ebook img

Frege’s theorem PDF

322 Pages·2014·2.238 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Frege’s theorem

Frege’s Theorem This page intentionally left blank Frege’s Theorem Richard G. Heck, Jr CLARENDON PRESS • OXFORD GreatClarendonStreet,OxfordOX26DP OxfordUniversityPressisadepartmentoftheUniversityofOxford. ItfurtherstheUniversity’sobjectiveofexcellenceinresearch,scholarship, andeducationbypublishingworldwidein Oxford NewYork Auckland CapeTown DaresSalaam HongKong Karachi KualaLumpur Madrid Melbourne MexicoCity Nairobi NewDelhi Shanghai Taipei Toronto Withofficesin Argentina Austria Brazil Chile CzechRepublic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore SouthKorea Switzerland Thailand Turkey Ukraine Vietnam OxfordisaregisteredtrademarkofOxfordUniversityPress intheUKandincertainothercountries PublishedintheUnitedStatesbyOxfordUniversityPressInc.,NewYork ©RichardG.Heck,Jr2011 Themoralrightsoftheauthorshavebeenasserted DatabaserightOxfordUniversityPress(maker) Firstpublished2011 Allrightsreserved. Nopartofthispublicationmaybereproduced, storedinaretrievalsystem,ortransmitted,inanyformorbyanymeans, withoutthepriorpermissioninwritingofOxfordUniversityPress, orasexpresslypermittedbylaw,orundertermsagreedwiththeappropriate reprographicsrightsorganization. Enquiriesconcerningreproduction outsidethescopeoftheaboveshouldbesenttotheRightsDepartment, OxfordUniversityPress,attheaddressabove Youmustnotcirculatethisbookinanyotherbindingorcover andyoumustimposethesameconditiononanyacquirer BritishLibraryCataloguinginPublicationData Dataavailable LibraryofCongressCataloginginPublicationData Dataavailable Typesetby RichardG.Heck,Jr PrintedinGreatBritain onacid-freepaperby MPGBooksGroup,BodminandKing’sLynn ISBN978–0–19–969564–5 13579108642 Contents Preface ix EditorialNotes xi OriginoftheChapters xii 1 Frege’sTheorem: AnOverview 1 1.1 FregeonFrege’sTheorem 9 1.2 TheCaesarProblem 13 1.3 WhatDoesHPHaveToDoWithArithmetic? 27 1.4 LogicismandNeo-Logicism 37 2 TheDevelopmentofArithmeticinFrege’s GrundgesetzederArithmetik 40 2.1 BasicLawVinGrundgesetze 41 2.2 HPandFregeanArithmetic 45 2.3 Frege’sDerivationoftheAxiomsofArithmetic 47 2.4 Frege’sDerivationoftheAxiomsofArithmetic, continued 51 2.5 AnElegantProofthatEveryNumberhasaSuccessor 53 2.6 Frege’sAxiomatizationofArithmetic 63 2.7 Closing 64 Postscript 66 3 DieGrundlagenderArithmetik§§82–83 69 Appendix: CounterpartsinGrundgesetzeofSome PropositionsofDieGrundlagen 86 Postscript 87 4 Frege’sPrinciple 90 4.1 NumbersasExtensionsofConcepts 92 4.2 TheImportanceofHPinFrege’sPhilosophyof Arithmetic 95 4.3 TheRoleofBasicLawVinFrege’sDerivationof Arithmetic 97 4.4 Frege’sDerivationsofHP 99 4.5 HPversusFrege’sPrinciple 103 4.6 Frege’sPrincipleandtheExplicitDefinition 104 4.7 TheCaesarProblemRevisited 105 4.8 Closing 107 Postscript 108 vi Contents 5 JuliusCaesarandBasicLawV 111 5.1 TheCaesarProblem 113 5.2 TheCaesarProbleminGrundgesetze 115 5.3 TheCaesarProblemandtheApprehensionofLogical Objects 118 5.4 Closing 125 6 TheJuliusCaesarObjection 127 6.1 WhytheCaesarObjectionHasToBeTakenSeriously 131 6.2 TheCaesarObjectionandtheFeasibilityofthe LogicistProject 136 6.3 AvoidingtheCaesarObjection 147 6.4 Closing 152 7 Cardinality,Counting,andEquinumerosity 156 7.1 TechnicalPreliminaries 161 7.2 FregeandHusserl 163 7.3 CountingandCardinality 168 7.4 CountingandAscriptionsofNumber 172 7.5 Closing 176 8 SyntacticReductionism 180 8.1 MotivatingNominalism 182 8.2 TakingReductionismSeriously 187 8.3 TheIneliminabilityofNamesofAbstractObjects 193 8.4 WhereDoWeGoFromHere? 199 9 TheExistence(andNon-existence)ofAbstractObjects 200 9.1 TwoProblems 200 9.2 SemanticReductionismandProjectiblePredicates 206 9.3 Ideology,Existence,andAbstractObjects 216 9.4 TheJuliusCaesarProblem 223 10 OntheConsistencyofSecond-orderContextual Definitions 227 Postscript 230 11 FinitudeandHume’sPrinciple 237 11.1 TheSystems 241 11.2 OnthePhilosophicalSignificanceofTheseResults 243 11.3 TheRelativeStrengthsoftheSystems 249 11.4 PAFisequivalenttoFAF 250 11.5 Closing 259 Postscript 260 Contents vii 12 ALogicforFrege’sTheorem 267 12.1 Predecession 271 12.2 AncestralLogic 274 12.3 SchematainSchematicLogic: ADigression 280 12.4 ArchéLogic 282 12.5 Frege’sTheorem 287 12.6 PhilosophicalConsiderations 290 Appendix: ProofofBegriffsschrift,Proposition124 296 Bibliography 297 Index 306 This page intentionally left blank Preface Thisbookhasbeenalongtimecoming. Thepaperscollectedhererepre- sentthe fruits ofatwo decadeinvestigationofphilosophical, historical, andtechnicalquestionsrelatedtoFrege’sTheorem. WhileIcontinueto think about these questions from time to time, my work on Frege has movedinotherdirections,andIfeelasifIhavesaidmostofwhatIhave tosayaboutFrege’sphilosophyofarithmetic. Thatmakesitagoodtime tocollectthesepapers. Nonetheless,theprocessofrevisingthemforpub- licationhasrenewedmypassionforproblemsI’dalmostforgottenlosing sleepover. Ihadasurprsingamountofpurefunwritingtheoverviewthat appearsasChapter1,aswellasthepostscriptsthatrecountchangesof mindorrespondtopublishedcriticismsofmywork. Thankstothosewho havepaidattentiontoit. When I re-read these papers at the start of this project, I was sur- prised by how well they fit together. The earliest of them was drafted before I had my first job; the latest was finished only quite recently. So there are plenty of changes of direction, emphasis, and view. But there are,atthesametime,dominantthemesthatre-appearindifferentforms indifferentplaces,andChapter1isintendedtogivethereaderasense for what some of these are. The whole, I believe, is certainly greater than the sum of the parts, and that is what makes it worth reprinting thepaperstogether. Ihopethateventhosewhohavealreadyreadthem separatelywillfindthatreadingthemtogetherrevealssomethingnew. While working on these topics, I have been privileged to have the support and encouragement of many friends, students, and colleagues, and I have benefitted greatly from their comments and criticisms. So a bigthankstoLawrenceAbrams,AndrewBoucher,SylvainBromberger, TylerBurge,JohnBurgess,EmilyCarson,DickCartwright,KarinCase, PeterClark,RoyCook,TonyCorsentino,AnnetteDemby,BillDemopou- los, Mic Detlefsen, Burt Dreben, Philip Ebert, Kate Elgin, Delia Graff Fara,FernandoFerreira,JanetFolina,MichaelGlanzberg,WarrenGold- farb,AliceGraham-Brown,DaveGrishaw-Jones,StevenGross,BobHale, JimHigginbotham,ChrisHill,DavidHunter,DarrylJung,JinhoKang, KathrinKoslicki,MichaelKremer,ThomasKuhn,ØysteinLinnebo,Mary Luti, Josep Macià-Fabrega, Lisa Marino, Mathieu Marion, Robert May, Ute Molitor, Charles Parsons, Paul Pietroski, Carl Posy, Ian Proops, HilaryPutnam,AgustínRayo,OfraRechter,MichaelRescorla,Thomas Ricketts,GideonRosen,MarcusRossberg,TimScanlon,JoshSchechter, RichardSchwartz,SallySedgwick,LisaSereno,BrettSherman,Stewart Shapiro,OriSimchen,AlisonSimmons,DanSmith,GiselaStriker,Bob Stalnaker, Zoltan Gendler Szabó, Bill Tait, Jamie Tappenden, Gabriel

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.