ebook img

Frobenius Algebras I: Basic Representation Theory PDF

662 Pages·2011·4.18 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Frobenius Algebras I: Basic Representation Theory

EMS Textbooks in Mathematics EMS Textbooks in Mathematics isa series of books aimed at students or professional mathemati- cians seeking an introduction into a particular field. The individual volumes are intended not only to provide relevant techniques, results, and applications, but also to afford insight into the motiva- tions and ideas behind the theory. Suitably designed exercises help to master the subject and prepare the reader for the study of more advanced and specialized literature. Jørn Justesen and Tom Høholdt, A Course In Error-Correcting Codes Markus Stroppel, Locally Compact Groups Peter Kunkel and Volker Mehrmann, Differential-Algebraic Equations Dorothee D. Haroske and Hans Triebel, Distributions, Sobolev Spaces, Elliptic Equations Thomas Timmermann, An Invitation to Quantum Groups and Duality Oleg Bogopolski, Introduction to Group Theory Marek Jarnicki und Peter Pflug,First Steps in Several Complex Variables: Reinhardt Domains Tammo tom Dieck, Algebraic Topology Mauro C. Beltrametti et al., Lectures on Curves, Surfaces and Projective Varieties Wolfgang Woess,Denumerable Markov Chains Eduard Zehnder, Lectures on Dynamical Systems. Hamiltonian Vector Fields and Symplectic Capacities Andrzej Skowron´ ski Kunio Yamagata Frobenius Algebras I Basic Representation Theory Authors: Andrzej Skowron´ski Kunio Yamagata Faculty of Mathematics Department of Mathematics and Computer Science Tokyo University of Agriculture Nicolaus Copernicus University and Technology Chopina 12/18 Nakacho 2-24-16, Koganei 87-100 Torun´ Tokyo 184-8588 Poland Japan E-mail: [email protected] E-mail: [email protected] 2010 Mathematical Subject Classification (primary; secondary): 16-01; 13E10, 15A63, 15A69, 16Dxx, 16E30, 16G10, 16G20, 16G70, 16K20, 16W30, 51F15 Key words: Algebra, module, representation, quiver, ideal, radical, simple module, semisimple module, uniserial module, projective module, injective module, simple algebra, semisimple algebra, separable algebra, hereditary algebra, Nakayama algebra, Frobenius algebra, symmetric algebra, selfinjective algebra, Brauer tree algebra, enveloping algebra, Coxeter group, Coxeter graph, Hecke algebra, coalgebra, comodule, Hopf algebra, Hopf module, syzygy module, periodic module, periodic algebra, irreducible homomorphism, almost split sequence, Auslander–Reiten translation, Auslander–Reiten quiver, extension spaces, projective dimension, injective dimension, category, functor, Nakayama functor, Nakayama automorphism, Morita equivalence, Morita–Azumaya duality ISBN 978-3-03719-102-6 The Swiss National Library lists this publication in The Swiss Book, the Swiss national bibliography, and the detailed bibliographic data are available on the Internet at http://www.helveticat.ch. This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. For any kind of use permission of the copyright owner must be obtained. © European Mathematical Society 2012 Contact address: European Mathematical Society Publishing House Seminar for Applied Mathematics ETH-Zentrum FLI C4 CH-8092 Zürich Switzerland Phone: +41 (0)44 632 34 36 Email: [email protected] Homepage: www.ems-ph.org Typeset using the authors’ TEX files: I. Zimmermann, Freiburg Printing and binding: Beltz Bad Langensalza GmbH, Bad Langensalza, Germany ∞ Printed on acid free paper 9 8 7 6 5 4 3 2 1 To our wives Mira and Taeko and children Magda, Akiko, Ikuo and Taketo Contents Introduction ix I Algebrasandmodules 1 1 Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Representationsofalgebrasandmodules . . . . . . . . . . . . . . 12 3 TheJacobsonradical . . . . . . . . . . . . . . . . . . . . . . . . . 30 4 TheKrull–Schmidttheorem . . . . . . . . . . . . . . . . . . . . . 41 5 Semisimplemodules . . . . . . . . . . . . . . . . . . . . . . . . . 45 6 Semisimplealgebras . . . . . . . . . . . . . . . . . . . . . . . . . 56 7 TheJordan–Höldertheorem . . . . . . . . . . . . . . . . . . . . . 67 8 Projectiveandinjectivemodules . . . . . . . . . . . . . . . . . . . 73 9 Hereditaryalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . 93 10 Nakayamaalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . 100 11 TheGrothendieckgroupandtheCartanmatrix . . . . . . . . . . . 105 12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 II Moritatheory 123 1 Categoriesandfunctors . . . . . . . . . . . . . . . . . . . . . . . . 123 2 Bimodules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 3 Tensorproductsofmodules . . . . . . . . . . . . . . . . . . . . . 133 4 Adjunctionsandnaturalisomorphisms . . . . . . . . . . . . . . . . 140 5 Progenerators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 6 Moritaequivalence . . . . . . . . . . . . . . . . . . . . . . . . . . 157 7 Morita–Azumayaduality . . . . . . . . . . . . . . . . . . . . . . . 175 8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 III Auslander–Reitentheory 203 1 Theradicalofamodulecategory . . . . . . . . . . . . . . . . . . . 203 2 TheHarada–Sailemma . . . . . . . . . . . . . . . . . . . . . . . . 207 3 Thespaceofextensions . . . . . . . . . . . . . . . . . . . . . . . . 209 4 TheAuslander–Reitentranslations . . . . . . . . . . . . . . . . . . 232 5 TheNakayamafunctors. . . . . . . . . . . . . . . . . . . . . . . . 247 6 TheAuslander–Reitenformulas . . . . . . . . . . . . . . . . . . . 252 7 Irreducibleandalmostsplithomomorphisms . . . . . . . . . . . . 257 8 Almostsplitsequences . . . . . . . . . . . . . . . . . . . . . . . . 269 9 TheAuslander–Reitenquiver . . . . . . . . . . . . . . . . . . . . . 282 10 TheAuslandertheorem . . . . . . . . . . . . . . . . . . . . . . . . 301 viii Contents 11 TheBautista–Smaløtheorem . . . . . . . . . . . . . . . . . . . . . 312 12 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314 IV Selfinjectivealgebras 332 1 TheFrobeniustheorem . . . . . . . . . . . . . . . . . . . . . . . . 332 2 TheBrauer–Nesbitt–Nakayamatheorems . . . . . . . . . . . . . . 336 3 Frobeniusalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . 345 4 Symmetricalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . 355 5 Simplealgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 368 6 TheNakayamatheorems . . . . . . . . . . . . . . . . . . . . . . . 375 7 Non-Frobeniusselfinjectivealgebras . . . . . . . . . . . . . . . . . 386 8 Thesyzygyfunctors . . . . . . . . . . . . . . . . . . . . . . . . . 392 9 Thehigherextensionspaces . . . . . . . . . . . . . . . . . . . . . 402 10 Periodicmodules . . . . . . . . . . . . . . . . . . . . . . . . . . . 414 11 Periodicalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 427 12 TheGreen–Snashall–Solbergtheorems . . . . . . . . . . . . . . . 442 13 DynkinandEuclideangraphs . . . . . . . . . . . . . . . . . . . . 447 14 CanonicalmeshalgebrasofDynkintype . . . . . . . . . . . . . . . 452 15 TheRiedtmann–Todorovtheorem . . . . . . . . . . . . . . . . . . 455 16 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470 V Heckealgebras 489 1 Finitereflectiongroups . . . . . . . . . . . . . . . . . . . . . . . . 489 2 Coxetergraphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499 3 TheCoxetertheorems . . . . . . . . . . . . . . . . . . . . . . . . 507 4 TheIwahoritheorem . . . . . . . . . . . . . . . . . . . . . . . . . 515 5 Heckealgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528 6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533 VI Hopfalgebras 539 1 Coalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539 2 Hopfalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552 3 TheLarson–Sweedlertheorems . . . . . . . . . . . . . . . . . . . 584 4 TheRadfordtheorem . . . . . . . . . . . . . . . . . . . . . . . . . 595 5 TheFischman–Montgomery–Schneiderformula. . . . . . . . . . . 609 6 Themodulecategory . . . . . . . . . . . . . . . . . . . . . . . . . 616 7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630 Bibliography 637 Index 645 Introduction The major concern of this book is the representation theory of finite dimensional associativealgebraswithanidentityoverafield. Insimplestterms,itisanapproach totheproblemofdescribinghowafinitenumberoflineartransformationscanact simultaneously on a finite dimensional vector space over a field. The representa- tiontheoryoffinitedimensionalalgebrastracesitsorigintothemiddlepartofthe nineteenthcenturywithHamilton’sdiscoveryofthequaternions,thefirstnoncom- mutativefield,andinvestigationsoffinitegroupsviatheirrepresentationsinmatrix algebrasoverthefieldofcomplexnumbers. Themainachievementsoftherepre- sentation theory of algebras of the latter part of the nineteenth and the beginning ofthetwentiethcenturyconcernedthestructureofsemisimplefinitedimensional algebrasoverfieldsandtheirrepresentations. Anewandfundamentalviewonthe representationtheoryoffinitedimensionalalgebrasoverfieldscameinthe1930s from the papers by Noether who gave the theory its modern setting by interpret- ing representations as modules. The module theoretical approach allowed one to applyintherepresentationtheoryoffinitedimensionalalgebrasthelanguageand techniquesofcategorytheoryandhomologicalalgebra. Themodernrepresentation theoryoffinitedimensionalalgebrasoverfieldscanberegardedasthestudyofthe categoriesoftheirfinitedimensionalmodulesandtheassociatedcombinatorialand homologicalinvariants. Aprominentroleintherepresentationtheoryoffinitedimensionalalgebrasover fieldsisplayedbytheFrobeniusalgebras. Thisisawideclassofalgebrascontain- ingthesemisimplealgebras, blocksofgroupalgebrasoffinitegroups, theHecke algebrasoffiniteCoxetergroups,thefinitedimensionalHopfalgebras,andtheorbit algebrasoftherepetitivecategoriesofalgebras. TheFrobeniusalgebrashavetheir origininthe1903papersbyFrobeniuswhodiscoveredthattheleftandrightregular representationsofafinitedimensionalalgebraoverafield,definedintermsofstruc- tureconstantswithrespecttoafixedlinearbasis,areequivalentifandonlyifthere isaveryspecialinvertiblematrixintertwiningbothrepresentations. LaterBrauer, NesbittandNakayamarealizedthatthestudyoffinitedimensionalalgebraswiththe propertythattheleftandrightregularrepresentationsareequivalentiscrucialfora betterunderstandingofthestructureofnonsemisimplealgebrasandtheirmodules, andcalledthemFrobeniusalgebras. Inaseriesofpapersfrom1937–1941,Brauer, Nesbitt and Nakayama established characterizations of Frobenius algebras which were independent of the choice of a linear basis of the algebra. In particular, we maysaythatafinitedimensionalalgebraAoverafieldK isaFrobeniusalgebraif thereexistsanondegenerateK-bilinearform.(cid:2);(cid:2)/W A(cid:3)A ! K whichisasso- ciative,inthesensethat.ab;c/D.a;bc/forallelementsa,b,c ofA. Moreover, if such a nondegenerate, associative, K-bilinear form is symmetric, A is called a symmetric algebra. We also mention that the Frobenius algebras are selfinjective x Introduction algebras (projective and injective modules coincide), and the module category of everyfinitedimensionalselfinjectivealgebraoverafieldisequivalenttothemodule categoryofaFrobeniusalgebra. Themainaimofthebookistoprovideacomprehensiveintroductiontotherep- resentationtheoryoffinitedimensionalalgebrasoverfields,viatherepresentation theoryofFrobeniusalgebras. Thebookisprimarilyaddressedtograduatestudents startingresearchintherepresentationtheoryofalgebrasaswellasmathematicians working in other fields. It is hoped that the book will provide a friendly access totherepresentationtheoryoffinitedimensionalalgebrasastheonlyprerequisite is a basic knowledge of linear algebra. We present complete proofs of all results exhibitedinthebook. Moreover,arichsupplyofexamplesandexerciseswillhelp thereadertounderstandthetheorypresentedinthebook. Wedividethebookintotwovolumes. Theaimofthefirstvolumeofthebookistwofold. Firstly,itservesasageneral introductiontobasicresultsandtechniquesofthemodernrepresentationtheoryof finitedimensionalalgebrasoverfields,withspecialattentiontotherepresentation theory of Frobenius algebras. The second aim is to exhibit prominent classes of Frobeniusalgebras,ormoregenerallyselfinjectivealgebras. The first volume of the book is divided into six chapters, each of which is subdivided into sections. We start with Chapter I presenting background on the finite dimensional algebras over a field and their finite dimensional modules. In ChapterIIwepresenttheMoritaequivalencesandtheMorita–Azumayadualities forthemodulecategoriesoffinitedimensionalalgebrasoverfields. ChapterIIIis devoted to presenting background on theAuslander–Reiten theory of irreducible homomorphismsandalmostsplitsequences,andtheassociatedcombinatorialand homologicalinvariants. ChapterIVformstheheartofthefirstvolumeofthebook and contains fundamental classical and recent results concerning the selfinjective algebrasandtheirmodulecategories. InChapterVwepresenttheclassificationof finitereflectiongroupsofrealEuclideanspacesviatheassociatedCoxetergraphs and show that they provide a wide class of symmetric algebras over an arbitrary field, called the Hecke algebras. In the final Chapter VI we describe the basic theory of finite dimensional Hopf algebras over fields and show that they form a distinguishedclassofFrobeniusalgebrasforwhichtheNakayamaautomorphisms areoffiniteorder. The main aim of the second volume of the book, “FrobeniusAlgebras II. Or- bitAlgebras”istostudytheFrobeniusalgebrasastheorbitalgebrasofrepetitive categoriesoffinitedimensionalalgebraswithrespecttoactionsofadmissibleau- tomorphism groups. In particular, we will introduce covering techniques which frequentlyallowustoreducetherepresentationtheoryofFrobeniusalgebrastothe representation theory of algebras of small homological dimension. A prominent roleintheseinvestigationswillbeplayedbytiltingtheoryandtheauthorstheory ofselfinjectivealgebraswithdeformingideals.

Description:
This is the first of two volumes which will provide a comprehensive introduction to the modern representation theory of Frobenius algebras. The first part of the book serves as a general introduction to basic results and techniques of the modern representation theory of finite dimensional associativ
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.