ebook img

Frequency Control Ancillary Service Provided by Efficient Power Plants Integrated in Queuing PDF

21 Pages·2017·4.38 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Frequency Control Ancillary Service Provided by Efficient Power Plants Integrated in Queuing

energies Article Frequency Control Ancillary Service Provided by Efficient Power Plants Integrated in Queuing-Controlled Domestic Water Heaters YebaiQi1,DanWang1,*,HongjieJia1,TianjiaoPu2,NaishiChen2andKaixinLiu1 1 KeyLaboratoryofSmartGridofMinistryofEducation,TianjinUniversity,Tianjin300072,China; [email protected](Y.Q.);[email protected](H.J.);[email protected](K.L.) 2 ChinaElectricPowerResearchInstitute,HaidianDistrict,Beijing100192,China;[email protected](T.P.); [email protected](N.C.) * Correspondence:[email protected];Tel.:+86-185-2263-6418 AcademicEditors:LeiFengandJohnKessels Received:20December2016;Accepted:13April2017;Published:19April2017 Abstract: Frequency is an important parameter of a power system. It is of great significance to maintainitsstability,especiallyinthecurrentdevelopmentscenariooflarge-scaleinterconnected powersystems. Thermostaticallycontrolledappliances(TCAs)aregoodcontrollableresourcesfor demandresponseowingtotheirrapidresponsecapabilitiesandrelativelywidecontrollableranges. Inthisstudy,domesticwaterheaters,whichhavewiderdeadbandscomparedwithothertypical TCAs,suchasheatpumps,areusedasfrequencyregulationresources. Themaincontributionofthis paperisthatitproposesaqueuing-controlledstrategywithlock-onandoffconstraintsforcontrolling an efficient power plant consisting of water heaters (EPP-WH). The queuing-controlled strategy enablesTCAstoprovidefrequencyregulationancillaryserviceforthenormaloperationofthepower system. The thermal dynamic process of the water heater and the formation of the EPP-WH are firstdiscussed. Basedonthedevelopedmodel,aseriesofstrategiesareproposed,includingload sheddingcalculation,toplayeroptimization,andimprovedtemperatureprioritylist(TPL)strategy withlock-onandoffconstraints. Finally,typicalcasestudiesarediscussedtoillustratethefrequency regulationeffectsandtheeffectsoftwocharacteristicparameters—users’willingnessandlocktime limits. Reasonabletargetsaregeneratedbasedonvariousconsiderationfromtoplayeroptimization module. Theresultsindicatethatusingthemodelandproposedstrategies,theEPP-WHhasgood frequencyregulationperformance. Keywords: frequency control; demand response; thermostatically controlled appliance (TCA); efficientpowerplant(EPP);temperatureprioritylist(TPL)strategy 1. Introduction Frequencyisacriticalparameterthatindicatesthebalancebetweenpowergenerationandload consumptioninpowersystems. Whenthereisaseveredisturbanceoradrasticchangeinloading conditions, the operating state of the system may change from the normal state to the emergency state. Traditionally,thefrequencyisprimarilycontrolledbyadjustingresourcesonthegenerationside, includingextracapacityfromlargegeneratorsandinterconnection[1]. Ifthesystem’sfrequencyisstill outofthenormalrange,effectivemeasuresmustbetakentomaintainthefrequencystability,such asloadsheddingandmodifyingdemandresponse. Insuchconditions,loadsheddingisregarded asoneeffectiveemergencycontrolmethod,whichhasbeenanestablishedpracticetobringsystems backtotheirnormaloperatingstate. Itisalong-termmeasureoftenusedaftertheprimaryfrequency regulationfails. Themainobjectiveofloadsheddingistobringthesystem’sfrequencybacktoan Energies2017,10,559;doi:10.3390/en10040559 www.mdpi.com/journal/energies Energies2017,10,559 2of21 acceptable range. This type of scheme is called under frequency load shedding (UFLS), which is an effective control measure for preventing frequency collapse after a large disturbance occurs or foraddressingpowershortages. Manystudieshavebeencarriedoutinthisfield. Therearemainly threecategoriesofcontrolmethodsinthetraditionalUFLSschemes: themaximumavailablecapacity methods,thelinearmethods,andtechniquestoenablesystemfrequencyrecovery. Inaddition,fuzzy andbinarycontrolmethodshavealsobeenimplementedinfrequencyregulation[2]. Thestudyin[3] proposed a frequency-based control strategy, taking into account renewable energy resources and energystorage. Theimpactsofemulatedinertiafromwindpowerwerestudiedin[4]. Inaddition, somedispatchstrategieswereproposedusingtheaggregatedelectricvehiclestoparticipateinthe ancillaryfrequencyregulation[5–9]. Withthedevelopmentofadvancedmeteringinfrastructure(AMI) andautomaticmeterreading(AMR),thecontrolcenterofthepowersystemcanacquiremoredetailed consumptioninformationabouttheelectricalloads. Forexample,asimplelowcostsmartsocketwas proposedtoswitchoffhouseholdappliancessuchasfansinordertoprovideaprimaryfrequency response[10]. With respect to load control, studies have been carried out on providing energy market and ancillaryservices,suchasloadshifting[11],primaryfrequencyresponse[12],andvoltagestability enhancement[13]. Frequencycontrolancillaryserviceprovidedbyawindfarmdualbatteryenergy storagesystemwasstudiedin[14]. AcontrolstrategyforV2Gaggregatorsparticipatinginfrequency regulationwasstudiedin[15]. In[16],anautomaticgenerationcontrol(AGC)algorithmwithEVs wasproposedandthedynamicpowersystemcharacteristicsduetoagivenloaddisturbancewere analyzed. In addition, a comprehensive central DR algorithm for frequency regulation in a smart microgridwaspresentedin[17]. In[18],useoftheelectricitydemandasfrequencycontrolledreserve (DFR)hasbeeninvestigatedtoprovidefrequencyreservetopowersystems. Adynamicdemand-side controlalgorithmispresentedtoimprovethefrequencystabilityofthepowersystem,andtoreduce thedemandforsystemreservecapacityin[19]. In[20],amulti-stagedemandresponsetechnologyis introducedtoparticipateintheprimaryfrequencyregulationofthesystemthroughdirectloadcontrol. An adaptive scheme is studied in [21] for coordination of demand response and system spinning reservesforquickfrequencyrecovery. In[22],thefrequencyregulationofdemandresponseandwind poweronpowersystemisdiscussedinsingleareapowersystem. Due to the presence of considerable thermal inertia in thermostatically controlled appliances (TCAs), their short-term operation changes will not have too much impact on users’ comfort. Asaconsequence,TCAsaregoodcontrollableloadresourcesforfrequencyregulationinpowersystems. In[23],adirectloadcontrolalgorithmwasdevelopedtoaggregatethewaterheaterloadforthepurpose of frequency regulation. In [24], a supplementary load frequency control algorithm considering a number of EVs and the heat pump water heaters as controllable loads was proposed. A dynamic frequencyregulationalgorithmwhichusedresidentialTCAstoalleviatefrequencydeviationscaused byhighpenetrationofrenewableenergysourcesinthepowersystemwasproposedin[25]. In[26], anoveldecentralizeddemandcontrolstrategyforfamily-friendlycontrollablerefrigeratorsconsidering customercomfortlevelisproposedtoregulatethefrequencyofautonomousmicrogridincoordination withtheenergystoragesystem(ESS).Combiningsmartdemandresponsetechnologywithunder frequencyloadsheddingmeasuresisinvolvedinthethirdlineofdefensespecifiedinatechnicalguide forelectricpowersystemsecurityandstabilitycontrol,wherebycoordinatedcontrolcouldbecarried outbyusingquickresponseresourcesandthethirdlineofdefense,andanewunderfrequencyload sheddingschemeconsideringtheresponseofsmarthouseholdapplianceswasproposedin[27]. Traditionally,UFLSinvolvestwomainsteps: relativelymoreloadsheddingatthebeginningof powerdeficitandlessloadsheddingwhenthefrequencyisclosetothelowerlimitofthenormal operatingrange. However,afterthesecondstep,thefrequencymayriseovertheupperlimitofthe normalrange. Asaresult,along-termmethodaimedatmaintainingthesystem’sfrequencyshould becontinuouslyimplemented. Consideringthetimescaleofcontrol,TCAsaresuitableresourcesfor Energies2017,10,559 3of21 frequencyregulation. Owingtotheuniquefeaturesofthermostaticinertia,TCAshavelessinfluence ontheusers’comfortablelevelswhentheyparticipateinfrequencyregulation. In this paper, a type of adaptive UFLS scheme is proposed, which is established based on a frequency differential and system frequency response model. The required load shedding to be implementedwasacquiredaccordingtotherateofchangeoffrequency. Waterheaters,asatypical example of TCAs, were selected as the load shedding resource. The proposed strategy takes full advantageofthethermostaticenergystoragecharacteristicofTCAs,demonstratingthefrequency regulationcapabilityofwaterheaters. This paper is organized as follows: models of water heaters, efficient power plants with and withoutconsideringlock-onandoffconstraintsarepresentedinSection2. Relatedcontrolstrategies areintroducedinSection3. CasestudiesandsimulationresultsarediscussedinSection4. Conclusions andfutureworkaresummarizedinSection5. 2. ModelingMethodologies Adetailedunderstandingofthethermaldynamicprocessofwaterheatersisnecessarytoevaluate theimpactsofdifferentfactorsonwaterheaters’potentialcontrollability. Thissectionwilldiscussthe thermalmodelofwaterheatersdevelopedbasedontheETPapproach. 2.1. SingleWaterHeaterModel Asinglewaterheater’sthermaldynamicprocesscanbedescribedbyEquation(1). Assumingthe watertemperatureinthetankisθt1 attimet . After∆t,thewatertemperatureinthetankattime temp 1 t +∆tiscalculatedby: 1  θθttte11m++p∆∆tt == (cid:104)θatθ1t1+QMR−−θ(cid:16)t1θatm1t+1 +ut1θQt1mRt−1(cid:105)/θtM1(cid:17)e−∆t/RC uθtt11+∈∆t{>0,1θ}t1 (1) temp temp set n a n temp set  θtte1m+p∆t = (cid:104)θtte1mp(cid:16)M−mtn1(cid:17)+θat1mtn1(cid:105)/M θtte1m+p∆t ≤ θst1et Inthispaper,itisassumedthatuserscanusehotwaterwhenwaterheatersareinbothmodes. Whenthereishotwaterdemandfromahousehold,hotwaterisdrawnfromthetank,andcoldwater isaddedtoitsbottom;itswatertemperaturecanbeexpressedbythelastlineofEquation(1). Misthe tankvolume,mt1 standsforwaterconsumptionattimet ,θt1 istheambienttemperature. Byfitting n 1 a the observed performance data, including user’s water demand and water temperature, thermal parameters,suchasR,C,andQcanbedetermined. AsshowninFigure1,thetemperatureinthetankdevelopsbetweenθ andθ . θ represents high low set thesetpointsofthewaterheater. Whenthewaterheaterison,thetemperatureincreasesalongwith powerconsumption,whilewhenthewaterheaterisoff,itdecreases. Thecurveintheellipsesimulates thetemperaturetrendwhentheuserdemandsalargequantityofhotwater. Theshadedrectangles belowrepresentthepowerconsumption. Thereisauniquecorrespondencebetweenthetemperature risingandthepowerconsumption. Therelationshipofθ ,θ ,θ ,andδcanbedefinedasfollows: high low set   θhigh = θset+ 2δ θ = θ − δ (2) low set 2  δ = θ −θ high low Energies2017,10,559 4of21 Energies 2017, 10, 559 4 of 21 Energies 2017, 10, 559 4 of 21 Hot water huge Temperature consumption Hot water huge Temperature θhigh consumption θhig h θset deadband θset deadband θlow θlow time Power oonn time Power consumption consumption ooffff timetime WWaateter r cocnosnusummpptitoionn timetim e FFiigguurree 11.. TThheerrmmaal ld dyynnaammici cp rporcoecses sosf osifn sginleg wlea wtera theera hteera. ter. Figure1.Thermaldynamicprocessofsinglewaterheater. 2.2. Efficient Power Plant Consisting of Water Heaters 2.2. Efficient Power Plant Consisting of Water Heaters 2.2. EfficientPowerPlantConsistingofWaterHeaters Based on the single water heater’s thermal dynamic process, a group of water heaters can be Based on the single water heater’s thermal dynamic process, a group of water heaters can be reBgaasreddedo ans tahne esfifnicgielnet wpoawteerr hpelaantet r(’EsPtPh).e rItms aoultdpyunt apmowicerp lriomcietss sP, at+Δgt,r oPutp+Δto fatw ta+teΔrt, hceaant ebres canbe rergeagdraedrsedcdreidbae sads aa nsa nfoe leflfifofcwiciesie:n ntt ppoowweerr ppllaanntt ((EEPPPP)).. IIttss oouutptpuut tppoowwere rlimlimitsim tisnPmPt+intΔ+tm∆, atx,PmPt+axΔt+t ∆att att+tΔ+t,∆ cta,nc abne be described as follows: min max describedasfollows: Pt+Δt ≤Pt+Δt ≤Pt+Δt Pmti+nΔt ≤PEPtP+Δt ≤mPatx+Δt  PPPmmmttt+++iiannx∆∆∆ttt =≤= PPPEEEtttPPP+PPPmmmttt∆PPP++a+iaxnΔΔxΔt−+ttt≤===∑∑PPPPEttEEPPPmttPPP+wwiiPPa-+x∆hh+t((θθPiiPm,,ittwPai++xh wi ∆∆( h(θ θtt i(,i∈∈θt,t++ΔΔi,t((tt+∈θθΔ∈tllii(,,oo(∈ttθθww++lii(o,,∆∆twθt++ttΔΔlio,,,ttwtθθ+,,θθΔhhii,,thiiiitt,,igg,++ttgθ++hhhΔΔ∆∆hitt,itttg))+)),h,Δ,,t)uu,iiuu,,ttii==u,,tti10,==t))= 010))) (3) (3) (3)  min EPP wh low high Pt+Δt =Pt -Pi (θi,t+Δt∈(θi,t+Δt,θi,t+Δt), ui,t =1)  min EPP wh low high InFigure2, theshadedtrianglerepresentstheenergyreducedasaresultofadoptingcontrol In Figure 2, the shaded triangle represents the energy reduced as a result of adopting control stratsetrgaIintee sgFidiegsuu drriuen rg2in, tgth htehee ps peheraridoioeddd ∆ tΔrtti,a,t nthhgeel egg rrraaeyyp drdeoostettetndetd sl intlhienese resenprererepgsreyen srt eetdhneut cEthePdeP ’Eas sPo Pua t’rpseuostuu llittmp oiutf,t aalndimdo pittht,iena dgna dcrkot nhterodla rk positnrpatosteiangrtisee sas rodemu sroeimnpgeo ptshoseisb spilbeelreoi oopdpe erraΔatttii,nn tggh esst tgaatrtuausys. .dotted lines represent the EPP’s output limit, and the dark points are some possible operating status. Pt+△t max Pt+△t EPP upper limit max Rising capacity EPP upper limit Pt+△t EPP_u Rising capacity Pt+△t Pt EPP_u Controlled capacity EPP Pt+△t Pt EPP Controlled capacity EPP Pt+△t Energy reduced EPP Shedding capacity Energy reduced Pt+△t min Shedding capacity EPP lower limit Pt+△t min Figure2.Efficientpowerplantmodel. Figure 2. Efficient power plant model. EPP lower limit There are four main parameters: Pt and Pt , which are logically equivalent to the users’ max min comfortable level constraints; uFingcuorne t2r. oElflfeicdienEt PpPowsetra ptleanPt mt odel;. and controlled EPP state Pt . EPP_u EPP From Figure 2, it can be observed that if EPP-WH has a large feasibility range, and the operating pointisneartheupperlimit,ithasbetterconditionstobecomeagoodcandidateforloadshedding. Usingthesebasicparameters,othermaintechnica lparameterscanbedefinedas: Energies2017,10,559 5of21  ∆PEt+P∆Pt = PEt+P∆Pt−PEt+P∆P_tu ∆Pt+∆t = Pt+∆t−Pt+∆t (4) up max EPP  ∆Pt+∆t = Pt+∆t−Pt+∆t down min EPP The controlled capacity ∆Pt+∆t represents the capacity of the energy storage or the energy EPP releasingcapacity,thatistosaythatwaterheaterscanabsorborreleaseenergywhentheEPP-WH is under control; ∆P and ∆P represent the feasible regions of the EPP’s state, which are the up down feasibleboundariesoftheenergystorageortheenergyreleasingcapacityatthismoment. Inparticular, thesheddingcapacity∆P representstheEPP’sbiggestpowersavingability. down 2.3. LockOnandOffConstraints Topreventwaterheatersfrombeingcontrolledtoooften,lock-onandofffunctionswereincluded intheTPL[28]strategy. Thebasiclogicofthisconstraintistosetminimumtimelimitston ortoff . limit limit When a water heater is on or off, it should maintain its status for at least ton or toff . The water limit limit heatersinlock-onandoffstatusshouldnotbecontrolled. Usingparameterli,t andli,t ascontrolling on off index,usingtri,t+1andtri,t+1aslock-onandofftimertorecordthelocktime: on off   ttrroii,,ntt++11 ==0troi,nt +1 ((lloii,,ntt ==10)) on on tri,t+1 = tri,t +1 (li,t =1) (5)  troi,tf+f1 =0off (loi,tff =0) off off (cid:40) 1 tri,t < ton , tri,t (cid:54)=0 li,t = on limit on (6) on 0 tri,t ≥ ton on limit   1 tri,t < toff , tri,t (cid:54)=0 li,t = off limit off (7) off  0 tri,t ≥ toff off limit Ifawaterheaterisbeinglocked,thetimerwillkeepcounting,andduringthisperiod,EPP-WH cannotbecontrolled. Afterthetimerreachesitstimelimits,theEPP-WHcanbeavailableagainas showninEquations(5)–(7). WhencalculatingthelimitsofEPP-WH,Equation(3)needstobeupdated:  Pt+∆t ≤ Pt+∆t ≤ Pt+∆t  Pmmt+ianx∆__tll = PEEtPPPP__ll+∑mPawx_hl,i (θi,t+∆t ∈ (θli,otw+∆t,θhi,itg+h∆t), ui,t =0,loi,nt =0) (8)  Pt+∆t = Pt −∑P (θi,t+∆t ∈ (θi,t+∆t,θi,t+∆t), ui,t =1,li,t =0) min_l EPP_l wh,i low high on ThecontrolledcapacityPt+∆t representsthecapacityoftheenergystorageortheenergyreleasing EPP_l capacity,thatistosaythatwaterheaterscanabsorborreleaseenergywhentheEPP-WHisunder control; ∆P and ∆P represent the feasible regions of the EPP’s state, which are the feasible up down boundaries of the energy storage or the energy releasing capacity at this moment. In particular, thesheddingcapacity∆P representstheEPP’sbiggestpowersavingability: down  ∆Pt+∆t = Pt+∆t −Pt+∆t  EPP_l EPP_l EPP_u ∆Pt+∆t = Pt+∆t −Pt+∆t (9) up_l max_l EPP_l  ∆Pt+∆t = Pt+∆t −Pt+∆t down_l min_l EPP_l Figure3showstheoperatingpointsoftheEPP-WH,wherethegraypointsrepresentthestate without lock-on and off constraints. The upper and lower limits of the EPP-WH have shrunk. Compared with the uncontrolled point Pt , the total energy restored can be seen as Section A EPP_u Energies 2017, 10, 559 6 of 21 feasible boundaries of the energy storage or the energy releasing capacity at this moment. In particular, the shedding capacity ΔP represents the EPP’s biggest power saving ability: down ΔPt+Δt =Pt+Δt -Pt+Δt  EPP_l EPP_l EPP_u ΔPt+Δt =Pt+Δt -Pt+Δt (9) up_l max_l EPP_l ΔPt+Δt =Pt+Δt -Pt+Δt  down_l min_l EPP_l Figure 3 shows the operating points of the EPP-WH, where the gray points represent the state wEitnheroguiest 2l0o1c7k,1-0o,n55 9and off constraints. The upper and lower limits of the EPP-WH have shru6nokf.2 1 Compared with the uncontrolled point Pt , the total energy restored can be seen as Section A plus EPP_u section B. Taking lock-on and off constraints into account, some water heaters cannot be controlled plussectionB.Takinglock-onandoffconstraintsintoaccount,somewaterheaterscannotbecontrolled even if they are within reasonable temperature ranges. Therefore, the target generation of the EPP- eveniftheyarewithinreasonabletemperatureranges. Therefore,thetargetgenerationoftheEPP-WH WiHs b ies cboemcoimngin“gc o“ncosenrsvearvtiavteiv”e,”le, aledaidnigngto toa ah higighheerro oppeerraattiinngg ppooiinntt ∆ΔPPEtEtPPPP__ll,, aanndd ththee eneenregryg yrersetsotroerde d dedcerceraesaesde dtot oonolnyl ythteh earaerae aini nsescetciotino nAA. T.hTeh elolaoda dcacpaapcaictiietise osfo tfhteh erirsiisnign,g d,edcerceraesaisnign,g a,nadn dcocnotnrtorlolellde d wwereer ealal lrlerdeudcuecde.d B.uBtu wtwithit hthtihs icsocnosntsrtarianitn, tt,hteh eusuesresr’ sc’ocmomfofrotartbalbel leelveevles lwswereer emmaianitnatianiende,d w,whihchic his ias a mmajaojro ardavdavnatnatgaeg eofo tfhtihsi aspapprporaocahc.h . Pt+△t max EPP upper limit Pt+△t Rising capacity reduced EPP upper limit max_l with lock constrains Pt+△t EPP_u Pt A Pt+△t Controlled capacity EPP EPP_l B Controlled capacity reduced Pt+△t EPP EPP lower limit Pt+△t with lock constrains min_l Shedding capacity reduced Pt+△t EPP lower limit min Figure3.Changesinlimitstakinglock-onandoffconstraintsintoaccount. Figure 3. Changes in limits taking lock-on and off constraints into account. 2.4. Users’WillingnessModel 2.4. Users’ Willingness Model Users’willingnessγcanbedefinedasthedegreeofinitiativeforwaterheateruserstoparticipate Users’ willingness γ can be defined as the degree of initiative for water heater users to intodemandresponse. Itisaffectedbymanyfactors,likeeducationallevel,familyincome,family participate into demand response. It is affected by many factors, like educational level, family income, members’age[29,30]andsoon. Generally,familymembershavingacollegeoraboveeducationlevel family members’ age [29,30] and so on. Generally, family members having a college or above havestrongerwillingnesstoparticipateindemandresponse;familieswithhigherincomeincrease education level have stronger willingness to participate in demand response; families with higher theirinitiative;iftheaverageageoffamilymembersisbetween35–45,itismorelikelytohaveastrong income increase their initiative; if the average age of family members is between 35–45, it is more willingnesstoparticipateindemandresponse. Inthispart,threefactors—educationallevel,income likely to have a strong willingness to participate in demand response. In this part, three factors— influenceandfamilymembers’age—aretakenintoaccount. Figure4showstherelationshipofrelated educational level, income influence and family members’ age—are taken into account. Figure 4 shows factorsanduses’willingness. Asthediversityofeducationallevelisnotasabundantasthatoffamily the relationship of related factors and uses’ willingness. As the diversity of educational level is not as incomeandfamilymembers’age,threelevelsaresetuptodescribetheinfluencesofeducationallevel abundant as that of family income and family members’ age, three levels are set up to describe the onusers’willingness,ELstandsfortheeducationlevel. influences of educational level on users’ willingness, EL stands for the education level.  γELγ=EL=bbbbbb11223 aaaa00121<<<<<<EEEELEELLLLL≤≤≤≤≤≤aaa123aaa 12 (10()10) 3 2 3 Thelowandmiddleincomegroupaccountforthemajorityofthetotalgroup. Thisgroupof peoplehaverelativelyweakerwillingnesstoparticipateindemandresponseactivitiescomparedwith thehighincomegroup,soanexponentialmodelissetuptodescribetheinfluenceofeducationallevel onusers’willingness. HereFI standsforthefamilyincome: (cid:40) eFI 0< FI ≤ a γ = 4 (11) FI ea4 FI > a4 wherea standsforthemaximuminput,ifFI ismorethana ,theinfluencestaysthesame. 4 4 Energies 2017, 10, 559 7 of 21 The low and middle income group account for the majority of the total group. This group of people have relatively weaker willingness to participate in demand response activities compared with the high income group, so an exponential model is set up to describe the influence of educational level on users’ willingness. Here FI stands for the family income: eFI 0<FI ≤a γFI =ea4 FI >a 4 (11) 4 where a stands for the maximum input, if FI is more than a ,the influence stays the same. Energies20147,10,559 4 7of21 The influence of family members’ average age on users’ willingness can be described as follows: Theinfluenceoffamilymembers’averγage=age1one(-u(FsA2e-σar25s)2’)w illingnesscanbedescribedasfollo(w12s): FA 2π The influences of family members’γ aFvAer=ag√e1 2aπgee( −o(bFeA2−yσ2a 5a) 2n)ormal distribution with expectation( 1a2) 5 σ and standard deviation , which means children and the aged are not the main participants in Theinfluencesoffamilymembers’averageageobeyanormaldistributionwithexpectationa 5 demand response programs. People aged between a and a (usually 35–45) will have more andstandarddeviationσ,whichmeanschildrenandthe6agedaren7otthemainparticipantsindemand interest. responseprograms. Peopleagedbetweena anda (usually35–45)willhavemoreinterest. 6 7 BasBeads eodno tnhet haenaalnyasliyss aisboabvoe,v aen,a inntiengtreagtreadte udseursse’r ws’iwlliinllginngensse smsomdoedl ecalnca bneb seets eutpu: p: γγ ·γ⋅γ ·⋅γγ γ γ= = ELEL FIFI FFAA ((1133)) wh wh mamxa(xγ(γ ·γ⋅γ ·⋅γγ )) ELEL FIFI FFAA wwhheerreeγγwwhh h hasast aktaekneend uedcautcioatniaolnlaelv elel,vfealm, iflayminilcyo minecoamnde faamndil yfammeimlyb emrse’mavbeerras’g eavagereaignet oaagcec oiunntot. aγcwchocuhnatn. gγesf rocmhan0gtoes1 fraoftmer 0n toor m1 aaflitzear tnioonrm. alization. wh Users’ Users’ willingness willingness b3 ea4 b2 b1 Educational Family Level Income 0 a1 a2 a3 0 a4 (a) (b) Users’ willingness 1 2π Family Members’ Average Age 0 a6 a5 a7 (c) Figure 4. The relationships of related factors and uses’ willingness. (a) Educational level influence; (b) Figure4. Therelationshipsofrelatedfactorsanduses’willingness. (a)Educationallevelinfluence; Family income influence; and (c) Family members’ age influence. (b)Familyincomeinfluence;and(c)Familymembers’ageinfluence. 3. Optimization and Strategies 3. OptimizationandStrategies This section will discuss the main optimization methods and strategies. Figure 5 illustrates the This section will discuss the main optimization methods and strategies. Figure 5 illustrates different periods of frequency response and the corresponding resources. When the system is the different periods of frequency response and the corresponding resources. When the system is running normally, the frequency of the system is kept within a reasonable range, which is usually a runningnormally,thefrequencyofthesystemiskeptwithinareasonablerange,whichisusuallya ±0.2 Hz deviation of the system standard frequency (50 or 60 Hz). When there is a system disturbance, ±0.2Hzdeviationofthesystemstandardfrequency(50or60Hz). Whenthereisasystemdisturbance, the frequency of the system may immediately drop out of the normal range. The first part of the UFLSwillbeginwhenthesystemfrequencyisbelow f ;thispartcanberegardedas“emergency epp adjustment”,whichundertakesthemostloadsheddingtask,withtheEPP-WH,EV,andstorage(such asbatteries)asthefrequencyresponseresources. Energies 2017, 10, 559 8 of 21 Energies 2017, 10, 559 8 of 21 the frequency of the system may immediately drop out of the normal range. The first part of the UFLS the frequency of the system may immediately drop out of the normal range. The first part of the UFLS will begin when the system frequency is below f ; this part can be regarded as “emergency epp will begin when the system frequency is below f ; this part can be regarded as “emergency epp aEdnejrugsietsm20e1n7,t”10, ,w55h9ich undertakes the most load shedding task, with the EPP-WH, EV, and sto8roafg2e1 adjustment”, which undertakes the most load shedding task, with the EPP-WH, EV, and storage (such as batteries) as the frequency response resources. (such as batteries) as the frequency response resources. fnor UFLS fnofrn_olr UFLS fnor_l Emergency Regulation adjustment adEmjusetrmgeenncty Regulation adjustment adjustment Frequency cForlleaqpuseens cy fepp collapses fepp EV EV Storage Storage EPP-WH EPP-WH 0 time Figure 5.0 Different periods of frequency response and corresponding retismoeurc es. FFiigguurree 55.. DDiiffffeerreenntt ppeerriiooddss ooff ffrreeqquueennccyyr reessppoonnsseea annddc coorrrreessppoonnddininggr reessoouurcrceess.. When the frequency changes back to f , which is the lower limit of the system frequency, WWhheenn tthhee ffrreeqquueennccyy cchhaannggeess bbaacckk ttoo fnfor_l,, wwhhiicchh iiss tthhee lloowweerr lliimmiitt ooff tthhee ssyysstteemm ffrreeqquueennccyy,, regulation adjustment begins in order to mainnnotorar__liln the system frequency. A long-term approach will rreegguullaattiioonna addjujussttmmeenntt bbeeggiinnss iinn oorrddeerr ttoom maaiinnttaaiinn tthhee ssyysstteemm ffrreeqquueennccyy..A Al olonngg--tteerrmma apppprrooaacchhw wiillll be implemented, which includes load shedding and rising, different from the emergency adjustment. bbeei immpplleemmeenntteedd,,w whhiicchhi inncclluuddeess llooaadd sshheeddddiinngg aanndd rriissiinngg,, ddiiffffeerreenntt ffrroomm tthhee eemmeerrggeennccyy aaddjjuussttmmeenntt.. Figure 6 illustrates the control structure and strategies. FFiigguurree6 6i lillulussttrraatteesst htheec coonntrtroolls strtruucctuturerea anndds strtarateteggieiess.. Frequency perturbation Frequency△ pferturbation △f △f>fnor -fepp △yef>sfnor -fepp The rotor speed of yes Emergency adjustment Theg ernoetorra tsopresed of Emergency adjustment generators Center of inertia System frequency Cefnreteqru oefn icnyertia System frequency frequency no The input mechanical torque no △f<fnor -fnor_l The inpouf tg meneecrhaatonricsal torque △f<fnor -fnor_l yes of generators update yes update Target optimal Regulation adjustment Tdairsgpeatt cohpitnigmal Regulation adjustment dispatching EV target (*) storage target (*) EPP-WH target (*) EV target (*) storage target (*) EPP-WH target (*) EPP-WH strategy EV storage EPP-WH strategy EV storage EPP-WH EV status storage status EPP-WH EV status storage status EPP-WH operating information Switch Status EPP-WHT oempepraetriantug rien formatLioonck on&off (Flag) Switch Status Temperature Lock on&off (Flag) Figure 6. Flowchart of control structure and strategies. Figure 6. Flowchart of control structure and strategies. Figure6.Flowchartofcontrolstructureandstrategies. By analyzing the status of the generators, the frequency deviation of the system Δf and the requiBrBeyyd a alnonaaaldlyy ztzoiin nbgge t tshhheee sdst taatΔtuuPss oocffa tnthh ebee g gceeannleceruraaltatotoerrsds,,. tWthheeit fhfrr eteqhqueu eeenvncacyylu dadeteivoviniaa ttoiiofo nnΔ ofof,f ttthhheee fsrsyeysqsttueeemmnc ∆yΔ ffr eaasnpndodn tthsheee rrreeesqqouuuiirrreceedd w llooialald db tetoo d bbeeeci sdshheeeddd. U∆ΔsPiPncg ac niannbfo ebrcema calactulicolunalt aeotdne. dth.W eWi gtihethnt hetrheaeet overva’aslu louapatietoironantoi nofgf∆ pΔfof,i,t nhtthe, etf hrfereeq tquouteaenlnc tcyayrr greeesstp poΔonnPssee rreessoouurrccee wwiillll bbee ddeecciiddeedd.. UUssiinngg iinnffoorrmmaattiioonn oonn tthhee ggeenneerraattoorr’’ss ooppeerraattiningg ppooinint,t ,ththee tototatal ltatargrgeet tΔ∆PP can be calculated through a series of analyses which will be elaborated in more detail in the following ccaannb beec caallccuullaatteeddt thhrroouugghha as seerrieiesso offa annaallyysseessw whhicichhw wililllb beee ellaabboorraatteeddi innm moorreed deettaailili innt thheef foolllloowwiinngg section. The EPP-WH, EV, and storage receive their targets based on their percent power sseeccttioionn..T hTeheE PEPP-WP-HW,HEV, ,EanVd, satnorda gsetorercaegiev ertehceeiirvtea rgtheetsirb atsaerdgeotns tbhaesiredp erocnen tthpeoiwr eprecrocnesnut mppotwioenr inthesystem. Inthisstudy,wefocusedontheperfo rmanceoftheEPP-WH,assumingEVandstorage hasgoodandstableperformance. Toensurethatappropriatetargetsaredispatched,severalelements Energies2017,10,559 9of21 weretakenintoaccount,includingtheEPP-WH“users’willingness”andoperatingpoints. Duringthe periodofemergencyadjustment,eachtypeofresourcesdecreasesitspowerconsumptiontohelppull thesystemfrequencybacktothenormalrange. Whileintheregulationadjustmentperiod,response targetsgeneratedfromthesystemincludesbothloadincreasingandloadshedding. 3.1. LoadSheddingCalculation Whenadisturbanceoccursinamulti-machinepowersystem,withthemeasureddynamicsystem response,changesinrotorspeedofsynchronousgeneratorscanbedetectedfirst. Intheprocessof dynamicfrequencychange,differentgeneratorshavedifferentinfluencesonthesystemfrequency. Therefore,thedefinitionofthecenterofinertia(COI)frequencyisputforward. Inthispaper,therate ofchangeoftheCOIfrequencyisregardedastherateofchangeofthesystemfrequency. Basedon this,therotorspeedandthemotionequationoftheCOIareexpressedasfollows:  N  ω = 1 ∑ T ω COI TJi=1 Ji i (14)  T dwCOI = ∆P J dt N whereω istherotorspeedofthecenterofinertia(rad/s),T = ∑ T ,T istheinputmechanical COI J Ji Ji i=1 torqueoftheithgenerator(kW·s·rad−1), f isthefrequencyofthecenterofinertia(Hz)basedon COI therelationshipω =2πf ,inperunitvalue,ω = f : COI COI COI COI  N  f = 1 ∑ T f COI TJi=1 Ji i (15)  T dfCOI = ∆P J dt UsingEquation(15),thetargetloadshedding∆Pisachieved. Usinginformationonwaterheater users’willingnessandtheoperatingpoint, f canbeobtainedas: epp  f = f −γ× f  γeipp=kN∑=i1nγorwi,kh× PPEiwiP,khPP  γPEi=PPi_∑=mto1taγli=×∑PmEiPPPEPiP_EitPoPtaPl (16) i=1 whereγi,k standsforthekthwaterheateruser’swillingnessinthei-thEPP-WH,rangingfrom0to1, wh Pi,k is the power consumption of the k-th water heater. γi can be calculated through a method of wh weightingconsideringusers’actualpowerconsumption,andγcanbegeneratedbyweightingallthe γi insystem. f representsthemaximumfrequencyrangeoftheregulationfrequencyadjustment, P whichcanbeestimatedbyEquation(16). Usinginformationfromthesystem, appropriatetargets canbeidentifiedtotheexecutionunitsunderdifferent ∆f conditions. Equation(15)describesthe relationshipbetweentherateoffrequencyandtheloadsthatneedtobedecreasedorincreased. Before thefrequencyreturnsbackto f ,∆Pisanegativeparameter;duringthisemergencyadjustment nor_l period,thesystemcontinuesloadshedding. Whileintheregulationadjustmentprocess,∆Pmaybea positiveornegativeparameterdependingonthesystemoperatingstatus,thesystemhasdemandsof sheddingandincreasingloads. Energies2017,10,559 10of21 3.2. TargetAssignmentMethod Assumingthereisaloadsheddingdemandattimet,theEPP-WHsathigheroperatingpointswill besuitabletoundertakemoretask,astheyhavelarger∆P todecreasetheirpowerconsumption. down Similarly,ifoneEPP-WHisoperatingatalowerpoint,itcanbeagoodresourcetoresponseloadrising target. ToevaluatetheinfluencesofEPP-WH’soperatingstatus,parameterλisdefinedtocalculate the degree of suitability for an EPP-WH to participate into demand response. λ can be obtained throughanalysisoftheoperatingstatusofEPP-WH.Consideringthelock-oneffectsanddiversitiesof EPP-WHs,eachEPP-WHhasdifferentoperatingstatusandpowerlimitswhicharealltime-varying, thedegreeofsuitabilityforanEPP-WHtoparticipateintodemandresponseattimetcanbedefined asfollows: (cid:40) ∆Pt /(Pt −Pt ) loadshedding λk,t = up_l max_l min_l (17) ∆Pt /(Pt −Pt ) loadrising down_l max_l min_l Conclusioncanbedrawnthatthelargerthevalueofλk,tis,themoretargetsshouldbedistributed tothisEPP-WH,andthemoreithEPP-WHislikelytobeagoodresponseresource. Basedonthe analysisabove,theobjectivefunctionandconstraintscanbewrittenasfollows: m (cid:12) (cid:12) objmin{ ∑ (1−λk,t)(cid:12)∆P∗k,t(cid:12)} (cid:12) (cid:12) k=1 m st ∑ ∆P∗k,t = ∆Pt total (18) (cid:40) ∆Pt+∆t k<=1∆P∗k,t <0 loadshedding down_l 0< ∆P∗k,t < ∆Pt+∆t loadrising up_l where∆P∗k,t standsforthetargetdistributedtoithEPP-WH,∆Pt isthetotaltargetwhichcanbe total generatedbyEquation(15). TheequationconstraintmeansalltheEPP-WHsundertakethetotaltarget ∆Pt . Besides, every EPP-WH should satisfy its upper and lower limits considering the lock-on total andoffeffects. Byusing1−λk,t asweightingfactor,thetargetgeneratedfromobjectivefunctionhas consideredtheinfluencesofusers’willingnessλk,t andthelock-onandoffconstraints. UsingPSO methodtosolvethisoptimalproblem,generating∆P∗k,t foreachEPP-WH. 3.3. EPP-WHOptimizationStrategies Inthisstudy,anewTPLmethodwithlock-onandoffconstraintswasusedtocontroltheEPP-WH. First,ateachtimestep,takingintoaccountthestatusofthewaterheaters,thecontrolledgroup werescreenedout,theupperandlowerlimitswerecalculatedusingEquation(3),theEPP-WHwas developed,inwhichwaterheatersin“lock”statushavebeeneliminated. Second,thewaterheaters weredividedintotwopartsbasedontheirswitch’sstatus,makinguptwocontrolledgroupsasshown inFigure7andEquations(19)–(20): Ot = (Ot,Ot,Ot,...,Ot ), (19) open 1 2 3 n1 Ct = (Ct,Ct,Ct,...,Ct ). (20) closed 1 2 3 n2 InOt ,waterheatersweresortedaccordingtotheirtemperatureindescendingorder. Whilein open Ct ,waterheatersweresortedaccordingtotheirtemperatureinascendingorder. closed

Description:
Frequency control ancillary service provided by a wind farm dual battery energy power system security and stability control, whereby coordinated control .. the system, while the active power of the load nodes are listed in Table 1.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.