ebook img

Frequency of female colour morphs in populations of four coenagrionid damselflies (Zygoptera: Coenagrionidae) PDF

2005·1.4 MB·English
by  MckeeD
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Frequency of female colour morphs in populations of four coenagrionid damselflies (Zygoptera: Coenagrionidae)

Odonatologica34(1):37-49 March1,2005 Frequency of femalecolourmorphsin populationsof four coenagrioniddamselflies (Zygoptera: Coenagrionidae) D.McKee¹,I.F.Harvey²,D.J.Thompson² andT.N.Sherrat³t 1SchoolofBiologicalandBiomedical Sciences,UniversityofDurham,Durham,DH13LE,UnitedKingdom 2School ofBiologicalSciences,Biosciences Building,UniversityofLiverpool,Crown Street, Liverpool,L697ZB,UnitedKingdom 3DepartmentofBiology,CarletonUniversity, 1125ColonelbyDrive,OttawaON,K1S 5B6,Canada ReceivedMarch 9,2004/ReviewedandAcceptedMay5,2004 Knowledgeofnaturallyoccurringandromorphandgynomorphfrequenciesinpopula- tions ofcoenagrioniddamselfliesisimportantforunderstandingtheevolution of2-limited polymorphism.Herearereportedthe frequenciesofandromorphsandgynomorphsinpop- ulations ofCoenagrionpaella,C. mercuriale,Xanthocnemis zealandica andIschnura u- viatilisandareviewispresentedoftheliteratureforothercoenagrionidspp.Itisshownthat ratios ofandromorphsto gynomorphsareoftenunequalwithandromorphsgenerallybeing theuncommonmorph.Significantinter-andintra-populationvariationin morphfrequency sometimesoccursbut isoflowmagnitude.No evidencewasfoundforspatialsegregation ofandromorphsandgynomorphs.Andromorphfrequencycouldnotbesignificantlyrelated withsexratioor6 density. INTRODUCTION Female-limitedcolourpolymorphism iswidespreadincoenagrionid damselflies.One femalemorph, the andromorph, is usually quite brightly colouredandresembles the maleofthespecies. Oneor more otherfemalemorphs, the gynomorphs, are usually drabandlittleresemblemales.Howthisphenomenon ismaintainedwithinpopulations iscurrently thefocusoftwocontrasting hypotheses: ‘learnedmaterecognition’ theory (MILLER &FINCKE, 1999) and the ‘signal detection’model(SHERRATT, 2001). Accordingtolearnedmaterecognition theory,malesshouldattempttomate mostoften withthe most commonfemale morph inthe population. Ifmate-searching malesim- pose afitnesscosttolonefemales(through excessive harassment)thenmalesthatcue preferentially tothemostabundantmorph shouldimpose frequency-dependent selec- tiononthatmorph. Incontrast,thesignaldetectionmodelisbasedonthepremise that andromorphs gaina selectiveadvantage bylooking likemales(i.e. andromorphs) are 38 D.McKee,I.F.Harvey,D.J.Thompson&T.N.Sherratt malemimics, (ROBERTSON, 1985). Inthis case, the levelofmalesexualattention directedtowards andromorphs shouldincreaseas theperceived rate ofencounter be- tween malesandandromorphs increases(sexualattentiondirectedtowardsgynomorphs shouldnotchange withmaleperceivedrate ofencounter). Recentresearchprovides varying degreesofsupportforboth hypotheses (e.g. COR- DERO etal„ 1998;MILLER&FINCKE, 1999;VAN GOSSUM etal„ 1999;S1ROT & BROCKMANN,2001; VAN GOSSUM etal, 2001;ANDRES etal„ 2002). One consistentresulthoweveristhatselectivemechanisms,dependentonfemalemorphfre- quency,appeartobeoperational inmostpopulations, atleast during someofthetime. Detailedknowledge of andromorph frequencies indifferentpopulations ofdifferent damselfly species is thereforeimportant. Here, wereportresultsofsurveysoffemale morph frequencies inpopulations offourcontrasting coenagrionid damselfly species. Wealsoprovideareviewof andromorph frequencies reported intheliterature. MATERIALANDMETHODS Coenagrionpuella(L.) Thisspeciesoccursinsuitablehabitat throughoutEurope.Males arepredominantlyblue;andromorphfe- maleshavesomebluecolourationbut arerelativelypoormalecolourmimics;gynomorphfemalesarepre- dominantlybrown/olive.Andromorphand gynomorphfemalesdonotdiffersignificantlyin size(e.g,forew- inglength)andfemales, overall,arelargerthanmales(THOMPSON, 1989a, 1989b). Andromorphfrequencywasestimatedindetailin anadultpopulationatNessBotanicGardens (nearLiv- erpool,U.K.;SJ303754;53°16.219,3”02.7'W),oneightdaysinJune2001,eightdaysinJuly2001andfive daysinJune2002.Atransectwaswalkedthroughthegardensoneachofthese daysandallanimalsencoun- teredwererecorded. Areasofornamental pondandassociatedwaterside vegetation(within5 mofwater), aswellasextensivelengthsofhedgerow(distantfromwaterby 20-200m)wereincluded. Equaleffortwas attachedtosearchingwatersideareasandthoseareasawayfromwater. Coenagrionmercuriale (Charpentier) This speciesisrestricted indistributionatbothaglobalandnationallevel.Itisconcentratedinthesouth andwestofEuropeandhaspopulationsofunknown statusinnorthernAfrica.InBritainitoccursmainlyto the southandwestofthe country.The gynomorphisolivegreen laterallywith smallpalemarksanteriorly onsegments7-10. Intheandromorphthepalecolourismoreextensive andtherest ofthebodyisbluelike themale.Femalesarelargerthanmales(THOMPSONetal.,2004). Andromorphfrequency was estimated from mark-release-recapturestudies carriedoutin twoareasof Hampshire,England:theItchenValley(populations1-3,Table II)andBeaulieuHeath(populations4-11,Ta- bleII).Samplingwasconductedfrom 12Juneto 14July2001(ItchenValley)and 11Juneto 13 July2002 (BeaulieuHeath).Duringthesesamplingperiodsfield assistantswerepresentateach site forsevenhours daily.Searchingwasrestrictedtothewatercourses.Fordataanalysis,thetwosummersamplingperiodswere eachdividedintothreeconsecutivesub-periodsof10days. Xanthocnemis zealandica McLachlan This speciesisendemictoNewZealandwhereitiswidespread(ROWE, 1987).Malesarepredominantly red;andromorphfemalesaresubstantiallyredandarereasonablemalecolourmimics;gynomorphfemalesare predominantlybrown/olive.Andromorphfemalesandgynomorphfemales donotdiffersignificantlyinsize (meanforewinglengthofmatureandromorphs=19.4mm,SD=1.1,n=50;meanforewinglengthofmature gynomorphs=19.8mm,SD= 1.0,n=50;t= 1.6,df=98,p =0.111).Femalesarelargerthanmales(mean overallmaturefemaleforewinglength= 19.6mm,SD= 1.1,n=100;meanmaturemaleforewinglength= Coenagrionidcolourmorphs 39 18.1mm,SD=0.8,n=100;f=11.4,df=198,p<0.001)andthereisnosignificantcorrelationbetweenthe forewinglengthsoftandempairs (r=0.09,n=100,p =0.355;datarecalculated fromMcKeeetal.,2003). Androraorphfrequencyin adultpopulationsofX. zealandica was estimated atninepondslocatedin the ChristchurchareaofNewZealand(locationreferencesinTable III).Eachsite wasvisitedthreetimes (be- tween 15-12-01 and17-01-02; 10:00to 16:00)andall females in tandem andincopulationwererecorded whilstwalkingaroundthewater’sedge(singlefemales wereveryrarelyencountered). IschnurafluviatilisSelys This speciesseemstooccurthroughoutthepampasicecotoneofsouthernSouthAmerica(e.g.BULLA, 1973;VONELLENRIEDER,2000).Males have bluepost-ocularspots,ablue thorax with yellow/green humeralstripesandabluetiptotheirabdomen.Matureandromorphfemalesareexcellentmalecolourmim- ics.Maturegynomorphfemalesarebrown/olive,butyoungerfemales areorange. AndromorphfrequencywasestimatedinfourpopulationsinUruguay(locationreferences inTableIV). Twoofthesepopulations(PuntaCarretasandParqueMiramar)were each sampledforeighthoursovertwo orthreeconsecutive daysofoptimumweatherduringNovember2002,December 2002, January2003and February2003. Onepopulation(Mendoza)wassampledforfivehoursovertwo daysduringJanuary2003 andduringFebruary 2003 andthefinal population(PuenteSarandi)wassampledonceforfivehoursdur- ingJanuary2003.Weattemptedtocaptureand mark(wing-spotofindelible ink)allindividuals encountered whilstrandomlywalkingaroundtheponds.Aminimumperiodoftwoweeks elapsedbetweenallmonthly estimates. Forewinglengthsoftencopulatingpairs includinganandromorphfemaleandtencopulatingpairsinclud- ingagynomorphfemale were measured(PuntaCarretas population,December2002).Andromorphsand gynoraorphsdidnotdiffersignificantlyin size (meanforewinglengthofandromorphs= 16.3mm,SD= 0.9,n=10;meanforewinglengthofgynomorphs=16.7mm,SD=1.1,n= 10;1=0.9,df= 18.p=0.384). Femaleswerelargerthanmales (meanoverallfemale forewinglength=16.5mm,SD =1.0,n=20;mean male forewinglength= 14.7mm,SD =0.6,n=20;t=7.1,df=38,p< 0.001)andtherewasnosignificant correlation between theforewinglengthsoftandempairs(r=0.07,n=20,p=0.774). RESULTS COENAGRION PUELLA AtNess BotanicGardens during2001, C.puella andromorph frequency was40% in Juneand 19% inJuly.During June2002 itwas26%. Theratioofandromorphs to gynomorphs differedsignificantly from equality according to thelater two estimates (Chi-square tests: x2 =2.9,p=0.087; x2= 10.7,p =0.001; \2= 37.4,p <0.001; re- spectively). Therewas asignificant decrease inandromorph frequencybetweenJune 2001 and July2001 (x2=5.5,p =0.019); andasignificant increasebetweenJuly2001 and June2002(x2=5.6,p=0.018). Thesignificant inter-annualdifferencealsoholds when theoverallmeanandromorph frequency during2001(35%) isusedinthecom- parison (x2=5.2,p=0.023). TableIshowsnumbersofanimalsencounteredalongthetransect.Thedataare divided intothoseobservationsrecordedatwater (<5m distant)andthoserecordedawayfrom water (20 - 200mdistant).Andromorphs and gynomorphs didnot segregateaccord- ingtoareaofhabitat.Theratioofsingleandromorphs tosingle gynomorphs wasinde- pendentofwhethertheanimalswereencounteredatorawayfromwater(contingency Chi-square: June2001 x2=0.09,p =0.770; July2001 x2=0.38,p=0.537; June2002 40 D.McKee, I.F.Harvey, D.J.Thompson&T.N.Sherratt TableI x2=0.07,p=0.788).Similarly, C.puellarecorded atNessBotanicGardens theratioofpairedandromorphs topairedgynomorphswas inde- Atwater Away fromwater pendentofwhethertheanimals Males Jun-01 545 189 were encountered at or away Jul-01 196 73 from water (contingency Chi- Jun-02 247 206 square; June2001 \2=0.13,p Singleandromorphs Jun-01 3 14 Jul-01 0 2 =0.723; July2001 x2=0.27,p Jun-02 1 36 =0.607; June2002 x2 = 106. Singlegynomorphs Jun-01 4 10 p=0.303). Jul-01 1 5 Sex ratio was calculatedas Jun-02 3 78 total number of males/total Pairedandromorphs Jun-01 1) 3 Jul-01 1 2 numberof females. It as male Jun-02 7 0 biased, ranging from 1.1 to Pairedgynomoiphs Jun-01 25 7 12.2. Andromorph frequency Jul-01 II 5 was not significantly correlat- Jun-02 41 1 edwithsex ratio: r=0.40,n= 14,p = 0.151 (Fig. la, analy- sis used allthe dailytransect estimates fromNess Gardens whereandromorphs were recorded); nor was itsignificantly correlatedwith maledensity: r =0.27,n= 14,/?= 0.354(Fig. 2a). COENAGRIONMERCURIALE IntheItchenValleytherewerethreedistinctpopulations. Atthemostnortherly sites, Mariner’sMeadowandHighbridge, andromorphs werenotfound(Tab.II).Inthelarg- estpopulation. LowerItchen,meanandromorph frequency waslow,6% (Tab.II).The ratioofandromorphs togynomorphs differedsignificantly fromequality intheLower Itchenpopulation (Tab.II). AroundBeaulieuHeath meanandromorph frequencyranged from9 to33% andthe ratioofandromorphs to gynomorphs differedsignificantly fromequality in alleight populations (Tab.II). However,betweenpopulations, andromorph frequency didnot significantly differ(one-wayAnova,dataarcsinesquare-roottransformed:F? = 1.1,p= 0.394)andtheintraclasscorrelationcoefficientsuggested thattemporal variationwithin populations wasrelatively high (r, =0,04).Thistemporal variationwassignificantintwo cases butshowednoparticular pattern: HatchetStream(consecutive estimatesof9%, 9%, 0%),maximumlikelihoodx2=7.0,df=2,p =0.030;DeepMoor(consecutivees- timatesof10%,35%,9%), maximumlikelihood\2=7.9, df=2,p=0.020.Therewas nosignificant correlationbetweenandromorph frequency and sex ratio:r=-0.07,n- 27,p=0,712(Fig. lb).Neitherwas thereasignificantcorrelationbetweenandromorph frequency andmaledensity; r=-0.34, n=27,p =0.080(Fig.2b). Coenagrionidcolourmorphs 41 XANTHOCNEMIS ZEALANDICA Overall, andro- morph frequency was 9% (SD =4.5, n = 27). Frequen- cy in most of the nine separate pop- ulations was rather similar (Tab. Ill) and, although anal- ysis of variancein- dicated significant difference between populations (one- way Anova, data arcsine square-root transformed:F = g 5.9,p<0.001),this was entirely dueto population 2.Tuk- ey-tests showed that population 2 had a significantly lower andromorph frequency than all other populations except population 4. However, it is possible thatpopu- lation2 yielded an anomalous result CFig. 1.Relationshipbetween andromorphfrequencyand.sexratio for: (a) simply because it puella; —(b)C.mercuriale and - (c)I.fluviatilis. was theleastdenseofallthepopulations surveyed andsample size was concomitantly low.Theintra-class correlationcoefficientindicatedhighconcordancebetweenwithin- population andromorph frequency estimates(r=0.61).Inallninepopulations theratio of andromorphs togynomorphs differedsignificantly fromequality (Tab. HI). ISCHNURAFLUVIATIUS Populations ofI.fluviatiliswere widely distributedbutcharacterisedby lowdensity. Wesearchedextensively forpopulations inthedepartmentsofMontevideo,Canalones, 42 D.McKee,I.F.Harvey,D.J.Thompson&T.N.Sherratt TableII Meanandromorphfrequency(%) in elevenpopulationsofC. mercuriale. The significance ofChi-square tests examiningwhethertheratio ofandromorphstogynomorphsdifferedfromequalityisshownusingas- terisks (***p<0.001).Standarddeviation (SD)andthetotalnumberoffemales andmalesrecorded ateach site areshown Locality Latitude,Longitude U.K.National Mean% SD Females Males GridReference (1)Mariner’sMeadow 51° 1’N, 1°19’W SU476240 0 0 185 959 (2)Highbridge 50°59’N, 1°20’W SU465209 0 0 36 716 (3)LowerItchen 50°54’N, 1°22’W SU446117 6 **» 1.7 717 5492 (4)Roundhill 50°49’N, 1°32’W SU330019 23 *»* 1.2 379 1368 (5)HatchetStream 50°49’N,1°29’W SU359012 23••• 22.5 65 179 (6)Greenmoor 51"4rN,1°31’W SU338988 33 *** 15.7 34 118 (7)BagshotMoor 50°48’N, 1°29’W SU369000 g￿￿￿ 10.3 21 80 (8)DeepMoor 51042’N,1“30’W SU348999 19*** 8.1 256 1552 (9)Two BridgesBottom 51°42’N, 1“30’W SU343999 25 *** 3.8 182 961 (10)LowerCrockford 51°4rN, 1“29’W SU354989 23 1.2 310 1608 (11)PeakedHill 51°42’N,I°29’W SU361991 21 *** 2.1 609 2249 Lavalleja, MaldonadoandRochabuttypically encounteredonly afewindividualson mostponds (includingonasmallpoolatapproximately 490maltitudeonCerroCate- dral).Andromorph frequencyrangedbetween3and9%(Tab. IV).Itdidnotvary tem- porallywithinthepopulations (Punta Carretas, maximumlikelihoodx2= TO,df=3,p =0.799; Parque Mirramar,maximumlikelihoodx2=2.3,df=3,p=0.520; Mendoza, maximumlikelihoodx2=0.9,df= l,p =0.337) orbetweenthepopulations duringany month(November 2002, maximumlikelihoodx2= 1.9, df= 1,p=0.173;December 2002,maximumlikelihoodx2= 1•1,df= 1,p=0.287; January 2002,maximumlikeli- hoodx2= 1.9,df=3,p=0.593;February 2003,maximumlikelihood\2=0.1, df=2, TableIII Meanandromorphfrequency(%)inninepopulationsofX. zealandica. ThesignificanceofChi-squaretests examiningwhethertheratio ofandromorphstogynomorphsdifferedfromequalityisshownusingasterisks (***p<0.001).Standard deviation(SD) andthetotalnumberoffemalesrecorded ateachsiteareshown Locality Latitude,Longitude N.Z.National Mean% SD Females GridReference (1)TheGroynes 43°27’S,172°36’E M35783490 10*** 1.6 554 (2)LincolnGravelPit 43°38’S, 172°27’E M36&M37657298 2￿￿￿ 3.4 29 (3)StyxMill Reserve 43°28’S, 172°36’E M35 783490 14*** 3.5 276 (4)Halswell Quarry 43°36’S,172°35’E M36&M37757344 5*** 0.6 509 (5)HartCreekPond 43°47’S, 172°I9’E M36&M37545128 8*** 0.6 276 (6)ShagPond 43°42’S,172°26’E M36&M37644232 13 *** 1.5 239 (7)Fenland House Pond 43°43’S,172°27’E M36&M37633218 13*** 5.5 200 (8)KaipoiGravelPit 43°22’S,172°40’E M35826607 8 *** 4.0 94 (9)RegentsParkPond 43°28’S,172°36’E M35785485 9 3.2 58 Coenagrionidcolourmorphs 43 p=0.954).However,theintra-classcorrelationcoefficientdemonstratedsomeoverall tendency formore variabilityofandromorph frequency estimatesbetweenpopulations thanwithin populations (r( = -0.10).The dataas awhole showedthat single andro- morphs werefarmorelikely tobeencounteredthansingle mature gynomorphs (con- tingency x2=25.2, df= \,p <0.001).As someyoungerorangecolouredfemaleswere observedcopulating wealsomadethe comparisonbetween andromorphs andorange females,obtaining asimilarresult(contingency x2=99.0, df=!,/?<0.001).However, when ratiosofsingle topaired animalswerecompared between andromorphs and all otherfemalescombined, nosignificantdifferencewas apparent(contingency x2= 1.0, df= 1,p=0.317).Sexratiowas biasedtowards males(range 1.1to 1.9).Andromorph frequency was notsignificantly correlatedwithsex ratio; r=-0.16, n= 11,/;=0.639 (Fig. 1c). Itwas alsonotsignificantly correlatedwithmaledensity:r=0.42,n= 11, p =0.195(Fig. 2c). DISCUSSION Ratiosof andromorphs to gynomorphs often deviatefrom equality. For 97% (31/ 32)ofour population surveys (whereandromorphs wererecorded)theratioofandro- morphs to gynomorphs differedsignificantly fromequality. TableVshows otheran- Table IV Numbers ofandromorphs,mature gynomorphsandorange females in fourpopulationsofIi.fluviatilis.Fe- males wererecorded asbeingsingle(Single)orincopulation(Paired).Total number ofmalesrecorded and andromorphfrequency(%)arealsoshown.ThesignificanceofChi-squaretests examiningwhethertheratio ofandromorphstogynomorphs(includingorangefemales)differedfromequalityisshownusingasterisks (￿p <0.05;**p<0.01;***p<0.001;nsp>0.05) Locality Andromorphs Gynomorphs Orange Males % Single Paired Single Paired Single Paired (1)PuntaCairetas Nov-02 4 1 21 57 24 1 122 5 *** 38°41’S,62°80’W Dec-02 1 14 0 179 13 10 343 7￿** K-29663362 Jan-03 2 7 3 158 9 2 310 5 *** Feb-03 2 7 4 124 9 3 202 6*** (2)ParqueMirramar Nov-02 5 4 3 71 10 2 140 9*** 38°74’S,62°27’W Dec-02 1 1 6 34 16 1 96 3*** J-29779423 Jan-03 0 11 11 119 18 2 235 7 *** Feb-03 3 7 23 105 8 1 199 7 *** (3)Mendoza - - - - - - - - - 38°67’S,62°4rW - - - - - - - - - K-29660493 Jan-03 0 2 2 39 23 3 106 3 *** Feb-03 2 4 10 56 28 0 186 6 *** (4)PuenteSarandi - - - - - - - - - 38°58’S,61°58’W - - - - - - - - - G-28346594 Jan-03 0 3 0 63 8 0 139 4 *** __ __ __ „ __ __ 44 D.McKee, I.F.Harvey,D.J.Thompson&T.N.Sherratt TableV Andromorphfrequencies(%)reported in the literature. For aparticularspecies, estimatesfrom different populationsareindicated as1,2,3etc. Different estimatesfromthe samepopulationareindicated asa,b,c etc.Totalnumberoffemales recorded isgiven(Females).Thesignificance(p)ofChi-squaretests examin- ingwhethertheratio ofandromorphstogynomorphsdifferedfromequalityisshownusingasterisks(*p< 0.05;**p<0.01;***p<0.001;nsp >0.05).fTwotypes ofgynomorpharerecognisedforthese species. nFrequenciescalculated from agraph SSppeecciieess SSoouurrcceeooffddaattaa FFrreeqq..((%%)) FFeemmaalleess Pp AArrggiaiavviivviiddaa CCOONNRRAADD&&PPRRIITTCCHHAARRDD((11998899)) llaa 6644 7788 ** llbb 6666 444488 ****** 22aa 4488 3333 nnss CCeerriiaaggrriioonntteenneelllulumm* AANNDDRREESS&&CCOORRDDEERROO((11999999)) I1 1122 2266 ***￿** 22 00 3344 33 1199 1166 ￿* 44 2277 115522 55aa 1155 5544 ****»* 55bb 1199 552255 »***** 55cc 1144 222211 •** 66aa 1133 665577 **» 66bb 1100 666622 ￿**￿*￿ 66cc 1100 226633 *** 66dd 1122 336622 ￿*￿*￿* 66ee 1111 115588 ￿*￿*￿* 77 00 4433 88 1122 8822 ￿***** 99 99 5533 ****** CCooeennaaggrriioonnppuueellllaa TTHHOOMMPPSSOONN((11998899aa)) llaa 1122 117700 *** llbb 1155 220099 *** IIcc 66 117744 *** EEnnaallllaaggmmaabboorreeaallee FFIINNCCKKE£((11999944)) 11 4455 555544 ￿* FFOORRBBEESS((11999944)) 11 6688 448855 ￿*￿*￿• EEnnaallllaaggmmaacciivviillee MMIILLLLEERR&&FFIINNCCKKEE((11999999)) 11 1177 331122 ￿**￿*￿ EEnnaallllaaggmmaaeebbrriiuumm MMIILLLLEERR&&FFIINNCCKKEE((11999999)) 1I 1155 7700 *** EEnnaallllaaggmmaahhaaggeennii FFIINNCCKKEE((11999944)) llaa 2266 337700 *** llbb 3311 116666 *** 11cc 3366 110033 *** 22 2266 3399 ￿*** IIsscchhnnuurraaddaammuullaa JJOOHHNNSSOONN((11996644)) llaa 1144 6633 *****￿ llbb 1144 5522 ￿**￿*￿ 11cc 1100 5588 ****** IIdd 1111 7722 *** llee 1144 5500 *** IIff 1144 6655 *** Ilgg 1133 4488 ￿**￿»￿ IHhi 1144 5511 ￿***** l1i1 1122 4433 •￿￿•￿• 22aa 1111 5533 ￿***** 22bb 1122 4422 *** Coenagrionidcolourmorphs 45 TableV,continued 22cc 1144 4422 *** 22dd 99 5544 ￿***** 22ee 1122 6600 ￿*￿**￿ 22ff 1122 5588 ￿***** 22gg 1122 5500 **￿ 22hh 1144 4422 ￿***￿* 22ii 1133 3399 »** 33aa 1188 4400 ￿***** 33bb 1166 3388 *** 33cc 1166 3322 ￿**￿*￿ 33dd 1177 3300 »** 33ee 1166 4433 *****￿ 33ff 1155 4400 ****** 33gg 1166 3322 ￿**￿*￿ 44aa 1177 4488 *****￿ 44bb 1166 5511 ****** 44cc 1144 4422 ￿**￿*￿ 44dd 1155 3322 ￿**￿ 44ee 1155 3399 ***￿** 44ff 1166 4444 *** 44gg 1166 3377 ￿**￿*￿ IIsscchhnnuurraaeelleeggaannss* PPAARRRR((11996699)) 11 3366 9999 ￿*** 22 3344 221177 ￿**￿*￿ 33 2233 111111 ****** VVAANNGGOOSSSSUUMMeettaall..((11999999))tt" 11 77 1133 ￿*** 22 2277 1177 nnss 33 1122 1155 **** 44 7700 1100 nnss 55 1188 1111 nnss CCOORRDDEERROOeettaall..((11999988)) 11 5555 995577 ￿**￿ IIsscchhnnuurraaggrraaeellllssii*ii CCOORRDDEERROO((11999900)) 11 1188 552233 *****￿ 22aa 2211 2299 ￿*** 22bb 1177 6655 ￿**￿*￿ 22cc 1144 668855 *** 22dd 88 8855 ****** 22ee 1188 110077 »*» 33 77 4466 ****** 44aa 1188 9944 *** 44bb 1111 9977 »** 55 3300 3377 ** IIsscchhnnuurraarraammbbuurrii RROOBBEERRTTSSOONN((11998855)) 11 3311 9900 *** 22 2255 4444 *** SSIIRROOTTeettaall..((22000033)) llaa 4488 4488 nnss llbb 3399 8833 ** 11cc 3366 9944 **** IIdd 3399 4499 nnss llee 5500 4488 Iiff 4488 7755 nnss 46 D.McKee, I.F.Harvey, D.J.Thompson&T.N.Sherratt TableV,continued NNeehhaalleennnniiaa iIrreennee FFOORRBBEESSeettaall..((11999955)) i1 33 3311 ****** 22 77 1155 *** 33 22 4488 *￿**** 44 1122 3344 ****** 55 33 3300 *** 66 2288 3311 ** 77 2266 114455 *￿**** 88 2244 115566 *** dromorph frequency estimatestakenfromthe literature. For91%(86/94)ofthesees- timates(whereandromorphs wererecorded)theratioofandromorphs to gynomorphs differedsignificantlyfromequality. Ifaspecies displaysfemale-limitedpolymorphism thenmostpopulations appearto possessandromorphs. Theyoccurredinallbuttwo ofthepopulations weexaminedand inallbuttwo(Ceriagrion tenellum:ANDRES&CORDERO,1999)ofthepopulations listedinTable V. However,although andromorphs are almostalways present within populations, they oftenoccur withrelatively lowfrequency. Weencounterednositua- tionswhereandromorphs were more commonthangynomorphs. Forthepopulations inTableV there are only fourinstances whereandromorph frequency canbe shown statisticallytobesignificantly greaterthan50% (TableV). Thissuggests thatinstanc- es whereandromorphs are more frequentthangynomorphs may beatypical. Ifmale encounterrate withdifferentfemalemorphs is directlyproportional tooverallfemale morph frequency, then implications forthelearnedmaterecognition modelare clear: caseswheremalespreferentiallychoosetomatewithandromorphs maybeinfrequent becauseandromorphs are infrequentlythemost commonmorph. Variationinandromorph frequencysometimesexistswithinandbetweenpopulations. We foundmarginally significant variationinandromorph frequency withinthe Ness Gardenspopulation ofC.puella, withintwopopulations of'C.mercurialeand between populations ofX.zealandica.WedidnotfindsimilarvariationforI.fluviatilis.FORBES etal.(1995)determinedsignificantdifferencesbetweenandromorphfrequencies inpop- ulationsofNehalenniaireneduring asingle seasoninCanadaand,although ANDRES &CORDERO (1999) didnotfindintra-population variationforC. tenellum,evidence forinter-population variationexists(ourcalculationsfromTableVmakingcomparisons withinyears: populations 1 and5a, maximumlikelihoodx2= 0.2, df= 1,p =0.686; populations 5band6a,x2=8.6, df= 1,p=0.003;populations 2,3and meanof6b,6c and6d, x2=8.6, df=2,p=0.014;populations 4,5cand6e,x2= 14.8,df=2,p<0.001; populations 7,8and9,\2- 9.0,df=2,p=0.011).Incontrast,datareported by CORD- ERO(1990)forSpanishIschnura graellsiipopulations doesnotshowintra-population variationinandromorph frequency (ourcalculationsfromTableV:population 2,max- imumlikelihoody2 =5.4, df=4,,p=0.252;population 4,x2= 1.7,df= l,p=0.186); FINCKE (1994)foundnosignificant inter-annualdifferencesinandromorph frequency forEnallagma hageniataMichiganpond;andSIROTetal.(2003)didnotfindsignificant

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.