Astronomy&Astrophysicsmanuscriptno.naffdifN_c (cid:13)cESO2017 January26,2017 Frequency analysis and the representation of slowly diffusing planetary solutions Y.N.Fu1 andJ.Laskar2 1 PurpleMountainObservatory,ChineseAcademyofSciences,2WestBeijingRoad,Nanjing210008,China e-mail:[email protected] 2 ASD,IMCCE-CNRSUMR8028,ObservatoiredeParis,UPMC,77Av.Denfert-Rochereau,75014Paris,France e-mail:[email protected] Received;accepted 7 1 ABSTRACT 0 2 Context. Over short time intervals planetary ephemerides have been traditionally represented in analytical form as finite sums of periodictermsorsumsofPoissontermsthatareperiodictermswithpolynomialamplitudes.Nevertheless,thisrepresentationisnot n welladaptedfortheevolutionoftheplanetaryorbitsinthesolarsystemovermillionofyearsastheypresentdriftsintheirmain a J frequencies,duetothechaoticnatureoftheirdynamics. Aims. The aim of the present paper is to develop a numerical algorithm for slowly diffusing solutions of a perturbed integrable 4 Hamiltoniansystemthatwillapplytotherepresentationofthechaoticplanetarymotionswithvaryingfrequencies. 2 Methods.Bysimpleanalyticalconsiderations,wefirstarguethatitispossibletorecoverexactlyasinglevaryingfrequency.Then, afunctionbasisinvolvingtime-dependentfundamentalfrequenciesisformulatedinasemi-analyticalway.Finally,startingfroma ] M numericalsolution,arecursivealgorithmisusedtonumericallydecomposethesolutiononthesignificantelementsofthefunction basis. I Results.Simpleexamplesshowthatthisalgorithmcanbeusedtogivecompactrepresentationsofdifferenttypesofslowlydiffusing h. solutions.Asatestexample,weshowhowthisalgorithmcanbesuccessfullyappliedtoobtainaverycompactapproximationofthe p La2004solutionoftheorbitalmotionoftheEarthover40Myr([-35Myr,5Myr]).Thisexamplehasbeenchosenasthissolutionis - widelyusedforthereconstructionoftheclimatesofthepast. o r Key words. Celestial mechanics – Ephemerides – Chaos – Methods: numerical– planet and satellites : dynamical evolution and t stability s a [ 1. Introduction order to compare the output of the numerical integrations with 1 v the quasiperiodic solutions of the perturbative methods, Laskar Beforethecomputerages,thelongtermsolutionsfortheplan- 8 (1988) introduced the frequency analysis method that allowed 0etaryorbitswerederivedbyperturbationmethods,andobtained toobtaininaveryefficientwayapreciseapproximationofthe in the form of sum of periodic terms. The first of such solu- 1 numericalsolutioninquasiperiodicform(e.g.Laskar(2005)). 7tions was obtained by Lagrange (1782) who only considered Butalthoughthegoalwastosearchforthemostpreciselong 0the known planets of the time, that is the planets that are visi- term solution for the planetary orbits, one of the outcomes of .blebynakedeye(Mercury,Venus,Earth,Mars,JupiterandSat- 1 thesecomputationswastodemonstratethatthesolarsystemmo- urn).ThiswaslateronimprovedbyLeVerrier(1840,1841)who 0 tionischaotic(Laskar1989,1990).Asaconsequence,thesolu- took also Uranus into account. These long term solutions have 7 tions are not quasiperiodic, although they can be approximated 1revealedtobeoffundamentalimportancefortheunderstanding byaquasiperiodicexpressionoveralimitedtimeofafewmil- :of the past climate of the Earth, when it was understood that v lionofyears(Laskar1988,1990;Laskaretal.2004). the changes of the orbit of the Earth induce also some change i In the present work, we derive a more adapted strategy for Xin its obliquity and in the insolation at the Earth surface (Mi- theslowlydiffusingtrajectoriesofadynamicalsystemthatwill lankovitch1941)(foradetailedreview,seeLaskaretal.(2004)). r aWiththeadventofcomputers,twodifferentapproachesbecome beverywellsuitedtotheconstructionofcompactformsforthe longtimebehaviouroftheplanetaryorbits.Weintroduceanal- possible. Computer algebra allowed to extend the perturbation gorithm,thatisderivedfromthefrequencyanalysis,butwherea methods (e.g. Bretagnon 1974), and as the computer speed in- slowvariationofthefrequenciesandamplitudesisadded.Here, creased,directintegrationsofthefullSolarsystembecomepos- by a slowly diffusing solution, we mean a solution that, while sible(Quinnetal.1991;Sussman&Wisdom1992).Meanwhile, experiencing significant frequency drifts in the whole consid- Laskar(1985,1986,1988)developedamixedstrategy,withan ered time interval, is nearly quasiperiodic in time subintervals. analyticalaveragingoftheplanetaryequationsobtainedbyper- Similar to frequency analysis, a key step of our algorithm is to turbation methods using dedicated computer algebra. This ana- constructfrequency-dependentfunctionbasisonwhichthecon- lytical averaging was then followed by a numerical integration sideredsolutionwillbedecomposed. of the averaged system with high order multistep method. In In section 2, after reminding some fundamental results on Sendoffprintrequeststo:J.Laskar frequency analysis, we consider a single term model and show Articlenumber,page1of14 A&Aproofs:manuscriptno.naffdifN_c that it is possible to recover exactly its varying frequency as a recovering KAM solutions. Actually, most relevant works are functionoftime.Thisisimportantwhenoneisinterestedinthe aboutfrequencydrifts.Inparticular,thevariationsofthefunda- detailsofhowasolutiondiffusesinthefrequencyspace.Butfor mentalfrequenciesofthesecularsolarsystemover200Myrwas constructingacompactsolutionrepresentationwithareasonably used to study the chaotic behavior of the solar system (Laskar highprecision,smallflickerswithoutsignificantcumulativeef- 1990). fectscanbesmoothedoutfromavaryingfrequency.Therefore, Letusfirstrecallbrieflythetheoremabouttheconvergence it is preferable to use a model with limited number of parame- oftheNAFFalgorithm(forthecompleteversionwithproof,see ters, e.g. low-order polynomials, to approximate the frequency. (Laskar2005)).Withasetof N appropriatevariables,thecom- Todoso,wesampletheaveragefrequenciesoveraslidingtime plex function (1) describing a degree of freedom of an analytic interval. For a slowly diffusing solution, it is assumed that all KAMsolutioncanbewrittenas fundamental frequencies can be sampled in this way by using theNAFFalgorithm(e.g.(Laskar2005)). (cid:88) Insection3,ageneralalgorithmofrepresentingaslowlydif- z(t)=eßν1t+ akeß(cid:104)k,ν(cid:105)t (|ak|<1), (2) fusingsolutionisdesigned,whereafrequency-dependentfunc- k∈ZN−(1,0,...,0) tionbasisisconstructedbasedontheChebyshevapproximations whereν isafundamentalfrequency.Wehavethen(e.g.Laskar of fundamental frequencies. The basis functions with signifi- 1 1999) cant but non-fundamental frequencies are generated according Theorem1LetνT bethevalueofσ∈Rthatmaximizesthe to the assumption that, at any instant, a slowly diffusing solu- 1 functionφ(σ)=|(cid:104)z(t),eßσt(cid:105)χ|,whereχ=χ(t/T)>0isaweight tionisnearlyquasi-periodicwiththesmoothedfundamentalfre- T quenciesatthatinstant,namelyallmainfrequenciesareintegral function,and(cid:104)·,·(cid:105)χT theinnerproductoftwocomplexfunctions linearcombinationsofthefundamentalfrequencies.Thiseffec- oftdefinedas tively avoids the difficulties in determining the frequencies of 1 (cid:90) T long-periodtermsand/orgroupsofneighboring-periodterms. (cid:104)f(t),g(t)(cid:105)χ = f(t)g¯(t)χ(t/T)dt, (3) T 2T Twosimpleexamplesaregiveninsection4.Inthefirstex- −T ample,aweaklydissipatedsystemisconsidered,andtherepre- wethenhavelim νT =ν .(cid:3) sentedsolutiondiffusesbecauseofdissipation.Inthesecondex- T→∞ 1 1 Similartothefundamentalfrequencyν ,anyothermainfre- 1 ample,aHamiltoniansystemofdegree1.5isconsidered,anda quencycanberecoveredbysearchingitsneighborhoodorRfor solutionstartingfromanobviousresonanceoverlapzoneisrep- thevalueofσthatmaximizesφ(σ)definedwiththeremaining resented. To show the flexibility of our algorithm in represent- z(t),thatis,theoriginalz(t)minustherecoveredterms. ingsuchasolution,weexcludeallpossiblelibrationfrequencies A diffusion solution is then characterized by fundamental fromthesetoffundamentalfrequenciesusedinconstructingthe frequencyvariations(Laskaretal.1992;Laskar1993).Regard- functionbasis. ing to the determination of a varying frequency, let’s first con- Applicationstotherepresentationofephemeridesoftheso- siderthefollowingsimplestcase, lar system bodies are provided in section 5. As examples, the eccentricityandtheinclinationoftheEarth,asgivenbythelong- f(t)=a(t)eß(cid:82)0tν(τ)dτ, (4) termnumericalsolutionLa2004(Laskaretal.2004),arerepre- sented.Forsucharealisticsolution,itisnaturaltotakeintoac- whereν(t)anda(t)>0arerealintegrablefunctions.Writing counttherestrictionsontherepresentationmodelfromprevious raensaullytssi,se(.eg..gt.hLeaismkaprorettaanlt.l2ib0r0a4t)io,nsofrtehqautethnecireessufrlotimngnruempreersiecna-l φ(σ(t))=(cid:12)(cid:12)(cid:12)(cid:12)(cid:104)f(t),eß(cid:82)0tσ(τ)dτ(cid:105)χT(cid:12)(cid:12)(cid:12)(cid:12)=(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)21T (cid:90)−TTa(t)eßθ(t)χ(t/T)dt(cid:12)(cid:12)(cid:12)(cid:12)(cid:12)(cid:12), (5) tationscanbeascloseaspossibletothephysicalmodel. whereθ(t) = (cid:82)t(ν(τ)−σ(τ))dτbelongstoC0,thesetofcontin- 0 uousfunctiononR,wehavethefollowingtheorem 2. Frequencyanalysisandtime-dependent Theorem2ForanygivenT >0andν(t)∈C0,thefunctional frequencies φ(σ(t))hasoneandonlyonemaximuminC0,whichisattained atσ(t)≡ν(t).(cid:3) ForaKAMsolutionofadynamicalsystem(Kolmogorov1954; Proof.Theright-handsideof(5)canbewrittenas Arnol’d1963;Moser1962),withfundamentalfrequencyvector dνo=m(νo1f,t.h..e,νsNy)st∈emR,Nt,hwehmeoretioNniosfthaenynugmivbeenrdoefgdreeegroefesfroefedfroeme-, (cid:12)(cid:12)(cid:12)(cid:12) 1 (cid:90) T((cid:112)a(t))((cid:112)a(t)eßθ(t))χ(t/T)dt(cid:12)(cid:12)(cid:12)(cid:12)=(cid:12)(cid:12)(cid:12)(cid:104)(cid:112)a(t), (cid:112)a(t)e−ßθ(t)(cid:105)χ(cid:12)(cid:12)(cid:12). withassociatedvariablez(t),canbedescribedincomplexform (cid:12)(cid:12)2T −T (cid:12)(cid:12) (cid:12) T(cid:12) as By using the Cauchy-Bunyakovsky-Schwarz inequality1, it is easytodeducefromthisformulathat (cid:88) z(t)= akeß(cid:104)k,ν(cid:105)t, (1) (cid:112) (cid:112) 1 (cid:90) T k∈ZN φ(σ(t))≤(cid:107) a(t)(cid:107)×(cid:107) a(t)e−ßθ(t))(cid:107)= a(t)χ(t/T)dt 2T −T wherek = (k ,...,k )isthefrequencyindexvector,a complex amplitude,an1d(cid:104)·,·(cid:105)Ndenotestheusualinnerproductokftworeal where (cid:107) · (cid:107) denotes the norm induced by the inne√r product vectors. √(3). Moreover, the equality is true if and only if a(t) and a(t)e−ßθ(t) are linearly dependent, i.e. θ(t) is a constant. This The NAFF (Numerical Analysis of Fundamental Frequen- cies) algorithm was designed to numerically recover signifi- 1 Givenanytwovectors f andginaninnerproductspace,theCauchy- cant terms of (1) from a numerical sample set of z(t), e.g. Bunyakovsky-Schwarzinequalitywrites(cid:104)f,g(cid:105)≤(cid:107)f(cid:107)×(cid:107)g(cid:107),where(cid:104)·,·(cid:105) an ephemeris obtained by numerical integration (Laskar 1988). denotesinnerproductand(cid:107)·(cid:107)theinducednorm.Also,theequalityis However,theapplicationofNAFFisnotlimitedtonumerically trueifandonlyif f andgarelinearlydependent. Articlenumber,page2of14 Fu&Laskar:Frequencyanalysis&solutionrepresentation constantis0,sinceθ(0)=0bydefinition.Theabovearguments Table1.Summaryofprocedureparameters. imply that φ(σ(t)) has a unique maximum attained at θ(t) ≡ 0. Meaning Venue Sinceν(t)iscontinuousandthesearchedσ(t)isalsocontinuous, θ(t) ≡ 0 is equivalent to σ(t) ≡ ν(t). Therefore, it is concluded foranygivenT >0thatφ(σ(t))hasoneandonlyonemaximum M Degreeofthepolynomial (7) attainedatσ(t)≡ν(t).(cid:3) n approximatingthenthfundamentalfrequency Theorem 2 implies that, even in the case of a varying fre- Maximumindexnumber quency,itisstillpossibletorecoverexactlythefrequency,asa Kn associatedwiththenthfundamentalfrequency (9) functionoftime.Now,letusconsiderthefollowingmoregeneral complexfunction Degreeofthepolynomial L (10) f(t)=a1(t)eß(cid:82)0tν1(τ)dτ+ (cid:88) ak(t)eß(θk+(cid:82)0t(cid:104)k,ν(τ)(cid:105)dτ), (6) k approximatingtheamplitudewithindexk J Maximumnumberofrepresentationterms k∈ZN−(1,0,...,0) where a (a ) ∈ S with S a subspace of real function space, 1 k a a δ Absolutetruncationerror (15) θ ∈ R, and {ν }N ∈ S with S a linear subspace of the real k n n=1 ν ν integrable function space. As an extension of (2), this function δ Relativetruncationerror (16) r inheritsanimportanttimevaryingcharacterof(2),i.e.allphase incrementsaredescribedbyasinglefundamentalfrequencyvec- torν(t).Wewillmaketheheuristicassumptionthat,undersuit- able conditions, a similar result as Theorem 1 holds for more generalexpressionwithvaryingfrequenciesasin(6). where c ∈ R is a Chebyshev coefficient, x = 2(t−τ1) − 1 ∈ Assumption:If(cid:107)ν1T −ν1(cid:107)issufficientlysmall,whereν1T ∈Sν [−1,1] am,nnormalized time, and T (x) the Chebys(hτΛe−vτ1)polyno- and(cid:107)·(cid:107)isanappropriatelydefinedT-dependentnorm(e.g.the m one induced by the inner product (3)), and σ(t) = νT(t) (lo- mial2 of degree m. We then construct numerically a frequency- cally)maximizesthefunctionalφ(σ) = |(cid:104)f(t),eß(cid:82)0tσ(τ)dτ(cid:105)1χT|,then dtheepecnodnesindtefruendcstoioluntiboansiwsiBll(bseeedetchoemnpexotsesdu.bsection), on which limT→∞ν1T(t)=ν1(t). The final step, i.e. decomposing zn(t) on B, is the same as that of the NAFF algorithm (Laskar 1999), except for the searchedfunctionbasesforsignificantterms.Thefunctionbases 3. Representationofslowlydiffusingsolutions are {eßωkt,ωk ∈ R} for NAFF and B for the presently described From now on, we will restrict ourselves to slowly diffusing so- procedure. lutions of an ordinary differential equation system obtained by slightly perturbing an integrable Hamiltonian system. We de- note by (I,θ) = {I ,θ }N the action-angle variables of the in- 3.2. Representationmodel n n n=1 tegrableHamiltoniansystem,whichwillbeusedtoexpressthe Byvariationofparameters,(1)becomes ephemerisofadiffusingsolution{zn(t)≡ In(t)eßθn(t)}nN=1. zv(t)= (cid:88) ak(t)eß(cid:82)0t(cid:104)k,ν(τ)(cid:105)dτ. (8) 3.1. Representationprocedure k∈ZN Now,let We start from a sample set of {z (t)}N . Suppose that the sam- ples are given, respectively, at gnridnp=1oints from t to t with ZˆN ={k :|k |≤ K ∈Z+}N (9) 0 1 n n n n=1 fixed time step h, which is much smaller than the minimum of beatruncatedsetofthefrequencyindexvectork.And,foreach the fundamental periods. In accordance with the condition of slow diffusion, we assume that the solution is close to quasi- k∈ZˆN,let periodic in below mentioned time subintervals (of [t0,t1]) with (cid:88)Lk lengthmuchlargerthanthemaximumofthefundamentalperi- ak(t)≈ a(cid:102)l,kTl(x(t)) (10) ods.Theseroughlystatedpreconditionsarerequiredbecausewe l=0 willuseNAFFalgorithmtoestimatethechangingfundamental frequencies. be a Chebyshev expansion of the amplitude valid on [τ1,τΛ], As the first step, we apply NAFF algorithm to obtain fun- where a(cid:102)l,k ∈ C. These lead us from (8) to the following repre- sentationmodelofz (t) damental frequency samples. For each given degree (n), this v aevlgeonrliythsmpacweidlltibmeeaspupbliinetde,rvraelssp{e[cτtλiv−eld2y,,τtλo+znd2(]t})Λλ=s1amofp[let0s,to1v]e=r zv(t)≈ (cid:88) (cid:88)Lk a(cid:102)l,kTl(x(t))eß(cid:82)0t(cid:104)k,ν(τ)(cid:105)dτ. (11) [τ1−d2,τΛ+d2].Foreachofthesesubintervals,thefirstrecovered k∈ZˆN l=0 frequencywillbetakenastheaveragedvalueofthefundamental FromtheChebyshevapproximationsofthefundamentalfre- frequencyν overthesamesubinterval.The N averagedfunda- n quencies, it is easy to obtain by integration the Chebyshev ex- mentalfrequenciesobtainedinthiswayarethentakenasthein- pansion representing the phase increment associated with the stantonesatτ ,resultinginthefundamentalfrequencysamples {τ ,ν (τ )}Λ ,λn=1,...N. frequency (cid:104)k,ν(τ)(cid:105), from the value, as is preferred, at the mid- λ Sencoλndλly=,1wefitforeachgivendegreethefrequencysamples dleofthetimeinterval[τ1,τΛ], toaChebyshevexpansionvalidon[τ1,τΛ], (cid:90) t (cid:104)k,ν(τ)(cid:105)dτ=ϕ +ϕ (t) (k∈ZˆN) (12) 0k k ν (t)=(cid:88)Mn c T (x) (n=1,...,N), (7) (τ1+τΛ)/2 n m,n m 2 TheexplicitexpressionsofT (x)uptom=15aregivenin(A.8). m=0 m Articlenumber,page3of14 A&Aproofs:manuscriptno.naffdifN_c whereϕ ∈ R,andϕ (t)gathersallChebyshevpolynomialsof 0k k degreelargerthan0.Withϕ andϕ (t),(11)canbewrittenas 0k k (cid:88) (cid:88)Lk zv(t)≈ al,kTl(x(t))eßϕk(t), (13) k∈ZˆN l=0 whereal,k = a(cid:102)l,keßϕ0k ∈C issimplythecoordinateofzv(t)when itisdecomposedonthefunctionbasis B={bl,k}={Tl(x(t))eßϕk(t)}. (14) For the obtained representation, it should be noted that, thoughwedecomposeasolutiononthebasisB,andcorrespond- ingly, express its representation by (13), ϕ (t) will not be used k to specify the representation, {ν (t)}N will be used instead. In n n=1 other words, the representation will be specified by the coor- dinates a , and the Chebyshev coefficients of {ν (t)}N . This l,k n n=1 choice is made for the following two reasons. One is that the representation could otherwise be unnecessarily cumbersome. The other reason is that, from the Chebyshev coefficients of Fig.1.Phasetrajectoryofthedissipatedsolutionspecifiedby(18),(19) {ν (t)}N ,thoseofϕ (t)canbeeasilyobtainedaccordingto(12). n n=1 k and(20). Alsoshownisthephaseorbitof theunperturbedpendulum Here, one should also be reminded of the fact that the solution system,namely(18)withε=0,whichpassesthroughtheinitialphase representation,becauseofitsdependenceontheChebyshevap- pointofthedissipatedsolution.Thedashedlinedepictsthespepratrix proximations of νn(t) and ak(t), is valid on [τ1,τΛ] rather than oftheunperturbedpendulum. [t ,t ]. 0 1 Tocompletethedescriptionoftherepresentationmodel,we point out that the integers {M ,K }N and {L } , introduced n n n=1 k k∈ZˆN respectively in (7), (9) and (10), are necessary parameters for defining a particular representation procedure. Of course, the number of these parameters can be reduced by requiring that some or all of these parameters take the same sufficiently large value, e.g. L = L for all k ∈ ZˆN, at the price of unnecessar- k ily increasing the basis dimension. Another important point to mention is that, for terminating the procedure, one needs to set beforehand the maximum number of representation terms (J) and/or the required precision. The required precision are spec- ified by using either the absolute truncation error δ or the rela- tive truncation error δ . Correspondingly, the procedure will be r terminatedif (cid:107)z−z (cid:107)<δ (15) v or (cid:107)z−z (cid:107)/(cid:107)z(cid:107)<δ , (16) v r Fig.2.Thechangingfundamentalfrequencyν(t)ofthedissipatedso- wherethemodule(cid:107)·(cid:107)isinducedbytheinnerproduct(3)with lutionspecifiedby(18),(19)and(20).AlsoshownisaChebyshevap- proximationofν(t). prescribedχ≡1.Inthefollowing,theabove-mentionedparam- eters,assummarizedinTable1,willbereferredtoasprocedure parameters. 4.1. Anexampleofdissipatedsolution Considerthefollowingweaklydissipatedsystem 4. Examples Inthefollowingtwosubsections,wewillillustrateourrepresen- d2θ =sin(θ)−εdθ (18) tation procedure with two slowly diffusing solutions, of which dt2 dt onediffusesduetoadissipativeperturbation,andtheotherdue where toitschaoticnature.Inordertoillustratetheconvergenceprop- ertyofthisprocedure,itisconvenienttowritetheresultingrep- ε=10−5. (19) resentationwithasingletermindex,i.e., (cid:88)J (cid:88)J If we nullify the dissipative term −εdθ in (18), the system is a zv(t)= zj(t)≡ ajTl(j)(x(t))eßϕk(j)(t) (17) simplependulumwithHamiltonian Hdt(I) = I2 +cos(θ),where j=1 j=1 I = θ˙. Take as an example the solutio0n z(t) ≡2I(t)eßθ(t) of (18) where the terms are arranged in the same order as they are ob- withthefollowinginitialconditions tainedintheprocedure,whichcorrespondsroughlytotheorder ofdecreasing|a |. t =0,θ =0,I =1. (20) j 0 0 0 Articlenumber,page4of14 Fu&Laskar:Frequencyanalysis&solutionrepresentation Due to the presence of the dissipative perturbation, the phase Table2.ThecoefficientsoftheChebyshevexpansion(cid:80)9m=0cmTm(x(t)) orbit starting from (θ ,I ) decays gradually away from the un- approximating ν(t), the changing fundamental frequency of the dissi- 0 0 patedsolutionspecifiedby(18),(19)and(20). perturbedorbitpassingthroughthesamephasepoint.Thisdis- sipationeffectissignificantinthelongrun,asisshowninFig.1. m c Asasolutionofasystemof1degreeoffreedomwithadissi- m pativeperturbation,thedecayingz(t)hasachangingfundamen- 0 +1.450265×100 talfrequencyν,whichinheritsthecharacteristicfrequencyofthe 1 −1.032502×10−1 unperturbedsystemandvariesasthesolutiondecays. 2 −7.924442×10−4 By numerical integration, an ephemeris of z(t) is obtained at {t = ih : i = 0,...,65535,h = 0.15}. We then apply NAFF 3 −1.163806×10−4 i to 129 evenly spaced time subintervals with length d = 2046h 4 −7.914948×10−6 andmidpoints{τ = d +496(λ−1)h}129,respectively,toobtain λ 2 λ=1 5 −6.369786×10−7 asamplesetofthechangingfrequency,{τ ,ν(τ )}129.Thisfre- quencysamplesetisshowninFig.2.Alsosλhownλisλa=1Chebyshev 6 −5.975314×10−8 expansionapproximatingν(t).Thisexpansionisofdegree9and 7 −3.609371×10−9 expressedas 8 +1.771340×10−9 (cid:88)9 9 +8.159405×10−9 ν(t)≈ c T (x), (21) m m m=0 wheretheChebyshevpolynomialsT (x)aregivenin(A.8),and m x(t)= τ21(2t9−−ττ11)−1isthetimeafterbeingnormalizedfrom[τ1,τ129] Table3.Theleading10termsof(25),arepresentationofthedissipated tothe[−1,1]intervalonwhichtheChebyshevpolynomialsare solution z(t) specified by (18), (19) and (20), which is obtained with defined.Thevaluesofthecoefficients{cm}9m=0arelistedinTable {M,K,L,δr}={9,10,9,10−5} 2. We write the Chebyshev expansion approximating the phase increment, from the value at x = 0 (i.e. t = τ1+τ129), associated . 2 withνintwoparts j l(j) k(j) Arg(a ) |a | j j (cid:82)t ν(τ)dτ = τ129−τ1 (cid:82) x(t)(cid:80)9 c T (x)dx 1 0 1 −1.431544 1.378074489 (τ1+τ129)/2 2 0 m=0 m m (22) 2 0 2 0.278103 0.622837454 =ϕ T (x)+ϕ(x). 3 0 3 1.987348 0.159698128 0 0 4 1 1 1.748566 0.116187680 In this equation, the time scaling factor τ129−τ1 accounts for the 2 5 0 4 −2.587002 0.032622276 changeofintegrationvariablefromthephysicaltimetothenor- malisedtime,ϕ0 =−τ1292−τ1ϕ(0)isarealconstant,and 6 0 -1 −1.709654 0.017747854 7 1 2 0.133848 0.028210547 τ −τ (cid:88)10 ϕ(x)= 129 1 C T (x) (23) 8 1 3 1.931736 0.027791194 m m 2 m=1 9 0 5 −0.878547 0.005904572 gathersallChebyshevpolynomialsofdegreelargerthan0with3 10 1 4 −2.628911 0.009823726 (cid:40) C = 2c02−c2 (m=1), (24) m cm−1−cm+1 (m=2,...,10). 2m wherec =c =0. |cm/c0|<6×10−4 form>1.Buttheprecisionofthisrepresen- 10 11 tationisseveralorderslessprecisethanthepreviousone,asseen Thiscompletesthedeterminationofϕ(x),whichwillbeused inthefollowing.Withtheprocedureparameters{M,K,L,δ } = bycomparingthetwopanelsofFig.3.Thisisbecausethewhole r {9,10,9,10−5},weobtaina37-termrepresentation considered time interval is long, and so, the small discrepancy inν(t)canresultinsignificantphaseerrors.Ontheotherhand, (cid:88)37 2(t−τ ) however, the fact that there is no terms with either |k| > 8 or z37(t)= ajTl(j)(x)eßϕk(j)(x) with x= τ −τ1 −1 (25) l > 4 in the 37-term representation indicates that the represen- j=1 129 1 tationmodelpracticallyconvergeswithrespecttoK andL.Our representation procedure also converges rapidly with respect to ofthesolutionz(t),whereTl(j)(x)istheChebyshevpolynomial J.ThisisillustratedinFig.4,forwhichtheprocedureparameters ofdegreel(j),andϕk(j)(x) = k(j)ϕ(x)thephaseincrementasso- excludingJarefixedas{M,K,L}={9,10,9}. ciatedwiththefrequencyk(j)ν.Thedataneededforspecifying thefirst10representationtermsaregiveninTable3. Now, we discuss how the procedure parameters affect the 4.2. AnexampleofchaoticsolutionsofHamiltoniansystem precisionoftheresultingrepresentation.Forthis,let’sfirstcon- sider a 150-term representation obtained by resetting M = 1. ConsiderthefollowingHamiltoniansystem, Thisresettingintroducesonlyasmalldiscrepancyinν(t),since I2 3 forthegeneralcase,see(A.7). H(I,θ,t)= +εcos(θ)[1+cos(ν1t)+cos(ν2t)], (26) 2 Articlenumber,page5of14 A&Aproofs:manuscriptno.naffdifN_c Table5.Theleading40termsofthe100-termrepresentationz (t),asexpressedin(31). 3 No. (cid:104)k,f(cid:105) Abs(a )×106 Arg(a )(degree) k k 1 g 18984 −68.812 5 2 g 16088 95.535 2 3 g 13041 17.345 4 4 g 9042 −54.984 3 5 g 4314 −175.273 1 6 g −r 2583 −92.093 4 1 7 g −r 2415 15.391 3 1 8 g +r +r 2377 −136.939 3 1 2 9 g +s −s 1934 −128.504 4 3 4 10 g 1498 160.676 6 11 2g −g 1393 82.417 1 5 12 g +g −g 1372 178.968 3 4 6 13 g −r 1298 140.905 1 2 14 g −s +s 1282 −87.475 3 3 4 15 g −r 1156 −127.879 2 2 16 g −2r 1153 15.739 4 1 17 g +r 1085 49.430 1 2 18 g −g +g −r 1028 −40.633 2 3 6 2 19 g −r 946 149.088 4 2 20 g +r 942 123.828 2 2 21 −g +2g −g +s 916 82.353 1 4 5 3 22 −g +2g −2r 903 63.075 3 4 1 23 g +s −s 824 150.057 3 3 4 24 g +2r 816 145.441 3 1 25 g +r 806 165.483 4 1 26 g +s −s −r 756 113.428 4 3 4 1 27 g −s +s +r 712 −121.353 1 3 4 2 28 g −s +s 697 −14.943 4 3 4 29 2g −g +2r 605 −21.586 3 4 2 30 g 577 −146.073 7 31 g +r 573 52.634 4 2 32 g +r 504 −21.947 3 2 33 g +g −g +r 432 152.449 1 5 7 1 34 −g +g +g −r 383 −28.070 1 2 5 2 35 g +r 275 −4.253 3 1 36 g −r 144 89.319 3 2 37 g −r −r 121 −36.562 2 1 2 38 g −r +r 104 −105.175 2 1 2 39 −g +g +g 92 −173.117 1 4 5 40 g −r 87 99.123 1 1 where Bytheanalysisofthefrequencymap(e.g.Laskar1999),de- ε=5×10−3,ν1 =1.5,ν2 = π. (27) fithneepdhaasseI0p→ointν3 withθ0 = 0andshowninFig.5,weknowthat 2 Asolutionofthissystemhasthreefundamentalfrequencies.The t =0,θ =0,I =1.535, (28) 0 0 0 firsttwoaresimplytheforcingfrequenciesν andν ,whichare 1 2 non-commensurable. The other, denoted as ν , can be approxi- liesinachaoticzoneformedbyresonanceoverlap.Andtheso- 3 matedinthesimilarwayasintheprevioussubsection. lutionz(t)startingfromthispointischaotic. Articlenumber,page6of14 Fu&Laskar:Frequencyanalysis&solutionrepresentation Table6.Theleading40termsofthe100-termrepresentationζ (t),asexpressedin(31). 3 No. (cid:104)k,f(cid:105) Abs(b )×106 Arg(b )(degree) k k 1 s 13774 107.587 5 2 s 8666 −62.318 3 3 s 4647 96.756 4 4 s 4085 27.817 1 5 s 3312 80.364 2 6 g −g +s 2745 −167.132 3 4 4 7 s +2r 2041 −44.496 2 2 8 s +r 1543 125.410 2 2 9 g −g +s 1530 −137.669 3 4 3 10 s +s −s −r 1469 91.798 1 3 4 2 11 s −r 1450 23.071 2 2 12 s +r 1417 −116.942 1 2 13 s 1333 110.029 6 14 s 889 9.186 7 15 s +r 646 −50.277 2 1 16 s 641 26.053 8 17 s −r 613 −178.905 3 1 18 s +s −s 532 −177.568 1 3 4 19 s −2r 518 101.955 1 2 20 s −r 484 106.762 3 2 21 g −g +s +r 481 −21.125 3 4 3 1 22 g −g +s +r 445 −5.831 3 4 2 1 23 s −s +s 364 72.700 2 3 4 24 s −s +s −r 344 31.282 2 3 4 2 25 s −r 341 20.734 2 1 26 s −2r 320 −51.578 2 2 27 g −g +s 315 −118.127 3 4 1 28 g −s +s +s −s 304 172.667 3 1 6 7 8 29 s −r 293 149.314 1 1 30 −s +s −s +2s 293 −76.858 4 6 7 8 31 s +2r −r 292 134.167 1 1 2 32 −g +s +s +r 285 −170.886 3 5 8 1 33 −g +g +s 268 47.758 3 4 2 34 −g +g +s −r 258 −27.836 3 4 2 2 35 −g +g +s 244 −18.592 3 4 4 36 g +s −s +r 230 109.121 4 6 8 1 37 g −g +s −r 221 −91.732 3 4 4 1 38 s +s −s −2r 217 173.446 2 5 8 1 39 −g +g +s −r 198 24.257 3 4 2 1 40 s +2r 78 77.412 1 1 An ephemeris of z(t) is obtained by the symplectic inte- callydifferenterrorsourcesinthepresentwayofapproximating grator SBABc4 (Laskar & Robutel 2001) at {t = ih : i = a changing frequency. One is related to the NAFF process that i 0,...,4095,h = 0.186058}. We then apply NAFF to 129 evenly givesthesamplesofthefrequency,whiletheotherrelatedtothe spaced time intervals with length d = 512h and midpoints fitting process that leads to a Chebyshev approximation of the {τ = d +28(λ−1)h}129,respectively.Thisgivesthesampleset frequency.Accordingly,weconsidertheChebyshevapproxima- λ 2 λ=1 {τ ,ν }129, partly shown in Fig.6 together with a Chebyshev tionassufficientlygoodifitdeviatesfromthefrequencysample λ 3,λ λ=1 approximation. It should be noted that there are two intrinsi- setmuchlessthanthesampleuncertainties.AsshowninFig.6, Articlenumber,page7of14 A&Aproofs:manuscriptno.naffdifN_c Table 4. The coefficients of Chebyshev expansion (cid:80) c T approxi- m m m mating the major fundamental frequencies (g ,...,g ,s ,..,s ) (arcsec 1 8 1 8 yr−1)ofthesolarsystemoverthetimeintervalfrom-35Myrto5Myr withoriginatJ2000.Alsolistedaretheusedconstantlibrationfrequen- ciesr andr (arcsecyr−1). 1 2 m cm m cm 0 5.59436858 0 −5.61412432 1 −0.02916946 1 0.01897975 2 0.00259949 2 0.00616405 3 −0.00858191 3 −0.00967633 4 −0.00538351 4 −0.00048289 5 −0.00216691 5 −0.00405450 6 −0.00311006 6 −0.00319098 7 0.00137912 7 0.00116236 g1 8 −0.00225709 s1 8 −0.00048593 9 0.00318074 9 0.00207233 10 0.00431717 10 0.00194425 11 −0.00288184 11 −0.00103824 12 −0.00189708 12 −0.00117501 13 0.00127879 13 0.00006311 14 0.00065723 14 0.00030964 15 −0.00017362 15 −0.00037496 0 7.45660678 0 −7.07313208 Fig.3.Errorsoftwodifferentrepresentationsofthedissipatedsolution 1 −0.00276205 1 0.04218433 specified by (18), (19) and (20). In the case of the upper panel, our 2 0.00177713 2 −0.00001315 3 0.00056064 3 −0.00225169 representation procedure is terminated with a 37-term representation, 4 −0.00002096 4 0.00386256 becausethisrepresentationreachestheprecisionrequirementδr =10−5. 5 0.00090782 5 −0.00280878 Inthecaseofthelowerpanel,withsligtlylargererrorinthefrequency 6 0.00096229 6 0.00247914 approximation,therepresentationisabout4orderslessprecise,though 7 −0.00024908 7 0.00109449 g2 8 0.00042855 s2 8 −0.00064733 thenumberofrepresentationtermsisincreasedto150. 9 −0.00071228 9 0.00229722 10 −0.00091971 10 −0.00000725 11 0.00061668 11 −0.00193901 12 0.00047006 12 0.00088350 13 −0.00024111 13 0.00053257 14 −0.00015053 14 0.00024897 15 0.00007778 15 0.00024128 0 17.36445990 0 −18.84810087 1 0.01585020 1 −0.00165582 2 −0.00496995 2 0.00007105 3 0.00540088 3 −0.00140634 4 0.00496032 4 0.00050744 5 −0.00226103 5 0.00039039 6 −0.00004476 6 0.00135948 7 0.00006943 7 0.00065306 g3 8 0.00007190 s3 8 −0.00041702 9 −0.00037475 9 −0.00026792 10 −0.00059252 10 −0.00018687 11 0.00025574 11 0.00004492 12 0.00035119 12 0.00013288 13 −0.00020600 13 0.00001794 14 −0.00000042 14 −0.00005746 15 0.00011279 0 17.91086281 0 −17.75496646 1 0.02044603 1 0.00670633 2 −0.00851446 2 −0.00717162 3 0.00812180 3 0.00313019 4 0.00866961 4 0.00807398 Fig.4.Convergencepropertyoftheprocedureofrepresentingthedis- 5 −0.00482118 5 −0.00498282 6 −0.00137335 6 −0.00116638 sipatedsolutionspecifiedby(18),(19)and(20).Theresidualofrepre- 7 0.00011721 7 0.00058378 sentationisplottedagainstthenumberJofrepresentationterms,where g4 8 0.00083465 s4 8 0.00021726 otherprocedureparametersarefixedas{M,K,L}={9,10,9}. 9 −0.00041179 9 0.00016650 10 −0.00109334 10 −0.00060643 11 0.00069484 11 0.00014173 12 0.00045529 12 0.00039520 thisrequirementcanbemetwiththeChebyshevpolynomialof 1134 −−00..0000002194014720 1134 −−00..0000002046650908 degreeM3 =9. 15 0.00008189 15 0.00012665 Testcalculationsshowthatourrepresentationprocedurecan- g5 0 4.25745185 s5 0 0.00000015 not lead to an acceptable representation of the solution on the 0 28.24498422 0 −26.34785292 1 0.00010582 1 0.00000053 whole sampling time interval. There are two possible reasons g6 2 0.00011695 s6 2 −0.00000514 forthis. 3 −0.00002698 4 −0.00001157 Themostintrinsicreasonwouldbethatoursolutionexperi- g7 01 −30..0008070905021476 s7 0 −2.99252583 ences passages into or out of resonance zones. Such a passage isassociatedwithashiftbetweencirculationandlibrationofthe 0 0.67302182 0 −0.69173649 g8 s8 1 0.00000001 correspondingresonanceangle,andso,withoccurrenceordis- r1 0 0.251085 r2 0 0.117222 appearance of certain terms. If some of these terms are signifi- cantenoughinthewholeconsideredtimeinterval(τ ,τ ),then 1 129 therewouldbenowaytogetanyacceptablenon-piecewiserep- Articlenumber,page8of14 Fu&Laskar:Frequencyanalysis&solutionrepresentation Fig.5.Fundamentalfrequencymapofthesystemspecifiedby(26)and Fig. 7. Error of a 100-term representation of the chaotic solution (27). In the chaotic zone formed by resonance overlap lies the phase specified by (26), (27) and (28). This representation is obtained with point (θ0,I0) = (0,1.535), which will be chosen as the initial phase {M1,M2,M3,K1,K2,K3,Lk,J}={0,0,9,10,10,10,9,100}. pointoftheconsideredchaoticsolution. Fig.8.Theconvergencepropertyoftheprocedureofrepresentingthe chaoticsolutionspecifiedby(26),(27)and(28).Theresidualofrepre- Fig.6.Thechangingfundamentalfrequencyν3(t)ofthechaoticsolu- sentationisplottedagainstthenumber J ofrepresentationterms.The tionspecifiedby(26),(27)and(28).Thesamplesofthisfrequencyis otherprocedureparametersarefixedas{M ,M ,M ,K ,K ,K ,L } = 1 2 3 1 2 3 k computedbyapplyingNAFFalgorithmoveraslidingtimeinterval,and {0,0,9,10,10,10,9}. theerrorsareestimatedastheirrespectivedifferencesfromthefrequen- ciesofthequasiperiodicapproximationofthesolutionoverthesame slidingtimeinterval.AlsoshownisaChebyshevappoximationofν3(t). interval,inthesensethateveryimportantlibrationfrequencyis notfarfromatleastoneelementofthefrequencyset. Settingtheprocedureparametersas resentation. Therefore, we will restrict ourselves to the shorter timeinterval(τ1,τ50). {M1,M2,M3,K1,K2,K3,Lk,J}={0,0,9,10,10,10,9,100}, Anotherpossiblereasonisthatthereisoneormoresignifi- weobtaina100-termrepresentationofoursolution.Fig.7shows cantlibrationfrequencies,whicharenottakenintoconsideration that the errors of this representation are typically of order less whenwegeneratethefunctionbasisB.Whileitiseasytomake than10−4I .And,Fig.8illustrates,inthesamewayasinthepre- a necessary extension of B in order to include known libration 0 vioussubsection,theconvergencepropertyoftherepresentation frequencies(seesection5),itisnotthatstraightforwardtoiden- procedure. tify and sample these frequencies (Laskar 1990). To show the flexibilityofouralgorithm,wewillnotsearchforanylibration frequencyandmakethecorrespondingextensionofB.Theflex- 5. Applicationtoplanetaryephemerides ibility comes from the fact that, if we choose reasonably large values of our procedure parameters K ’s, then the resulting set Numerical integration is now an efficient way of constructing n of frequencies would be dense enough over a large frequency ephemeridesofthesolarsystembodieswithhighprecision.For Articlenumber,page9of14 A&Aproofs:manuscriptno.naffdifN_c Following Laskar et al. (2004), we compute the fundamen- tal frequencies of the secular solar system by applying the NAFF algorithm over time intervals of length 20 Myr for the proper modes (z•,...,z•,ζ•,...,ζ•), and 50 Myr for the proper 1 4 1 4 modes (z•,...,z•,ζ•,...,ζ•), respectively4. From -35 Myr to 5 5 8 5 8 Myr with step 0.1 Myr, we generate the samples of the funda- mental frequencies (g ,...,g ,s ,...,s ) corresponding to these 1 8 1 8 proper modes. The resulting nominal value of s is about 5 0.00000015arcsecyr−1.Theotherfrequencysamplesareshown respectivelyinthepanelsofFig.9,wheretheerrorsareestimated as the difference between the values of a frequency computed fromtheassociatedephemerisanditsquasiperiodicapproxima- tion. Also shown in this figure are the Chebyshev approxima- tionsofthesefundamentalfrequencies.AlloftheseChebyshev approximations, the coefficients of which are listed in Table 4, are obtained respectively by truncating the ones of degree 15. Fig. 10. Convergence property of the two representation procedures Thetruncationcriterionisroughlythatthediscrepancyinafun- leadingrespectivelytothe100-termrepresentationsofz (t)andζ (t). 3 3 damental frequency should not induce an error in phase larger TheresidualofrepresentationisplottedagainstthenumberJofrepre- than2π/104overseveraltensofmillionyears. sentationterms. There are two important libration frequencies, i.e. r = 1 0.251085 arcsecyr−1 of the resonance argument 2((cid:36)• −(cid:36)•)− 4 3 practicalapplications,however,itcanbeusefultorepresentan- (Ω•−Ω•)andr =0.117222arcsecyr−1of2((cid:36)•−(cid:36)•)−(Ω•− 4 3 2 1 5 1 alytically,andthusinacontinuousway,thesediscretesolutions. Ω•).Toincludethemasadditionalfundamentalfrequencies,we 2 Theserepresentationscanbedoneintheformofsegmented expressamainfrequencyas Chebyshev expansions, like the ones representing the classical planetary ephemerides as INPOP (e.g. Fienga et al. 2008), or (cid:88)8 (cid:88)2 other generally applied approximation models without physi- ω= (migi+nisi)+ kjrj, (30) cal basis. A drawback of these representations is that they re- i=1 j=1 quire large amount of data. In order to get compact represen- Thed’Alembertcharacteristic,i.e.(cid:80)8 (m+n)=1,willbeused tations, Chapront (1995) uses a model of Poisson series, with i=1 i i toexcludenon-physicalfrequencyindexvectors. fixed main frequencies, that were obtained with the NAFF al- To show to what degree our algorithm is practically use- gorithm.Thoughthismodelalreadyinvolvessomelong-termor long-period-termeffectsbyallowingPoissonterms,andasthus, ful,wediscussherethefollowingtwo100-termrepresentations ((cid:60) forshort), workswellwithplanetaryephemeridesoffiveouterplanetsover 100 afewhundredyears,itdoesnottakeintoconsiderationthefre- (cid:88)100 (cid:88)100 quencydrifts,andcannotbeusedovermillionofyears. z3(t)= ak(j)eßϕk(j)(t), ζ3(t)= bk(j)eßϕk(j)(t), (31) The frequency drifts are important over a few tens of mil- j=1 j=1 lionyears,asshownbyLaskar(1990).Thealgorithmdeveloped in the present paper should thus be more appropriate in repre- where, with f = (g ,...,g ,s ,...,s ,r ,r ) and k = 1 8 1 8 1 2 senting ephemerides spanning this long time interval. It is thus (m ,...,m ,n ,...,n ,k ,k ), the phase increment ϕ (t) = interesting to test whether the present algorithm can be used to (cid:82)t(cid:104)1k,f(τ)8(cid:105)dτ1is ass8oci1ate2d with the main frequency (cid:104)k,kf(cid:105). The represent over such a time scale the long-term numerical solu- w0aytheresidualsdecreasewiththeincreasingnumberofrepre- tionofmajorsolarsystembodies,(e.g.Laskaretal.2004).For sentationtermsinthetworepresentationproceduresof(cid:60) are 100 this, we apply our algorithm to the eccentricity and inclination showninFig.10. variablesoftheEarth,i.e., Theleading40termsofthesetworepresentationsaregiven, respectively, in Tables 5 and 6, where the terms are reordered z =e exp(i(cid:36) ) and ζ =sin(i /2)exp(iΩ ). (29) 3 3 3 3 3 3 accordingtotheirrealamplitudesanddataareroundedtoacon- venientnumberofdigits.Comparingtheseresultswiththeones To be more precise, e and i are the eccentricity and inclina- 3 3 given in tables 4 and 5 of Laskar (1990), we find that they are tion, respectively, of the instantaneous orbit of the Earth-Moon coherentwitheachotherinthesensethatallthemainfrequen- barycenter, and (cid:36) and Ω are, respectively, the longitudes of 3 3 cies explicitly identified previously can be found in the present theperihelionandofthenodeofthesameorbitwithrespectto tables. thefixedJ2000.0equatorialreferencesystem. Theon-lineelectronicfilesassociatedwiththepresentpaper, The chaotic behaviour of the terrestrial orbit certainly limit i.e.z3R100.datandzeta3R100.dat,arethefullversionofTable thetimespanoverwhichthisorbitcanbepreciselydetermined, 5 and Table 6, respectively. They are plain text tables provid- butz andζ fromLa2004arereliableandpreciseatleastover 3 3 ingalltermsof(cid:60) intheformof(31).Togetherwiththedata thetimespan[−35Myr,+5Myr](Laskaretal.2011).Therefore, 100 presented in Table 4 for computing f, these two tables can be werestrictourrepresentationstothistimespan.Testcalculations used to computethe eccentricity and inclination variables from showthatouralgorithmcanleadtocompactandpreciserepre- (cid:60) . The errors of (cid:60) as solution representation are shown sentationsforbothdegreesoffreedom.Withdifferentprocedure 100 100 inFig.11.Fromthisfigure,weexpectthatthepresentalgorithm parameters, the resulting representations contain very different shouldbeefficientinproducingcompactandpreciserepresenta- terms.Thisconfirmstheflexibilityofthepresentalgorithm. tionsoflong-termephemeridesofmajorsolarsystembodies. In order to give representations as physical as possible, we will resort to the knowledge we have for the solution. 4 See(Laskar1990)forthedefinitionofthepropermodes. Articlenumber,page10of14