Université du Québec Institut National de la Recherche Scientifique Centre Énergie Matériaux Télécommunications Frequency Reconfigurable Antennas for Airborne Applications Par Abdurahman Hmouda Mémoire présentée pour l’obtention du grade de Maître ès sciences (M.Sc.) Jury d’évaluation Examinateur externe Dr. Khelifa Hettak Communication Research Center Canada (CRC) Président du jury Dr. Serioja Ovidiu Tatu INRS-Énergie Matériaux Télécommunications Directeur de recherche Dr. Tayeb A. Denidni INRS-Énergie Matériaux Télécommunications © Droits réservés de Abdurahman Hmouda, 2017 II ABSTRACT In the recent years, reconfigurable antennas have acquired a huge interest in the field of wireless communications. The demeanor of reconfigurable antennas can be modified to provide multi-functionalities that adapt with the changing system requirements and operational conditions. Reconfigurable antennas exhibit the same throughput as a multi-antenna system. Indeed, reconfigurable antennas occupy less space that would be taken by mult-antennas. Reconfigurability can affect one or more antenna parameters such as frequency, radiation pattern, and polarization to meet the system operational requirements and environment conditions. In this thesis, we focus on designing antennas with frequency reconfigurability. The main objective of this thesis is to study and design frequency reconfigurable antennas for aeronautical applications. The antennas that are chosen in this thesis are a monopole antenna and printed quasi-yagi antennas because of thier advantages that suit aeronautical applications, such as light weight, inexpensive, conformal, easy of manifacturing, and compact sturcure. Each antenna works on different frequencies. In the monopole antenna, the frequency reconfigurability was achieved by integrating varactors in the radiating element to modify the electrical size of the antenna, resulting in shifting the resonance frequency to the desired region while in the quasi-yagi antenna with model one, the reconfigurability in term of frequency was obtained by introducing PIN diode switches in the driven and director elements. In the second quasi- yagi antenna with model two, the PIN diode switches are integrated only in the driven element. The PIN diodes have changed the electrical size of both models resulting in shifting the resonant frequency to new regions. III Specially dedicated to my beloved Parents, my lovely wife who always inspired me, and my siblings for their encouragement and support; as well as my children Jana, Abdulmohaimin, and Jood IV ACKNOWLEDGEMENT In the name of Allah, Most Gracious, Most Merciful. Praise be to Allah, the Cherisher and Sustainer of the Worlds. First and foremost, I am very grateful to my God for his blessings, graces. Who gave me the strength and determination to complete this study that without him it would not have been accomplished I would like to express my gratitude to my research supervisor Prof. Tayeb A. Denidni for his unlimited support, guidance, and continuous advice during my research activities. Also, I would like to thank the committee. Many thanks for the Libyan government for sponsoring me during my study. My deepest gratefulness goes to my wife for her encouragement, and support during my studies. Many thanks to my little children who have been the driving force to complete this study. My parents as well deserve a special mention for their continued prayers to success and for their role of keeping my motivation strong to finish my project. My sincere appreciation also goes to all my colleagues at INRS-EMT whom have helped me directly or indirectly in the completion of my thesis V TABLE OF CONTENTS Abstruct…………………………………………………………………………………………………………….…III Acknowledgement…………………………………………………………………………………………………...V Table of Contents……………………………………………………………………………………...……………VI List of Figures…………………………………………………………………………………………………….…VII List of Abbreviations……………………………………………………………………….……………………...…X 1 Chapter one: Introduction .….……..…………………………………………………..………...….…..….1 1.1 Introduction …….……………………………………………………………………….....….……..1 1.2 Motivation……..……………………………………………………………………….…..….……...1 1.3 Frequency reconfigurable antenna applications ………………….………………….…..……...3 1.4 Objective….……………………………………………………………………………...……...........3 1.5 Thesis organization………………………………………………………………………....…..…...3 2 Chapter two: Antenna background and literature review …………….………..…………..….……....5 2.1 Introduction……..……………………………………………………………………………............5 2.2 Antenna taypes….………………………………………………………………………..….….…..6 2.3 Antenna operating parameters……. ………………………………………………...…...……....7 2.3.1 Radiation patteren………………………………………………………………….…..,…8 2.3.2 Input impedance, bandwidth……….……………………………………..………..…...11 2.3.3 Directivity and gain…………………………………………………………………........13 2.3.4 Antenna polarization……….………………………………………..………...…….......15 2.3.5 Resonant frequecy………..……………………………………………….…………..…16 2.4 Antenna reconfigurability techniques……………….……………………………………….......17 2.5 Frequency response and reconfigurability techniques………………………….…….…....….20 2.6 Conclusion………………………………………………………………………..…………...……22 3 Chapter three: Frequency reconfigurable antenna with first method……………………………….23 VI 3.1 Introduction…….……………………………………….…………………………..….............…...23 3.2 Monopole antenna design……….………………………………………………………..……....23 3.3 Frequency reconfigurable monopole antenna……………………………………….………….25 3.3.1 Antenna designing methodology ……………………………………..……….…….…..25 3.3.2 Return loss results………..………………………………………………….....…….......27 3.3.3 Radiation pattern simulation results……………...………………………………...…...31 3.4 Conculsion…..………………………………………………………………..…………..……......32 4 Chapter four: Frequency reconfigurable antenna with second method ………………………..…….34 4.1 Introduction…….…………………………….…………………………………………….……....34 4.2 Yagi-Uda antenna design……..………………………………………………………….……….35 4.3 Multi-band reconfigurable Quasi-Yagi antenna (one)………………..……………….…......…36 4.3.1 Antenna designing methodology ……………………………………………..………....36 4.3.2 Return loss results ……….……………………………………………………..…...…...38 4.3.3 Radiation pattern results ………………….…………………………….……..………...40 4.3.4 Conclusion….……………………………………………………….…………..…………41 4.4 Frequency reconfigurable antenna (two)………………………………………..…..…….......42 4.4.1 Antenna designing methodology …………………………………………..….……......42 4.4.2 Surface current distribution………………………………………….....……..….….…..44 4.4.3 Return loss results ……….…………………………………………..…….…..…….…..44 4.4.4 Radiation pattern results ………….………………………………………….…..….…..49 4.4.5 Conclusion …..………………………………………………………….….....…..….…...51 5 Chapter five: Conclusion and future work……………….………………………….…………...….…..52 5.1 Conclusion…........................................................................................................................52 5.2 Future work…….……………………………………………………………………..…….......…52 6 Chapter six: Résumé……………….. ……………………………………………………………...…....54 6.1 Introduction…….…………………………………………………………………………......…..54 6.2 Motivation…..……………………………………………………………………………..…….....54 6.3 Les antennes reconfigurables en fréquences…………….………………………….…..….…55 VII 6.4 Objectifs…..……………………………………………………………………………………....…56 6.5 Antenne monopole reconfigurable en fréquence (première méthode)…………………….…56 6.5.1 Méthodologie de conception d’antenne………..………………………………...………56 6.5.2 Résultats des pertes de retour …………………………………………………………….58 6.5.3 Modéles des résults de rayonnement………………………………………………….......60 6.5.4 Conclusion……………………….……………………………………………………….......62 6.6 Antenne multi-band Quasi-Yagi reconfigurable (deuxième méthode)…………………….....62 6.6.1 Méthode de conception d'antenne………………………………………………………....62 6.6.2 Résultats des pertes de retours………………………………………………………….....63 6.6.3 Modèles des résultats de rayonnement……………………………………………………65 6.6.4 Conclusion…………………………………………………………………………….……...66 6.7 Antenne multibande Quasi-Yagi Reconfigurable (deuxième méthode)……………….……..66 6.7.1 Méthodologie de conception de l’antenne………………………………………….….….66 6.7.2 Résultats des pertes de retour……………………………………………………….…..…68 6.7.3 Modèles des résultats de rayonnement…………………………………………………....69 6.7.4 Conclusion………………………………………………………………………………..…...71 6.8 Conclusion…………………………………………………………………………………………..73 6.9 Travaux futurs……………………………………………………………………………………....73 7 References………………………………………………………………………………………………......75 8 Publications…………………………………………………………………………………………….…....76 VIII LIST OF TABLES Table 3.1 Varactor diode capacitance, the achieved frequency, and the application…….........…......32 Table 4.1 Illustrates the geometry in mm of Multi-Band Reconfigurable Quasi-Yagi Antenna…….....40 Table 4.2 The state of the PIN diodes at each case……………………..………..………...……...….....42 Table 4.3 The antenna resonant frequencies and their aeronautical applications…………….……….43 Table 4.4 The geometry in mm of Frequency Reconfigurable Quasi-Yagi Antenna……..…………....48 Table 4.5 Frequency Reconfigurable Quasi-Yagi Antenna (Two) results………….……………….…..53 Tableau 6.1 Capacité de la diode varactor, fréquence atteinte et applications…………………………...60 Tableau 6.2 Illustration de la géométrie en mm de l'antenne multibande Quasi-Yagi reconfigurable….63 Tableau 6.3 États des diodes PIN en fonction des cas…………………………………..………………....64 Tableau 6.4 Géométrie en mm de l'antenne Quasi-Yagi reconfigurable en fréquence……..…….….....68 Tableau 6.5 Antenne Quasi-Yagi Reconfigurable en Fréquence (Deux) résultats…………………….…69 IX LIST OF FIGURES Figure 1.1 Aeroplane external antennas locations. [2]…………………………………………….……......2 Figure.2.1 Basic operation of transmit and receive antennas [8]………………………………….............5 Figure.2.2 Photo of marconi’s Fan Monopole antenna [11]…………………………………………….......6 Figure.2.3 Radiation lobes and beamwidth of an antenna pattern [7]………………………………........9 Figure 2.4 Normalized radiation pattern in polar coordinates [44]………………………………………....9 Figure 2.5 Normalized radiation pattern in cartesian coordinates [44]….…………..……….………….10 Figure 2.6 Radiatino pattern in three dimension [52]………………………...……………………………..10 Figure.2.7 Omindirectional Radiation pattern [7]……………………………….……………….…….….....11 Figure 2.8 Example of S results for bandwidth evaluation.………………….……………………………13 11 Figure 2.9 The photography of a large parabolic satellite communications antenna at Erdfunkstelle Raisting in germeny [45]………………………………..…………………………………....……14 Figure.2.10 Antenna polarization types [10]……… …………………………………………………..……..16 Figure 2.11 Impedance of an RF antenna with Frequency [17]………………………………………....…17 Figure 2.12 Antenna reconfiguration techniques [48]……… ………………………………………..……..19 Figure 2.13 Intra-band frequency reconfigurable antenna [34]…… …………………………………..…..20 Figure 2.14 Square slot antenna for frequency reconfigurable antenna [6]……… …………………..….21 Figure 2.15 Frequency reconfigurable antenna using active capacitor [39]……………………..…….…..21 Figure 3.1 Evolution of a monopole antenna from a dipole. (a) Dipole antenna and radiation pattern. (b) Dipole antenna with series generators and symmetry plane. (c) Monopole antenna mounted on aground plane[8]…..…….…..……………………………………...…….24 Figure 3.2 Antenna design and dimensions : (a) 1st desining step of octagonal shape-microstrip patch antenna, (b) last desining shape…………………………………………………………..25 Figure 3.3 S result of the Monopole antenna first design………………………………………………….26 11 Figure 3.4 S simulated result of the propsed antenna’s second designing step………………..……..27 11 Figure 3.5 Equivalent circuit of Varctor SMV1235………………………………………………………...…28 X
Description: