ebook img

Frequency Analysis of Vibration Energy Harvesting Systems PDF

307 Pages·2016·21.569 MB·English
by  Xu Wang
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Frequency Analysis of Vibration Energy Harvesting Systems

Frequency Analysis of Vibration Energy Harvesting Systems Xu Wang School of Engineering College of Science Engineering and Health RMIT University AMSTERDAM(cid:129)BOSTON(cid:129)HEIDELBERG(cid:129)LONDON NEWYORK(cid:129)OXFORD(cid:129)PARIS(cid:129)SANDIEGO SANFRANCISCO(cid:129)SINGAPORE(cid:129)SYDNEY(cid:129)TOKYO AcademicPressisanimprintofElsevier AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1800,SanDiego,CA92101-4495,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom Copyright©2016ElsevierInc.Allrightsreserved. Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,Includingphotocopying,recording,oranyinformationstorage andretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowto seekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandthe CopyrightLicensingAgency,canbefoundatourwebsite:www.elsevier.com/permissions. Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein). Notices Knowledgeandbestpracticeinthisfieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary. Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility. Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasa matterofproductsliability,negligenceorotherwise,orfromanyuseoroperationofany methods,products,instructions,orideascontainedinthematerialherein. LibraryofCongressCataloging-in-PublicationData AcatalogrecordforthisbookisavailablefromtheLibraryofCongress BritishLibraryCataloguing-in-PublicationData AcataloguerecordforthisbookisavailablefromtheBritishLibrary ISBN:978-0-12-802321-1 ForinformationonallAcademicPresspublications visitourwebsiteathttps://www.elsevier.com/ Publisher:JoeHayton AcquisitionsEditor:BrianGuerin EditorialProjectManager:EdwardPayne ProductionProjectManager:LisaJones Designer:MariaInesCruz TypesetbyTNQBooksandJournals List of Figures Figure1.1 Asingledegreeoffreedomspring-mass-dashpotsystem drivenby(A)directforceand(B)inertialforce. 3 Figure1.2 Predictionofthemassrelativedisplacementresponse fromthebasedisplacementexcitationusingMatlabSimulink transferfunctionmethod. 5 Figure1.3 Predictionoftherelativedisplacementresponsefromthe baseaccelerationexcitationinputusingtheMatlabSimulink integrationmethod:(A)IntegrationschematicofEq.(1.12); (B)MatlabSimulinkschematicfollowingEq.(1.12). 6 Figure1.4 SchematicoftheMatlabSimulinkstatespacemethod forpredictionoftherelativedisplacementresponsefrom thebasedisplacementexcitation. 8 Figure1.5 Asinewaveexcitationsignalinputwithafrequency of275HzandRMSaccelerationof9.8m/s2. 9 Figure1.6 Parameterinputsofsinewaveexcitationacceleration forthesourceblockoftheMatlabSimulink. 10 Figure1.7 Thetimetraceoftherelativedisplacementresponse. 11 Figure1.8 AMatlabcodeforcalculationoftherelativedisplacement frequencyresponsefunctionamplitudeversusfrequencycurve. 11 Figure1.9 Relativedisplacementfrequencyresponsefunction (therelativedisplacementamplitudeovertheexcitationacceleration amplitude). 12 Figure2.1 Schematicofsingledegreeoffreedompiezoelectric vibrationenergyharvestersystemconnectedtoasingleelectric loadresistor(A)theharvesteroscillatorelectromechanicalsystem (B)energyharvestingcircuit. 16 Figure2.2 SimulationschematicforEq.(2.10)inMatlabSimulink withasinewavebaseexcitationinputandasinusoidal voltageoutputatafrequencyusingthetransferfunctionmethod. 20 Figure2.3 (A)Relativeaccelerationintegratedtotherelative displacement;(B)Derivativeoftheoutputvoltageintegrated totheoutputvoltage;(C)SimulationschematicforEq.(2.11) withasinewavebaseexcitationinputandasinusoidal voltageoutputatafrequencyusingtheintegrationmethod. 22 Figure2.4 TheMatlabSimulinkstatespacemethodschematic forthepredictionoftheresponserelativedisplacementand outputvoltagefromthebaseexcitationacceleration. 24 Figure2.5 Outputsinusoidalvoltagesignal(volt)fromaninput excitationaccelerationsignalwitharootmeansquare accelerationvalueof1g(9.8m/s2)atanexcitation frequencyof275Hz. 25 Figure2.6 Theoutputvoltageamplitudeversusthebaseexcitation accelerationamplitudeatanexcitationfrequencyof275Hz. 26 xi xii List of Figures Figure2.7 Harvestedresonantpowerversusthebaseexcitation accelerationamplitudeatanexcitationfrequencyof275Hz. 27 Figure2.8 Theoutputvoltageamplitudeversusthemechanical dampingunderaninputexcitationaccelerationsignal ofanRMSvalueof1g(9.8m/s2)atanexcitationfrequencyof275Hz. 27 Figure2.9 Harvestedresonantpowerversusthemechanical dampingunderaninputexcitationaccelerationsignalofan RMSvalueof1g(9.8m/s2)atanexcitationfrequencyof275Hz. 28 Figure2.10 Theoutputvoltageamplitudeversustheelectricalload resistanceunderaninputexcitationaccelerationsignal ofanRMSvalueof1g(9.8m/s2)atanexcitation frequencyof275Hz. 28 Figure2.11 Harvestedresonantpowerversustheelectricalload resistanceunderaninputexcitationaccelerationsignal ofanRMSvalueof1g(9.8m/s2)atanexcitation frequencyof275Hz. 29 Figure2.12 Harvestedresonantpowerversustheforcefactor underaninputexcitationaccelerationsignalofanRMS valueof1g(9.8m/s2)atanexcitationfrequencyof275Hz. 29 Figure2.13 Matlabcodesforsimulationofthefrequencyresponse functionsoftheoutputrelativedisplacementandvoltage overtheinputexcitationacceleration. 30 Figure2.14 Amplitudeoftherelativedisplacementfrequencyresponse functiondtheoutputrelativedisplacementdividedbytheinput excitationacceleration. 31 Figure2.15 Amplitudeofthevoltagefrequencyresponse functiondtheoutputvoltagedividedbytheinputexcitation acceleration. 32 Figure2.16 Harvestedresonantpowerandoutputvoltageversusfrequency. 34 Figure2.17 Dimensionlessharvestedresonantpowerversus dimensionlessresistanceandforcefactorsforthe singledegreeoffreedomsystemconnectedtoaloadresistor. 36 Figure2.18 Resonantenergyharvestingefficiencyversus dimensionlessresistanceandforcefactorsforthe singledegreeoffreedomsystemconnectedtoaloadresistor. 38 Figure3.1 Extractionandstorageinterfacecircuitsforvibration energyharvesters,(A)standard;(B)synchronouselectric chargeextraction(SECE);(C)parallelsynchronousswitch harvestingoninductor(SSHI);(D)seriesSSHICircuit. 44 Figure3.2 Workingprincipleofafullcycleofbridgerectification. (A)Positivehalf-cycle;(B)negativehalf-cycle;(C)positiveoutput waveform. 45 Figure3.3 Theresonantenergyharvestingefficiencyversusdimensionless resistanceandforcefactorsforthesingledegreeoffreedom piezoelectricharvesterconnectedtothefourtypesof List of Figures xiii interfacecircuits.(A)Standard;(B)synchronouselectric chargeextraction;(C)parallelsynchronousswitchharvesting oninductor(SSHI);(D)seriesSSHI. 56 Figure3.4 Thedimensionlessharvestedresonantpowerversus dimensionlessresistanceandforcefactorsforthesingle degreeoffreedompiezoelectricharvesterconnectedto thefourtypesofinterfacecircuits.(A)Standard;(B)synchronous electricchargeextraction;(C)parallelsynchronousswitch harvestingoninductor(SSHI);(D)seriesSSHI. 57 Figure3.5 Outputvoltageandharvestedresonantpowerversusthe inputexcitationacceleration.(A)Harvestedresonantpower versustheexcitationacceleration;(B)outputvoltageversus theexcitationacceleration. 61 Figure3.6 (A)Outputvoltageand(B)harvestedresonantpower versusmechanicaldampingunderthebaseacceleration of9.8m/s2. 62 Figure3.7 Outputvoltage(A)andharvestedresonantpower(B)versus electricresistanceunderthebaseaccelerationof9.8m/s2. 63 Figure3.8 Harvestedresonantpowerversusforcefactorunderthebase accelerationof9.8m/s2. 63 Figure4.1 Schematicofasingledegreeoffreedomelectromagnetic vibrationenergyharvesterconnectedtoasingleloadresistor. 71 Figure4.2 SimulationschematicforEq.(4.9)inMatlabSimulinkwitha sinewavebaseexcitationinputandasinusoidalvoltage outputatafrequencyusingthetransferfunctionmethod. 72 Figure4.3 (A)Relativeaccelerationintegratedtotherelativedisplacement. (B)Derivativeoftheoutputvoltageintegratedtotheoutputvoltage. (C)SimulationschematicforEq.(4.10)withasinewavebaseexcitation inputandasinusoidalvoltageoutputatafrequencyusingthetime domainintegrationmethod. 73 Figure4.4 Matlabcodesforsimulationofthefrequencyresponsefunctionsof theoutputrelativedisplacementandvoltageoverthebaseinput excitationacceleration. 77 Figure4.5 Resonant energy harvesting efficiency versus dimensionless resistance and equivalent force factors for the single degree of freedom electromagnetic harvester connected to a load resistor. 81 Figure4.6 Dimensionless harvested resonant power versus dimensionless resistance and equivalent force factors for the single degree of freedom electromagnetic harvester connected to a load resistor. 82 Figure4.7 Theresonantenergyharvestingefficiencyversusdimensionless resistanceandforcefactorsforthesingledegreeoffreedom piezoelectricharvesterconnectedtothefourtypesofinterfacecircuits. (A)Standardinterface;(B)synchronouselectricchargeextraction; (C)parallelsynchronousswitchharvestingoninductor(SSHI); (D)seriesSSHI. 96 xiv List of Figures Figure4.8 The dimensionless harvested resonant power versus dimensionless resistance and force factors for the SDOF electromagnetic harvester connected to the four types of interface circuits. (A) Standard interface; (B) synchronous electric charge extraction; (C) parallel synchronous switch harvesting on inductor (SSHI); (D) series SSHI. 101 Figure5.1 Dimensionlessresonantenergyharvestingefficiencyofpiezoelectric andelectromagneticvibrationenergyharvestersversusdimensionless resistanceandforcefactorsforthesingledegreeoffreedom harvestersconnectedtoaloadresistance;(A)piezoelectric; (B)electromagnetic. 109 Figure5.2 Dimensionlessharvestedresonantpowerversusdimensionless resistanceandforcefactorsforthesingledegreeoffreedom piezoelectricandelectromagneticharvestersconnectedtoaload resistor;(A)piezoelectric;(B)electromagnetic. 111 Figure5.3 Dimensionlessharvestedresonantpowerversusthedimensionless forcefactorbyfixingthedimensionlessresistanceof0.5. 113 Figure5.4 Dimensionlessharvestedresonantpowerversusthedimensionless forcefactorbyfixingthedimensionlessresistanceof1.5. 113 Figure5.5 Dimensionlessharvestedresonantpowerversusthedimensionless resistancebyfixingthedimensionlessforcefactorof0.5. 114 Figure5.6 Dimensionlessharvestedresonantpowerversusthedimensionless resistancebyfixingthedimensionlessforcefactorof1.5. 114 Figure6.1 Schematicofatwodegreeoffreedompiezoelectricvibrationenergy harvestingsystemmodel. 125 Figure6.2 Thedimensionlessharvestedresonantpowerandenergyharvesting efficiencyversusvariousmassratio(M ¼m /m ). 132 R 2 1 Figure6.3 Thedimensionlessharvestedresonantpowerandenergyharvesting efficiencyversusvariousstiffnessratio(K ¼k /k ). 133 R 2 1 Figure6.4 Casestudyofaquartervehiclesuspensionmodelwithpiezoelectric elementinsert. 133 Figure6.5 SimulationschematicforEqs.(6.1)and(6.2)withasinewavebase excitationinputandasinusoidalvoltageoutputatafrequency usingtheintegrationmethod. 135 Figure6.6 Outputvoltagefortheinputexcitationaccelerationamplitudeof 1g(9.80m/s2)andexcitationfrequencyof1.45Hz. 135 Figure6.7 Outputpowerfortheinputexcitationaccelerationamplitudeof1g (9.80m/s2)andexcitationfrequencyof1.45Hz. 136 Figure6.8 Displacementamplituderatiosofmass1andmass2withrespectto theinputdisplacementamplitudeversusfrequency. 137 Figure6.9 Outputvoltageandharvestedresonantpowerversustheinput excitationaccelerationamplitude. 137 Figure6.10 Theoutputvoltageandharvestedresonantpowerversusfrequency. 138 Figure6.11 Outputvoltageandharvestedresonantpowerversuselectric loadresistance. 139 List of Figures xv Figure6.12 Outputvoltageandharvestedresonantpowerversusthe wheeletiredamping. 140 Figure6.13 Outputvoltageandharvestedresonantpowerversusthesuspension damping. 141 Figure6.14 Outputvoltageandharvestedresonantpowerversustheforce factor. 142 Figure6.15 Outputvoltageversusfrequencyforvariouswheeletiremass. 143 Figure6.16 Outputvoltageversusfrequencyforvariousquartervehiclemasses. 144 Figure6.17 Outputvoltageversusfrequencyforvariouswheeletirestiffness. 145 Figure6.18 Outputvoltageversusfrequencyforvarioussuspensionstiffness. 145 Figure6.19 Thedimensionlessharvestedresonantpowerversusthestiffness ratio(k /k ). 147 2 1 Figure6.20 Outputvoltageversusfrequencyforvariouswheeletiredamping coefficients. 148 Figure6.21 Outputvoltageversusfrequencyforvarioussuspensiondamping coefficients. 148 Figure6.22 Dimensionlessharvestedresonantpowerversusthedampingratio (c /c ). 149 1 2 Figure7.1 Schematicofatwodegreeoffreedompiezoelectricvibrationenergy harvesterinsertedwithtwopiezoelectricpatchelements. 157 Figure7.2 Thedifferenceofthetwodimensionlessresonantfrequenciesversus themassratioM anddimensionlessfrequencyratioU underthe 1 1 synchronouschangesofthecouplingstrengthofthepiezoelectric patches.(A)Lz21¼Lz22¼0:02;(B)Lz21¼Lz22¼5;(C)Lz21¼Lz22¼10; 1 2 1 2 1 2 and(D)Lz21¼Lz22¼40. 162 1 2 Figure7.3 Thedifferenceofthetwodimensionlessresonantfrequencies versusthemassratioM andtheU underthecoupling 1 1 strengthchangesoftheprimaryandauxiliaryoscillatorsystems. (A)Lz21¼0:02Lz22¼5;(B)Lz21¼0:02Lz22¼10;(C)Lz21¼0:02Lz22¼40; 1 2 1 2 1 2 and(D)Lz21¼40Lz22¼0:02. 163 1 2 Figure7.4 Thedimensionlessharvestedpowerofthetwodegreeoffreedom piezoelectricvibrationenergyharvesterversusthedimensionless frequencyfordifferentdimensionlessmassratio(M ).(A)The 1 dimensionlessharvestedpowerofthefirstpiezopatchelement; (B)thedimensionlessharvestedpowerofthesecondpiezopatch element;and(C)thetotaldimensionlessharvestedpowerofthefirst andsecondpiezopatchelements.DOF,degreeoffreedom. 164 Figure7.5 Thedimensionlessharvestedpowerofthetwodegreeoffreedom piezoelectricvibrationenergyharvesterversusthedimensionless frequencyfordifferentU .(A)Thedimensionlessharvestedpowerof 1 thefirstpiezopatchelement;(B)thedimensionlessharvestedpower ofthesecondpiezopatchelement;and(C)thetotaldimensionless harvestedpower.DOF,degreeoffreedom. 165 xvi List of Figures Figure7.6 Dimensionlessharvestedpowerofthetwodegreeoffreedom piezoelectricvibrationenergyharvesterversusFandz . 1 (A)Dimensionlessharvestedpowerofthefirstpiezopatchelement; (B)dimensionlessharvestedpowerofthesecondpiezopatch element;and(C)totaldimensionlessharvestedpower. 166 Figure7.7 Dimensionlessharvestedpowerofthetwodegreeoffreedom piezoelectricvibrationenergyharvesterversusFandz . 2 (A)dimensionlessharvestedpowerofthefirstpiezopatchelement; (B)dimensionlessharvestedpowerofthesecondpiezopatch element;and(C)totaldimensionlessharvestedpower. 167 Figure7.8 Theenergyharvestingefficiencyofthefirstpiezoelectricpatch elementversusFandM fordifferentcouplingstrengths. 1 (A)Lz21¼Lz22¼0:02;(B)Lz21¼Lz22¼5;(C)Lz21¼Lz22¼10;and 1 2 1 2 1 2 (D)Lz21¼Lz22¼40. 168 1 2 Figure7.9 Theenergyharvestingefficiencyofthesecondpiezoelectricpatch elementversusFandM fordifferentcouplingstrengths. 1 (A)Lz21¼Lz22¼0:02;(B)Lz21¼Lz22¼5;(C)Lz21¼Lz22¼10;and 1 2 1 2 1 2 (D)Lz21¼Lz22¼40. 169 1 2 Figure7.10 Schematicofathreedegreeoffreedompiezoelectricvibration energyharvesterinsertedwiththreepiezoelectricpatchelements. 170 Figure7.11 Thedimensionlessharvestedpowerofthe3DOFpiezoelectric vibrationenergyharvesterversusthedimensionlessfrequencyfor differentmassratioM .(A)Dimensionlessharvestedpowerofthe 1 firstpiezopatchelement;(B)dimensionlessharvestedpowerofthe secondpiezopatchelement;(C)dimensionlessharvestedpowerof thethirdpiezopatchelement;and(D)totaldimensionless harvestedpower.DOF,degreeoffreedom. 172 Figure7.12 Thedimensionlessharvestedpowerofthe3DOFsystemversusthe dimensionlessfrequencyfordifferentU (A)dimensionless 1. harvestedpowerofthefirstpiezopatchelement;(B)dimensionless harvestedpowerofthesecondpiezopatchelement;(C) dimensionlessharvestedpowerofthethirdpiezopatchelement; and(D)totaldimensionlessharvestedpower.DOF,degreeoffreedom. 173 Figure7.13 Dimensionlessharvestedpowerofthe3DOFpiezoelectricvibration energyharvesterversusFandz .(A)dimensionlessharvestedpower 1 ofthefirstpiezopatchelement.(B)dimensionlessharvestedpowerof thesecondpiezopatchelement.(C)dimensionlessharvested powerofthethirdpiezopatchelement.(D)totaldimensionless harvestedpower.DOF,degreeoffreedom. 174 Figure7.14 Dimensionlessharvestedpowerofthe3DOFpiezoelectric vibrationenergyharvesterversusFandz .(A)dimensionless 2 harvestedpowerofthefirstpiezopatchelement.(B)dimensionless harvestedpowerofthesecondpiezopatchelement. List of Figures xvii (C)dimensionlessharvestedpowerofthethirdpiezopatchelement. (D)totaldimensionlessharvestedpower.DOF,degreeof freedom. 175 Figure7.15 Theharvestedefficiencyofthe3DOFpiezoelectricvibrationenergy harvesterversusM andF.(A)theefficiencyofthefirstpiezo 1 patchelement.(B)theefficiencyofthesecondpiezopatchelement. (C)Theefficiencyofthethirdpiezopatchelement.(D)Total efficiency.DOF,degreeoffreedom. 175 Figure7.16 Schematicofageneralizedmultipledegreeoffreedompiezoelectric vibrationenergyharvesterwithpiezoelectricelementsbetweenall twonearbyoscillators. 177 Figure7.17 Thedimensionlessharvestedpowerandtheharvestedpower densityversusthenumberofdegreesoffreedomofpiezoelectric vibrationenergyharvester(PVEH). 179 Figure8.1 Acantileveredbimorphbeamclampedbywasherswithanut massgluedatthefreeend. 188 Figure8.2 Thebimorphcantileveredbeamsetupontheshakerforlabtesting. 189 Figure8.3 PolytecLaserDopplerVibrometersystemdisplay. 190 Figure8.4 Themeasuredvibrationspectrumandfirstnaturalfrequency of24.375Hzforthecantileveredbeamunderawhitenoise randomforceexcitation. 191 Figure8.5 Thepredictedandmeasuredvoltageoutputversusexcitation frequencyforthePZT-5Hcantileveredbeam. 192 Figure8.6 Thepredictedandmeasuredharvestedresonantpowerversusthe excitationfrequencyforthePZT-5Hcantileveredbeam. 192 Figure8.7 Thepredictedandmeasuredresonantoutputvoltageversusthe externalelectricloadresistanceforthePZT-5Hcantilevered beam. 193 Figure8.8 Thepredictedandmeasuredresonantoutputvoltagesversusthe excitationaccelerationamplitudeforthePZT-5Hcantileveredbeam. 194 Figure8.9 Atwodegreeoffreedompiezoelectricvibrationenergyharvester withonepiezoelectricelementwasmountedontheshaker. 195 Figure8.10 Thepredictedandexperimentallymeasuredvoltageoutputvalues versustheexcitationfrequencyforatwodegreeoffreedompiezoelectric vibrationenergyharvesterinsertedwithonepiezoelectricelement. 196 Figure8.11 Thepredictedandexperimentallymeasuredvoltageoutputvalues versustheexternalelectricloadresistanceforatwodegreeof freedompiezoelectricvibrationenergyharvesterinsertedwith onepiezoelectricelement. 197 Figure8.12 Theexperimentalsetupofthetwodegreeoffreedom(2DOF) piezoelectricvibrationenergyharvester(PVEH)builtwithtwo piezoelectricelements. 198 Figure8.13 Theisolatedtestsfortheprimaryandauxiliaryoscillatorsofthetwo degreeoffreedom(2DOF)piezoelectricvibrationenergyharvester (PVEH)builtwithtwopiezoelectricelements. 199 xviii List of Figures Figure8.14 Theanalyticallypredictedandexperimentallymeasuredvoltage outputsversustheexcitationfrequencyforatwodegreeoffreedom piezoelectricvibrationenergyharvesterinsertedwithtwopiezoelectric elements.(A)Theanalyticallypredictedandexperimentallymeasured voltageoutputofthefirstpiezopatchelement;(B)Theanalytically predictedandexperimentallymeasuredvoltageoutputofthesecond piezopatchelement. 201 Figure9.1 Statisticalenergyanalysismodelofalinearvibrationenergy harvestingsystem. 218 Figure9.2 Dimensionlessmeanharvestedresonantpoweroflinearsingle degreeoffreedompiezoelectricandelectromagneticvibration energyharvestersforthecasesoftheweakandnon-weakcoupling (h ¼h ). 223 M E Figure9.3 Resonantenergyharvestingefficiencyoflinearsingledegreeof freedompiezoelectricandelectromagneticvibrationenergy harvestersforthecasesofweakandnon-weakcoupling (h ¼h ). 224 M E Figure10.1 Timerecord,autocorrelation,andautospectrumfunctionsof broadbandrandomorwhitenoiseexcitationinputoftheinertiaforce. 236 Figure10.2 Timerecord,autocorrelation,andautospectrumfunctionsoffinite narrowbandwidthrandomexcitationinputoftheinertiaforce. 238 Figure10.3 Timerecord,autocorrelation,andautospectrumfunctionsof harmonicexcitationinputoftheinertiaforce. 240 Figure10.4 Schematicforthedirectmethodsformeasurementofthemean inputandharvestedpowerandenergyharvestingefficiencyofa vibrationenergyharvester.DC,directcurrent;FFT,fastFourier transform;FRFP,frequencyresponsefunctionofpowerfluctuation. 242 Figure11.1 HydraulicactuationtypeofPelamis. 250 Figure11.2 Waveenergyconvertertypes:(A)thePSFrogpointabsorber; (B)heavingbuoypointabsorber;(C)archimedeswaveswing. 251 Figure11.3 Rotationalturbinetype. 251 Figure11.4 Asingledegreeoffreedomnonlinearoscillatorinacylindrical tubegenerator. 256 Figure11.5 SimulationschematicforEq.(11.7)forpredictionoftheoscillator relativedisplacementresponse(x-y)andoutputvoltagevfrom asinewavebaseexcitationaccelerationinputy€atafrequency usingMatlabSimulinktimedomainintegrationmethod. 257 Figure12.1 Schematicofatwodegreeoffreedomelectromagneticvibration energyharvesteroscillatorsystem. 272 Figure12.2 SimulationschematicforEq.(12.3)forpredictionoftheoscillator relativedisplacementresponsesandoutputvoltagesfromthebase excitationaccelerationusingMatlabSimulinktimedomainintegration method. 274 Figure12.3 Schematicofafourdegreeoffreedomelectromagneticvibration energyharvesteroscillatorsystem. 275

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.