation. There − − ∈ is a single one, and this one is b/(2a)positions afterthe binary point. In addition, all approximationszˆ G haveabsolutevaluelessthan2 2 duetoStep5intheoverallalgorithm.Thus,eachevaluationoftheform zˆ q 2a/√2d canbedonew·ith | − |≤ O(G +logd 2/a)=O((b/a)+G )=O((b/a)+G +logn) − p bitoperations. Forafixedseedzˆ,inthei-thiterationofstep2,wehaveatmosta n/2i 2manyunclusteredapprox- − ≤ imationsleft inC, since otherwise we would haveterminated in an earlieriteration. Hence, we perform at most a evaluations of the form zˆ q 2a/√2d , resulting in an overall number of bit operations of a O((b/a)+G )=O(b+aG ) for a| fi−xed|≤iteration. As we halve a in each iteration, we have at most lo·gn+2iterationsforafixedzˆ,leadingtoabitcomplexityofO(blogn+nG )=O˜(b+nG )=O˜(b+nG ). p Intotal,performingacompleteclusteringhasabitcomplexityofatmostO˜(nb+n2G ). p 9 Whentheclusteringsucceeds,wehavekclustersC toC andcorrespondingseedsz˜ ,...,z˜ zˆ ,...,zˆ . 1 k 1 k 1 n Fori=1,...,k,wedefineD :=D (z˜,r),wherez˜ istheseedfortheclusterC and ⊆{ } i i i i i r :=min(2 2logn ,2 logs˜i/(256n2) ) min( 1 , s˜i ). (11) i −⌈ ⌉ ⌈ ⌉ ≥ 2n2 256n2 In particular, r is a 2-approximationof min(1/n2,s˜ /(256n2)). Notice that the cost for computing the i i separationss˜ isboundedbyO˜(nb+n2G )bitoperationssincewecancomputethenearestneighborgraph i p ofthepointsz˜ (andthusthevaluess˜ )inO(nlogn)steps[10]withaprecisionofO(b+nG ). i i Now, suppose that b b , Then, according to Lemma 7, the cluster C is contained in the disk D. 0 i i ≥ Furthermore, D contains exactly one root z of p (under suitable numbering of the roots), and it holds i i thatm =mult(z,p)= C andmin(1/(2n2),s /(512n2)) r min(1/n2,s /(64n2)). Ifthe clustering i i i i i i | | ≤ ≤ succeeds for a b<b , we have no guarantees (actually, the termination condition in step 4 gives some 0 guarantee,however,wehavechosennottoexploitit). Hence,beforeweproceed,weverifythateachdisk D actuallycontainstheclusterC. Ifthisisnotthecase,thenwereportafailure,returntothefactorization i i stepwithb=2b,andcomputeanewcorrespondingclustering. Inthenextandfinalstep,weaimtoshowthateachoftheenlargeddisksD :=D (z˜,R):=D (z˜,nr), i i i i i i= 1,...,k, contains exactly one root z of p, and that the number of elements in C D equals the i i i multiplicity of z. Notice that, from the definition of r and D , it obviousthat the disks⊆D are pairwise i i i i disjointandthatC D D . i i i ⊆ ⊆ 2.2.3 Certification InordertoshowthatD containsexactlyonerootof pwithmultiplicity C ,weshowthateachD contains i i i | | thesamenumberofrootsof pand pˆcountedwithmultiplicity. Forthelatter,wecomputealowerbound for pˆ(z) ontheboundarybdD ofD ,andcheckwhetherthisboundislargerthan (pˆ p)(z) forallpoints i i z |bdD |. Ifthisisthecase,thenwearedoneaccordingtoRouche´’stheorem.Oth|erw−ise,we|startoverthe i ∈ factorizationalgorithmwithb=2b. Wenowcometothedetails: 1. Letl =2ll bethe2-approximationof p / p asdefinedinstep2oftheoverallalgorithm. n k k | | 2. Fori=1,...,k,letz :=z˜ +n r D . Notethat z (1+1/n) M(z˜)sincenr 1/n. ∗i i · i∈ i | ∗i|≤ · i i≤ 3. Wetrytoestablishtheinequality |pˆ(z∗i)/pn|>Ei:=32·2−bl M(z˜i)n (12) forall i. We willsee inthe proofofLemma10thatthisimpliesthateachdiskD containsexactly i onerootz of pandthatitsmultiplicityequalsthenumber C ofapproximationswithinD . Inorder i i i toestablishtheinequality,weconsiderr =1,2,4,8,...and| c|ompute pˆ(z )/p toanabsoluteerror less than 2 r . If, for all r b, we fail to show that p(z )/p >E| , w∗i e renp|ort a failure and go backtothe−factorizationalgo≤rithmwithb=2b. Otherw|ise,∗iletr n|bethei smallestr forwhichweare i successful. 4. If,atanystageofthealgorithm,(cid:229) r >b,wealsoreportafailureandgobacktothefactorization i i algorithmwithb=2b. Lemma9thenshowsthat,forfixedb,thenumberofbitoperationsthatare usedforallevaluationsisboundedbyO˜(nb+n2t +n3). p 5. If we can verify that pˆ(z˜ +nr)/p >E for all i, we return the disks D and the multiplicities i i n i i | | m = C . i i | | r Lemma9. Foranyi,wecancompute pˆ(z )/p toanabsoluteerrorlessthan2 withanumberofbit | ∗i n| − operationslessthan O˜(n(n+r +nlogM(z˜)+t )). i p Forafixedb,thetotalcostforallevaluationsintheabovecertificationstepisboundedbyO˜(nb+n2t + p n3). 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.